Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 263
Filter
1.
Sci Rep ; 14(1): 16289, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39009606

ABSTRACT

Pioneering flexible micro-supercapacitors, designed for exceptional energy and power density, transcend conventional storage limitations. Interdigitated electrodes (IDEs) based on laser-induced graphene (LIG), augmented with metal-oxide modifiers, harness synergies with layered graphene to achieve superior capacitance. This study presents a novel one-step process for sputtered plasma deposition of HfO2, resulting in enhanced supercapacitance performance. Introducing LIG-HfO2 micro-supercapacitor (MSC) devices with varied oxygen flow rates further boosts supercapacitance performance by introducing oxygen functional groups. FESEM investigations demonstrate uniform coating of HfO2 on LIG fibers through sputtering. Specific capacitance measurements reveal 6.4 mF/cm2 at 5 mV/s and 4.5 mF/cm2 at a current density of 0.04 mA/cm2. The LIG-HfO2 devices exhibit outstanding supercapacitor performance, boasting at least a fourfold increase over pristine LIG. Moreover, stability testing indicates a high retention rate of 97% over 5000 cycles, ensuring practical real-time applications.

2.
Toxics ; 12(6)2024 May 31.
Article in English | MEDLINE | ID: mdl-38922084

ABSTRACT

To understand the influences of emulsified fuel on ship exhaust emissions more comprehensively, the emissions of particulate matter (PM), nitrated, oxygenated and parent polycyclic aromatic hydrocarbons (PAHs) were studied on a ship main engine burning emulsified heavy fuel oil (EHFO) and heavy fuel oil (HFO) as a reference. The results demonstrate that EHFO (emulsified heavy fuel oil) exhibits notable abilities to significantly reduce emissions of particulate matter (PM) and low molecular weight PAHs (polycyclic aromatic hydrocarbons) in the gas phase, particularly showcasing maximum reductions of 13.99% and 40.5%, respectively. Nevertheless, burning EHFO could increase the emission of high molecular weight PAHs in fine particles and pose a consequent higher carcinogenic risk for individual particles. The total average (gaseous plus particulate) ΣBEQ of EHFO exhausts (41.5 µg/m3) was generally higher than that of HFO exhausts (18.7 µg/m3). Additionally, the combustion of EHFO (extra-heavy fuel oil) can significantly alter the emission quantity, composition, and particle-size distribution of PAH derivatives. These changes may be linked to molecular structures, such as zigzag configurations in C=O bonds. Our findings may favor the comprehensive environmental assessments on the onboard application of EHFO.

3.
ACS Appl Mater Interfaces ; 16(24): 31756-31767, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38837185

ABSTRACT

High-performance thin films combining large optical bandgap Al2O3 and high refractive index HfO2 are excellent components for constructing the next generation of laser systems with enhanced output power. However, the growth of low-defect plasma-enhanced-atomic-layer-deposited (PEALD) Al2O3 for high-power laser applications and its combination with HfO2 and SiO2 materials commonly used in high-power laser thin films still face challenges, such as how to minimize defects, especially interface defects. In this work, substrate-layer interface defects in Al2O3 single-layer thin films, layer-layer interface defects in Al2O3-based bilayer and trilayer thin films, and their effects on the laser-induced damage threshold (LIDT) were investigated via capacitance-voltage (C-V) measurements. The experimental results show that by optimizing the deposition parameters, specifically the deposition temperature, precursor exposure time, and plasma oxygen exposure time, Al2O3 thin films with low defect density and high LIDT can be obtained. Two trilayer anti-reflection (AR) thin film structures, Al2O3/HfO2/SiO2 and HfO2/Al2O3/SiO2, were then prepared and compared. The trilayer AR thin film with Al2O3/HfO2/SiO2 structure exhibits a lower interface defect density, better interface bonding performance, and an increase in LIDT by approximately 2.8 times. We believe these results provide guidance for the control of interface defects and the design of thin film structures and will benefit many thin film optics for laser applications.

4.
Nano Lett ; 24(22): 6585-6591, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38785400

ABSTRACT

The gallium-doped hafnium oxide (Ga-HfO2) films with different Ga doping concentrations were prepared by adjusting the HfO2/Ga2O3 atomic layer deposition cycle ratio for high-speed and low-voltage operation in HfO2-based ferroelectric memory. The Ga-HfO2 ferroelectric films reveal a finely modulated coercive field (Ec) from 1.1 (HfO2/Ga2O3 = 32:1) to an exceptionally low 0.6 MV/cm (HfO2/Ga2O3 = 11:1). This modulation arises from the competition between domain nucleation and propagation speed during polarization switching, influenced by the intrinsic domain density and phase dispersion in the film with specific Ga doping concentrations. Higher Ec samples exhibit a nucleation-dominant switching mechanism, while lower Ec samples undergo a transition from a nucleation-dominant to a propagation-dominant reversal mechanism as the electric field increases. This work introduces Ga as a viable dopant for low Ec and offers insights into material design strategies for HfO2-based ferroelectric memory applications.

5.
ACS Appl Mater Interfaces ; 16(20): 26915-26921, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38717847

ABSTRACT

Multifunctional integration in a single device has always been a hot research topic, especially for contradictory phenomena, one of which is the coexistence of ferroelectricity and metallicity. The complex oxide heterostructures, as symmetric breaking systems, provide a great possibility to incorporate different properties. Moreover, finding a series of oxide heterostructures to achieve this goal remains as a challenge. Here, taking the advantage of different physical phenomena, we use H2 plasma to pretreat the SrTiO3 (STO) substrate and then fabricate HfO2/STO heterostructures with it. The novel, well-repeatable metallic two-dimensional electron gas (2DEG) is directly obtained at the heterointerfaces without any further complex procedures, while the obvious ferroelectric-like behavior and Rashba spin-orbit coupling are also observed. The understanding of the mechanism, as well as the modified facile preparation procedure, would be meaningful for further development of ferroelectric metal in complex oxide heterostructures.

6.
ACS Nano ; 18(20): 12707-12715, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38733336

ABSTRACT

The scale-free ferroelectricity with superior Si compatibility of HfO2 has reawakened the feasibility of scaled-down nonvolatile devices and beyond the complementary metal-oxide-semiconductor (CMOS) architecture based on ferroelectric materials. However, despite the rapid development, fundamental understanding, and control of the metastable ferroelectric phase in terms of oxygen ion movement of HfO2 remain ambiguous. In this study, we have deterministically controlled the orientation of a single-crystalline ferroelectric phase HfO2 thin film via oxygen ion movement. We induced a topotactic phase transition of the metal electrode accompanied by the stabilization of the differently oriented ferroelectric phase HfO2 through the migration of oxygen ions between the oxygen-reactive metal electrode and the HfO2 layer. By stabilizing different polarization directions of HfO2 through oxygen ion migration, we can gain a profound understanding of the oxygen ion-relevant unclear phenomena of ferroelectric HfO2.

7.
ACS Appl Mater Interfaces ; 16(21): 27532-27540, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38743018

ABSTRACT

Robust ferroelectricity in HfO2-based ultrathin films has the potential to revolutionize nonvolatile memory applications in nanoscale electronic devices because of their compatibility with the existing Si technology. However, to fully exploit the potential of ferroelectric HfO2-based thin films, it is crucial to develop strategies for the controlled stabilization of various HfO2-based polymorphs in nanoscale heterostructures. This study demonstrates how substrate-orientation-induced anisotropic strain can engineer the crystal symmetry, structural domain morphology, and growth orientation of ultrathin Hf0.5Zr0.5O2 (HZO) films. Epitaxial ultrathin HZO films were grown on the heterostructures of (001)- and (110)-oriented La2/3Sr1/3MnO3/SrTiO3 (LSMO/STO) substrate. Various structural analyses revealed that the (110)-oriented substrate promotes a higher degree of structural order (crystallinity) with improved stability of the (111)-oriented orthorhombic phase (Pca21) of HZO. Conversely, the (001)-oriented substrate not only induces a distorted orthorhombic structure but also facilitates the partial stabilization of nonpolar phases. Electrical measurements revealed robust ferroelectric properties in epitaxial thin films without any wake-up effect, where the well-ordered crystal symmetry stabilized by STO(110) facilitated better ferroelectric characteristics. This study suggests that tuning the epitaxial growth of ferroelectric HZO through substrate orientation can improve the stability of the metastable ferroelectric orthorhombic phase and thereby offer a better understanding of device applications.

8.
Sci Rep ; 14(1): 8591, 2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38615052

ABSTRACT

The impacts of climate change, combined with the depletion of fossil fuel reserves, are forcing human civilizations to reconsider the design of electricity generation systems to gradually and extensively incorporate renewable energies. This study aims to investigate the technical and economic aspects of replacing all heavy fuel oil (HFO) and light fuel oil (LFO) thermal power plants connected to the electricity grid in southern Cameroon. The proposed renewable energy system consists of a solar photovoltaic (PV) field, a pumped hydroelectric energy storage (PHES) system, and an ultra-capacitor energy storage system. The economic and technical performance of the new renewable energy system was assessed using metrics such as total annualized project cost (TAC), loss of load probability (LOLP), and loss of power supply probability (LPSP). The Multi-Objective Bonobo Optimizer (MOBO) was used to both size the components of the new renewable energy system and choose the best location for the solar PV array. The results achieved using MOBO were superior to those obtained from other known optimization techniques. Using metaheuristics for renewable energy system sizing necessitated the creation of mathematical models of renewable energy system components and techno-economic decision criteria under MATLAB software. Based on the results for the deficit rate (LPSP) of zero, the installation of the photovoltaic field in Bafoussam had the lowest TAC of around 52.78 × 106€ when compared to the results for Yaoundé, Bamenda, Douala, and Limbe. Finally, the project profitability analysis determined that the project is financially viable when the energy produced by the renewable energy systems is sold at an average price of 0.12 €/kWh.

9.
Radiol Phys Technol ; 17(2): 441-450, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38630390

ABSTRACT

This research aimed to compare the quantitative imaging attributes of synthesized hafnium oxide nanoparticles (NPs) derived from UiO-66-NH2(Hf) and two gadolinium- and iodine-based clinical contrast agents (CAs) using cylindrical phantom. Aqueous solutions of the studied CAs, containing 2.5, 5, and 10 mg/mL of HfO2NPs, gadolinium, and iodine, were prepared. Constructed within a cylindrical phantom, 15 cc small tubes were filled with CAs. Maintaining constant mAs, the phantom underwent scanning at tube voltage variations from 80 to 140 kVp. The CT numbers were quantified in Hounsfield units (HU), and the contrast-to-noise ratios (CNR) were calculated within delineated regions of interest (ROI) for all CAs. The HfO2NPs at 140 kVp and concentration of 2.5 mg/ml exhibited 2.3- and 1.3-times higher CT numbers than iodine and gadolinium, respectively. Notably, gadolinium consistently displayed higher CT numbers than iodine across all exposure techniques and concentrations. At the highest tube potential, the maximum amount of the CAs CT numbers was attained, and at 140 kVp and concentration of 2.5 mg/ml of HfO2NPs the CNR surpassed iodine by 114%, and gadolinium by 30%, respectively. HfO2NPs, as a contrast agent, demonstrated superior image quality in terms of contrast and noise in comparison to iodine- and gadolinium-based contrast media, particularly at higher energies of X-ray in computed tomography. Thus, its utilization is highly recommended in CT.


Subject(s)
Contrast Media , Hafnium , Nanoparticles , Oxides , Phantoms, Imaging , Tomography, X-Ray Computed , Contrast Media/chemistry , Oxides/chemistry , Hafnium/chemistry , Nanoparticles/chemistry , Gadolinium/chemistry , Iodine/chemistry , Signal-To-Noise Ratio
10.
Heliyon ; 10(5): e27078, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38439859

ABSTRACT

This study marks a significant stride in enhancing photoelectrochemical (PEC) water splitting applications through the development of a type II nano-heterojunction comprising HfO2 and α - Fe2O3. Fabricated via Physical Vapor Deposition/Radio Frequency (PVD/RF) sputtering, this nano-heterojunction effectively addresses the efficiency limitations inherent in traditional α - Fe2O3photoanodes. The integration of HfO2 leads to a substantial increase in photocurrent density, soaring from 62 µA/cm2 for pure α - Fe2O3 to 1.46 mA cm-2 at 1.23 V versus the Reversible Hydrogen Electrode (RHE). This enhancement, a 23-fold increase, is primarily attributed to the improved absorption of photons in the visible range and the facilitation of more efficient charge transfer. The enhanced performance and long-term stability of the HfO2/α - Fe2O3 nano-heterojunction, validated through XRD, XPS, Raman Spectroscopy, EDS, SEM, EIS, and UPS analyses, demonstrate its potential as a promising and cost-effective solution for PEC water splitting applications, leveraging renewable energy sources.

11.
Sci Rep ; 14(1): 3532, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38347024

ABSTRACT

SiGeSn nanocrystals (NCs) in oxides are of considerable interest for photo-effect applications due to the fine-tuning of the optical bandgap by quantum confinement in NCs. We present a detailed study regarding the silicon germanium tin (SiGeSn) NCs embedded in a nanocrystalline hafnium oxide (HfO2) matrix fabricated by using magnetron co-sputtering deposition at room temperature and rapid thermal annealing (RTA). The NCs were formed at temperatures in the range of 500-800 °C. RTA was performed to obtain SiGeSn NCs with surfaces passivated by the embedding HfO2 matrix. The formation of NCs and ß-Sn segregation were discussed in relation to the deposition and processing conditions by employing HRTEM, XRD and Raman spectroscopy studies. The spectral photosensitivity exhibited up to 2000 nm in short-wavelength infrared (SWIR) depending on the Sn composition was obtained. Comparing to similar results on GeSn NCs in SiO2 matrix, the addition of Si offers a better thermal stability of SiGeSn NCs, while the use of HfO2 matrix results in better passivation of NCs increasing the SWIR photosensitivity at room temperature. These results suggest that SiGeSn NCs embedded in an HfO2 matrix are a promising material for SWIR optoelectronic devices.

12.
Brain Commun ; 6(1): fcae032, 2024.
Article in English | MEDLINE | ID: mdl-38384998

ABSTRACT

High frequency oscillations are a promising biomarker of outcome in intractable epilepsy. Prior high frequency oscillation work focused on counting high frequency oscillations on individual channels, and it is still unclear how to translate those results into clinical care. We show that high frequency oscillations arise as network discharges that have valuable properties as predictive biomarkers. Here, we develop a tool to predict patient outcome before surgical resection is performed, based on only prospective information. In addition to determining high frequency oscillation rate on every channel, we performed a correlational analysis to evaluate the functional connectivity of high frequency oscillations in 28 patients with intracranial electrodes. We found that high frequency oscillations were often not solitary events on a single channel, but part of a local network discharge. Eigenvector and outcloseness centrality were used to rank channel importance within the connectivity network, then used to compare patient outcome by comparison with the seizure onset zone or a proportion within the proposed resected channels (critical resection percentage). Combining the knowledge of each patient's seizure onset zone resection plan along with our computed high frequency oscillation network centralities and high frequency oscillation rate, we develop a Naïve Bayes model that predicts outcome (positive predictive value: 100%) better than predicting based upon fully resecting the seizure onset zone (positive predictive value: 71%). Surgical margins had a large effect on outcomes: non-palliative patients in whom most of the seizure onset zone was resected ('definitive surgery', ≥ 80% resected) had predictable outcomes, whereas palliative surgeries (<80% resected) were not predictable. These results suggest that the addition of network properties of high frequency oscillations is more accurate in predicting patient outcome than seizure onset zone alone in patients with most of the seizure onset zone removed and offer great promise for informing clinical decisions in surgery for refractory epilepsy.

13.
Sci Total Environ ; 916: 170137, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38242457

ABSTRACT

HFO-1234yf (2,3,3,3-tetrafluoropropene) is being used as refrigerant to replace HFC-134a (1,1,1,2-tetrafluoroethane), a potent greenhouse gas, in mobile air conditioners. However, the environmental impacts of HFO-1234yf, which is quickly and almost completely transformed to the persistent and phytotoxic trifluoroacetic acid (TFA), is of great concern. Here, we used the nested-grid chemical transport model, GEOS-Chem, to assess the fate and environmental impacts of HFO-1234yf emissions from mobile air conditioners in East Asia. With total emissions of 30.3 Gg yr-1, the annual mean concentrations of HFO-1234yf in China, Japan, and South Korea were 4.00, 3.23, and 5.54 pptv (parts per trillion volume), respectively, and the annual deposition fluxes (dry plus wet) of TFA in these regions were 0.35, 0.48, and 0.53 kg km-2 yr-1, dominated by wet deposition. About 14 %, 13 % and 11 % of HFO-1234yf emissions were deposited as TFA in China, Japan and South Korea, respectively, i.e. a large portion of TFA was deposited in areas outside of the emission boundary regions. The TFA characteristics in Japan and South Korea was significantly influenced by emission from China, which contributions ranged from 43 % to 94 % for the TFA concentrations and 44 % to 98 % for the TFA depositions across the four seasons. This suggests that the influence of neighboring emission sources cannot be ignored when assessing the impact of HFO-1234yf emissions in individual countries.

14.
Nanotechnology ; 35(12)2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38081066

ABSTRACT

The resistive switching property in HfO2have attracted increasing interest in recent years. In this work, amorphous HfO2nanocrystals are synthesized by a facile hydrothermal method. Then, the as-synthesized nanocrystals are rapid thermal annealed in different atmospheres for improving the crystal quality, and monoclinic phase is determined as the main crystal structure of the annealed HfO2. Subsequently, metal-insulator-metal structure devices based on HfO2samples are fabricated. Electrical measurement indicates that 700 °C annealing processes in Air and Ar environments can slightly improve the bipolar resistive switching and retention behaviors. Higher annealed temperature (900 °C) will further improve the crystal quality of HfO2, while the resistive switching and retention behaviors of the devices continuously attenuate, which can be ascribed to the reduction of the conductive filaments induced by defects.

15.
Int J Toxicol ; 43(1): 4-18, 2024.
Article in English | MEDLINE | ID: mdl-37860941

ABSTRACT

HFO-1234ze (E) is proposed as a near zero global warming propellant for use in metered dose inhaled (MDI) products. This paper describes the non-clinical safety assessment in mice, rats, and dogs and supplements previously reported data (genetic toxicology, short-term toxicology, and reproductive toxicology). In all species, HFO-1234ze (E) was only detectable in blood for a short period after dosing with no evidence of accumulation. HFO-1234ze (E) was without any toxicological effects at very high doses in subchronic (13-week mouse) and chronic (39-week dog) studies. Chronic (26-week) administration to rats at very high doses was associated with an exacerbation of rodent progressive cardiomyopathy, a well-documented background finding in rodents. In a 2-generation study, extremely high doses were associated with the early euthanasia of some lactating female rats. This finding was considered to be significantly influenced by a state of negative energy balance, reflecting the specific vulnerability of rats during lactation. These findings are considered to not pose a risk to humans with typical MDI use given they occurred at doses which far exceed those expected in patients. Overall, the nonclinical safety data for HFO-1234ze (E) support its further development as an MDI propellant.


Subject(s)
Fluorocarbons , Global Warming , Animals , Dogs , Female , Mice , Rats , Administration, Inhalation , Lactation
16.
Biomed Tech (Berl) ; 69(2): 111-123, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-37899292

ABSTRACT

OBJECTIVES: The present study is designed to explore the process of epileptic patterns' automatic detection, specifically, epileptic spikes and high-frequency oscillations (HFOs), via a selection of machine learning (ML) techniques. The primary motivation for conducting such a research lies mainly in the need to investigate the long-term electroencephalography (EEG) recordings' visual examination process, often considered as a time-consuming and potentially error-prone procedure, requiring a great deal of mental focus and highly experimented neurologists. On attempting to resolve such a challenge, a number of state-of-the-art ML algorithms have been evaluated and compare in terms of performance, to pinpoint the most effective algorithm fit for accurately extracting epileptic EEG patterns. CONTENT: Based on intracranial as well as simulated EEG data, the attained findings turn out to reveal that the randomforest (RF) method proved to be the most consistently effective approach, significantly outperforming the entirety of examined methods in terms of EEG recordings epileptic-pattern identification. Indeed, the RF classifier appeared to record an average balanced classification rate (BCR) of 92.38 % in regard to spikes recognition process, and 78.77 % in terms of HFOs detection. SUMMARY: Compared to other approaches, our results provide valuable insights into the RF classifier's effectiveness as a powerful ML technique, fit for detecting EEG signals born epileptic bursts. OUTLOOK: As a potential future work, we envisage to further validate and sustain our major reached findings through incorporating a larger EEG dataset. We also aim to explore the generative adversarial networks (GANs) application so as to generate synthetic EEG signals or combine signal generation techniques with deep learning approaches. Through this new vein of thought, we actually preconize to enhance and boost the automated detection methods' performance even more, thereby, noticeably enhancing the epileptic EEG pattern recognition area.


Subject(s)
Epilepsy , Humans , Epilepsy/diagnosis , Electroencephalography/methods , Algorithms , Machine Learning , Signal Processing, Computer-Assisted
17.
Curr Neurol Neurosci Rep ; 24(2): 35-46, 2024 02.
Article in English | MEDLINE | ID: mdl-38148387

ABSTRACT

PURPOSE OF THE REVIEW: Magnetoencephalography (MEG) is a functional neuroimaging technique that records neurophysiology data with millisecond temporal resolution and localizes it with subcentimeter accuracy. Its capability to provide high resolution in both of these domains makes it a powerful tool both in basic neuroscience as well as clinical applications. In neurology, it has proven useful in its ability to record and localize epileptiform activity. Epilepsy workup typically begins with scalp electroencephalography (EEG), but in many situations, EEG-based localization of the epileptogenic zone is inadequate. The complementary sensitivity of MEG can be crucial in such cases, and MEG has been adopted at many centers as an important resource in building a surgical hypothesis. In this paper, we review recent work evaluating the extent of MEG influence of presurgical evaluations, novel analyses of MEG data employed in surgical workup, and new MEG instrumentation that will likely affect the field of clinical MEG. RECENT FINDINGS: MEG consistently contributes to presurgical evaluation and these contributions often change the plan for epilepsy surgery. Extensive work has been done to develop new analytic methods for localizing the source of epileptiform activity with MEG. Systems using optically pumped magnetometry (OPM) have been successfully deployed to record and localize epileptiform activity. MEG remains an important noninvasive tool for epilepsy presurgical evaluation. Continued improvements in analytic methodology will likely increase the diagnostic yield of the test. Novel instrumentation with OPM may contribute to this as well, and may increase accessibility of MEG by decreasing cost.


Subject(s)
Epilepsy , Magnetoencephalography , Humans , Magnetoencephalography/methods , Epilepsy/diagnosis , Epilepsy/surgery , Electroencephalography/methods , Neuroimaging , Functional Neuroimaging
18.
Article in English | MEDLINE | ID: mdl-38041654

ABSTRACT

Analog synaptic devices have made significant advances based on various electronic materials that can realize the biological synapse properties of neuromorphic computing. Ferroelectric (FE) HfO2-based materials with nonvolatile and low power consumption characteristics are being studied as promising materials for application to analog synaptic devices. The gradual reversal of FE multilevel polarization results in precise changes in the channel conductance and allows analogue synaptic weight updates. However, there have been few studies of FE synaptic devices doped with La, Y, and Gd. Furthermore, an investigation of interface quality is also crucial to enhance the remnant polarization (Pr), synaptic conductance linearity, and reliability characteristics. In this study, we demonstrate improved FE and artificial synaptic characteristics using an atomic layer-deposited (ALD) lanthanum-doped HfO2 (La:HfO2) and TaN electrode in the structure of an FE thin-film transistor (ITO/IGZO/La:HfO2/TaN), where indium-tin oxide (ITO) and indium-gallium-zinc oxide (IGZO) were used as source/drain and channel materials, respectively. Improved Pr and lower surface roughness were achieved by doped HfO2 and ALD TaN thin films. This synaptic transistor shows long-term potentiation and long-term depression with 200 levels of conductance states, high linearity (Ap, 0.97; Ad, 0.86), high Gmax/Gmin (∼6.1), and low cycle-to-cycle variability. In addition, a pattern recognition accuracy higher than 90% was achieved in an artificial neural network simulation.

19.
Nano Converg ; 10(1): 55, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38038784

ABSTRACT

HfO2 shows promise for emerging ferroelectric and resistive switching (RS) memory devices owing to its excellent electrical properties and compatibility with complementary metal oxide semiconductor technology based on mature fabrication processes such as atomic layer deposition. Oxygen vacancy (Vo), which is the most frequently observed intrinsic defect in HfO2-based films, determines the physical/electrical properties and device performance. Vo influences the polymorphism and the resulting ferroelectric properties of HfO2. Moreover, the switching speed and endurance of ferroelectric memories are strongly correlated to the Vo concentration and redistribution. They also strongly influence the device-to-device and cycle-to-cycle variability of integrated circuits based on ferroelectric memories. The concentration, migration, and agglomeration of Vo form the main mechanism behind the RS behavior observed in HfO2, suggesting that the device performance and reliability in terms of the operating voltage, switching speed, on/off ratio, analog conductance modulation, endurance, and retention are sensitive to Vo. Therefore, the mechanism of Vo formation and its effects on the chemical, physical, and electrical properties in ferroelectric and RS HfO2 should be understood. This study comprehensively reviews the literature on Vo in HfO2 from the formation and influencing mechanism to material properties and device performance. This review contributes to the synergetic advances of current knowledge and technology in emerging HfO2-based semiconductor devices.

20.
Nanomaterials (Basel) ; 13(24)2023 Dec 10.
Article in English | MEDLINE | ID: mdl-38133006

ABSTRACT

Hafnia-based nanostructures and other high-k dielectrics are promising wide-gap materials for developing new opto- and nanoelectronic devices. They possess a unique combination of physical and chemical properties, such as insensitivity to electrical and optical degradation, radiation damage stability, a high specific surface area, and an increased concentration of the appropriate active electron-hole centers. The present paper aims to investigate the structural, optical, and luminescent properties of anodized non-stoichiometric HfO2 nanotubes. As-grown amorphous hafnia nanotubes and nanotubes annealed at 700 °C with a monoclinic crystal lattice served as samples. It has been shown that the bandgap Eg for direct allowed transitions amounts to 5.65 ± 0.05 eV for amorphous and 5.51 ± 0.05 eV for monoclinic nanotubes. For the first time, we have studied the features of intrinsic cathodoluminescence and photoluminescence in the obtained nanotubular HfO2 structures with an atomic deficiency in the anion sublattice at temperatures of 10 and 300 K. A broad emission band with a maximum of 2.3-2.4 eV has been revealed. We have also conducted an analysis of the kinetic dependencies of the observed photoluminescence for synthesized HfO2 samples in the millisecond range at room temperature. It showed that there are several types of optically active capture and emission centers based on vacancy states in the O3f and O4f positions with different coordination numbers and a varied number of localized charge carriers (V0, V-, and V2-). The uncovered regularities can be used to optimize the functional characteristics of developed-surface luminescent media based on nanotubular and nanoporous modifications of hafnia.

SELECTION OF CITATIONS
SEARCH DETAIL