Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 399
Filter
1.
Arthritis Res Ther ; 26(1): 135, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39026358

ABSTRACT

With great interest, we have read the recent article "Expression of HIF1α in intestinal epithelium restricts arthritis inflammation by inhibiting RIPK3-induced cell death machinery" published by Lyu et al. in Annals of the Rheumatic Diseases. The authors pose that the expression of hypoxia-inducible factor 1 alpha in intestinal epithelial cells represents a crucial check point for the development of arthritis by impeding necroptosis of intestinal epithelial cells and safeguarding the intestinal barrier integrity. Previous studies suggest a potential mechanistic link between faulty intestinal barrier function and potentiation of arthritogenic immune cells. From this perspective, bolstering the intestinal barrier integrity arose as an attractive therapeutic strategy for rheumatoid arthritis.


Subject(s)
Intestinal Mucosa , Humans , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Animals , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/pathology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
2.
Mol Cancer ; 23(1): 147, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39048991

ABSTRACT

Non-small cell lung cancer (NSCLC) constitutes one of the deadliest and most common malignancies. The LKB1/STK11 tumour suppressor is mutated in ∼ 30% of NSCLCs, typically lung adenocarcinomas (LUAD). We implemented zebrafish and human lung organoids as synergistic platforms to pre-clinically screen for metabolic compounds selectively targeting LKB1-deficient tumours. Interestingly, two kinase inhibitors, Piceatannol and Tyrphostin 23, appeared to exert synthetic lethality with LKB1 mutations. Although LKB1 loss alone accelerates energy expenditure, unexpectedly we find that it additionally alters regulation of the key energy homeostasis maintenance player leptin (LEP), further increasing the energetic burden and exposing a vulnerable point; acquired sensitivity to the identified compounds. We show that compound treatment stabilises Hypoxia-inducible factor 1-alpha (HIF1A) by antagonising Von Hippel-Lindau (VHL)-mediated HIF1A ubiquitination, driving LEP hyperactivation. Importantly, we demonstrate that sensitivity to piceatannol/tyrphostin 23 epistatically relies on a HIF1A-LEP-Uncoupling Protein 2 (UCP2) signaling axis lowering cellular energy beyond survival, in already challenged LKB1-deficient cells. Thus, we uncover a pivotal metabolic vulnerability of LKB1-deficient tumours, which may be therapeutically exploited using our identified compounds as mitochondrial uncouplers.


Subject(s)
AMP-Activated Protein Kinase Kinases , Leptin , Mitochondria , Protein Serine-Threonine Kinases , Zebrafish , Humans , Animals , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Mitochondria/metabolism , Mitochondria/drug effects , Leptin/metabolism , Lung Neoplasms/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Uncoupling Agents/pharmacology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Cell Line, Tumor , Molecular Targeted Therapy , Protein Kinase Inhibitors/pharmacology , Stilbenes
3.
Brain Res ; 1841: 149069, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38852658

ABSTRACT

Etomidate (ETO), a hypnotic agent used for anesthesia induction, has been shown to induce long-lasting cognitive deficits. In the present study, we investigated whether ETO could activate the HIF1A/PGK1 pathway to antagonize oxidative damage in mice with postoperative cognitive dysfunction (POCD). A mouse model of ETO-mediated POCD was established, and pathological changes, apoptosis, and inflammatory factors in mouse hippocampal tissues were analyzed by HE staining, TUNEL assay, and ELISA. ETO was revealed to cause cognitive dysfunction in mice. Integrated database mining was conducted to screen out transcription factors that are both related to ETO and POCD. Hypoxia-inducible factor 1-alpha (HIF1A) was overexpressed in mice with POCD, and downregulation of HIF1A alleviated cognitive dysfunction in mice. HIF1A downregulation inhibited the transcription of phosphoglycerate kinase 1 (PGK1). Overexpression of PGK1 abated the alleviating effects of HIF1A knockdown on oxidative stress in mice with POCD. In addition, HIF1A activation of PGK1 induced oxidative stress and apoptosis in HT-22 cells while inhibiting cell viability. Taken together, we demonstrated that HIF1A activation of PGK1 induced oxidative stress in ETO-mediated POCD.

4.
Int J Mol Sci ; 25(12)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38928200

ABSTRACT

Hypoxia-inducible factor 1-alpha (HIF1A) is a key transcription factor aiding tumor cells' adaptation to hypoxia, regulated by the prolyl hydroxylase family (EGLN1-3) by directing toward degradation pathways. DNA methylation potentially influences EGLN and HIF1A levels, impacting cellular responses to hypoxia. We examined 96 HNSCC patients and three cell lines, analyzing gene expression of EGLN1-3, HIF1A, CA9, VEGF, and GLUT1 at the mRNA level and EGLN1 protein levels. Methylation levels of EGLNs and HIF1A were assessed through high-resolution melting analysis. Bioinformatics tools were employed to characterize associations between EGLN1-3 and HIF1A expression and methylation. We found significantly higher mRNA levels of EGLN3, HIF1A, GLUT1, VEGF, and CA9 (p = 0.021; p < 0.0001; p < 0.0001; p = 0.004, and p < 0.0001, respectively) genes in tumor tissues compared to normal ones and downregulation of the EGLN1 mRNA level in tumor tissues (p = 0.0013). In HNSCC patients with hypermethylation of HIF1A in normal tissue, we noted a reduction in HIF1A mRNA levels compared to tumor tissue (p = 0.04). In conclusion, the differential expression of EGLN and HIF1A genes in HNSCC tumors compared to normal tissues influences patients' overall survival, highlighting their role in tumor development. Moreover, DNA methylation could be responsible for HIF1A suppression in the normal tissues of HNSCC patients.


Subject(s)
DNA Methylation , Gene Expression Regulation, Neoplastic , Head and Neck Neoplasms , Hypoxia-Inducible Factor 1, alpha Subunit , Hypoxia-Inducible Factor-Proline Dioxygenases , Squamous Cell Carcinoma of Head and Neck , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/pathology , Female , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/metabolism , Head and Neck Neoplasms/pathology , Male , Cell Line, Tumor , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Hypoxia-Inducible Factor-Proline Dioxygenases/genetics , Middle Aged , Prolyl Hydroxylases/metabolism , Prolyl Hydroxylases/genetics , Aged , Carcinogenesis/genetics , Adult
5.
BMC Neurol ; 24(1): 204, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38879468

ABSTRACT

Hypoxia can cause a variety of diseases, including ischemic stroke and neurodegenerative diseases. Within a certain range of partial pressure of oxygen, cells can respond to changes in oxygen. Changes in oxygen concentration beyond a threshold will cause damage or even necrosis of tissues and organs, especially for the central nervous system. Therefore, it is very important to find appropriate measures to alleviate damage. MiRNAs can participate in the regulation of hypoxic responses in various types of cells. MiRNAs are involved in regulating hypoxic responses in many types of tissues by activating the hypoxia-inducible factor (HIF) to affect angiogenesis, glycolysis and other biological processes. By analyzing differentially expressed miRNAs in hypoxia and hypoxia-related studies, as well as the HT22 neuronal cell line under hypoxic stress, we found that the expression of miR-18a was changed in these models. MiR-18a could regulate glucose metabolism in HT22 cells under hypoxic stress by directly regulating the 3'UTR of the Hif1a gene. As a small molecule, miRNAs are easy to be designed into small nucleic acid drugs, so this study can provide a theoretical basis for the research and treatment of nervous system diseases caused by hypoxia.


Subject(s)
Glucose , Hippocampus , Hypoxia-Inducible Factor 1, alpha Subunit , MicroRNAs , Neurons , Animals , Humans , Mice , Cell Hypoxia/physiology , Cell Line , Glucose/metabolism , Glucose/deficiency , Hippocampus/metabolism , Hippocampus/pathology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , MicroRNAs/metabolism , MicroRNAs/genetics , Neurons/metabolism
6.
bioRxiv ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38915482

ABSTRACT

Lysine Specific Demethylase 1 (KDM1A / LSD1) regulates mitochondrial respiration and stabilizes HIF-1A (hypoxia-inducible factor 1A). HIF-1A modulates reactive oxygen species (ROS) levels by increasing cellular glucose uptake, glycolysis, and endogenous antioxidants. The role of KDM1A in cellular ROS response has not previously been described. We determined the role of KDM1A in regulating the ROS response and the utility of KDM1A inhibitors in combination with ROS-inducing cancer therapies. Our results show that KDM1A inhibition sensitized cells to oxidative stress and increased total cellular ROS, which was mitigated by treatment with the antioxidant N-acetyl cysteine. KDM1A inhibition decreased basal mitochondrial respiration and impaired induction of HIF-1A after ROS exposure. Overexpression of HIF-1A salvaged cells from KDM1A inhibition enhanced sensitivity to ROS. Thus we found that increased sensitivity of ROS after KDM1A inhibition was mediated by HIF-1A and depletion of endogenous glutathione. We also show that KDM1A-specific inhibitor bizine synergized with antioxidant-depleting therapies, buthionine sulfoximine, and auranofin in rhabdomyosarcoma cell lines (Rh28 and Rh30). In this study, we describe a novel role for KDM1A in regulating HIF-1A functions under oxidative stress and found that dual targeting of KDM1A and antioxidant systems may serve as an effective combination anticancer strategy.

7.
Sci Rep ; 14(1): 13736, 2024 06 14.
Article in English | MEDLINE | ID: mdl-38877062

ABSTRACT

To elucidate the correlation of HIF1A with clinicopathologic characteristics in patients with gastric cancer (GC), we conducted a systematic review and meta-analysis. We searched PubMed, Embase and Web of Science for studies on GC and HIF1A, covering studies published until January 31st, 2022. We calculated odds ratios (ORs) and 95% confidence intervals (CIs) for clinical characteristics based on high and low HIF1A protein levels. We used random-effects and fixed-effects meta-analysis methods to determine mean effect sizes of ORs and evaluated publication heterogeneity with τ2, I2, and Q values. Additionally, we generated funnel plots to inspect publication bias. Our meta-analysis included 20 publications with 3416 GC patients to estimate the association between high or low HIF1A expression and clinical characteristics. Positive HIF1A expression was significantly associated with T stage progression (OR: 2.46; 95% CI 1.81-3.36; P < 0.01), TNM stage progression (OR: 2.50; 95% CI 1.61-3.87; P < 0.01), lymph node metastasis (OR: 2.06; 95% CI 1.44-2.94; P < 0.01), undifferentiated status (OR: 1.83; 95% CI 1.45-2.32; P < 0.01), M stage progression (OR: 2.34; 95% CI 1.46-3.77; P < 0.01), Borrmann stage progression (OR: 1.48; 95% CI 1.02-2.15; P = 0.04), larger tumor size (OR: 1.27; 95% CI 1.06-1.52; P < 0.01), vascular invasion (OR: 1.94; 95% CI 1.38-2.72; P < 0.01), and higher vascular endothelial growth factor (VEGF) protein expression (OR: 2.61; 95% CI 1.79-3.80; P < 0.01) in our meta-analysis. GC Patients highly expressing HIF1A protein might be prone to tumor progression, poorly differentiated GC cell types, and a high VEGF expression.


Subject(s)
Hypoxia-Inducible Factor 1, alpha Subunit , Stomach Neoplasms , Stomach Neoplasms/pathology , Stomach Neoplasms/metabolism , Stomach Neoplasms/genetics , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Lymphatic Metastasis , Biomarkers, Tumor/metabolism , Neoplasm Staging , Vascular Endothelial Growth Factor A/metabolism , Gene Expression Regulation, Neoplastic
8.
Ann Med Surg (Lond) ; 86(6): 3367-3377, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38846874

ABSTRACT

Background: HIF1A-AS1, an antisense transcript of HIF1α gene, is a 652-bp LncRNA that is globally expressed in multiple tissues of animals. Recent evidence indicated that HIF1A-AS1 was involved in tumorigenesis of several types of cancer. However, the role of lncRNA in PC has not been reported, and the molecular mechanism remains elusive. Results: In order to investigate the role of HIF1A-AS1 in PC, it was overexpressed in some PC cell lines (PANC-1, PATU8988 and SW1990), and a series of experiments including cell viability detection, flow cytometry, transwell migration, clone formation and wound healing were performed. Functionally, the results indicated that overexpression of HIF1A-AS1 could greatly inhibit proliferation and migration and promote apoptosis of PC cells. Moreover, the isobaric tags for relative and absolute quantification (iTRAQ) quantitative proteomics analysis was implemented to explore the underlying mechanism and the results indicated that OE of HIF1A-AS1 globally affected the expression levels of multiple proteins associated with metabolism of cancer. At last, the network analysis revealed that most of these differentially expressed proteins (DEPs) were integrated and severed essential roles in regulatory function. In view of this, we guessed HIF1A-AS1 overexpression induced the dysfunction of metabolism and disordered proteins' translation, which may account for its excellent tumour suppressor effect. Conclusions: HIF1A-AS1 altered the cell function of PC cell lines via affecting the expression of numerous proteins. In summary, HIF1A-AS1 may exhibit a potential therapeutic effect on PC, and our study provided useful information in this filed.

9.
Heliyon ; 10(7): e28440, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38689964

ABSTRACT

Introduction: Mitochondrial fission process 1 (MTFP1) is an inner mitochondrial membrane (IMM) protein implicated in the development and progression of various tumors, particularly lung squamous cell carcinoma (LUSC). This study aims to provide a more theoretical basis for the treatment of LUSC. Methods: Through bioinformatics analysis, MTFP1 was identified as a novel target gene of HIF1A. MTFP1 expression in LUSC was examined using The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), and Proteomics Data Commons (PDC) databases. The Kaplan-Meier plotter (KM plotter) database was utilized to evaluate its correlation with patient survival. Western blot and chromatin immunoprecipitation (ChIP) assays were employed to confirm the regulatory relationship between MTFP1 and HIF1A. Additionally, cell proliferation, colony formation, and migration assays were conducted to investigate the mechanism by which MTFP1 enhances LUSC cell proliferation and metastasis. Results: Our findings revealed that MTFP1 overexpression correlated with poor prognosis in LUSC patients(P < 0.05). Moreover, MTFP1 was closely associated with hypoxia and glycolysis in LUSC (R = 0.203; P < 0.001, R = 0.391; P < 0.001). HIF1A was identified as a positive regulator of MTFP1. Functional enrichment analysis demonstrated that MTFP1 played a role in controlling LUSC cell proliferation. Cell proliferation, colony formation, and migration assays indicated that MTFP1 promoted LUSC cell proliferation and metastasis by activating the glycolytic pathway (P < 0.05). Conclusions: This study establishes MTFP1 as a novel HIF1A target gene that promotes LUSC growth by activating the glycolytic pathway. Investigating MTFP1 may contribute to the development of effective therapies for LUSC patients, particularly those lacking targeted oncogene therapies.

10.
Placenta ; 151: 27-36, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38701658

ABSTRACT

INTRODUCTION: This study aimed to screen circRNAs involved in gestational diabetes mellitus (GDM)-related macrosomia. One differentially expressed circRNA (DEC), hsa_circ_0024838, was further tested for its potential role and mechanism in trophoblasts. METHODS: DECs in GDM were selected through GSE182737 and GSE194119. The targets were predicted for DECs and microRNAs (miRNAs), to complete the construction of the circRNA-miRNA-gene network. Functional annotation and related biological pathway enrichment analysis were performed on the target genes of miRNAs in the network. Subsequently, the expression levels of hsa_circ_0024838, miR-543, and HIF1A mRNA were identified by real-time quantitative real-time PCR (RT-qPCR) in GDM patients. Trophoblast activity was assessed via CCK-8 assay, apoptosis assay, and Matrigel invasion assay. Finally, interactions between miR-543 and either hsa_circ_0024838 or HIF1A were confirmed using dual-luciferase reporter assays. RESULTS: A GDM-related circRNA-miRNA-genes interaction network was constructed, consisting of 35 circRNAs, 46 miRNAs, and 122 target genes. Functional enrichment revealed that the enriched pathways were involved in GDM. Hsa_circ_0024838 and HIF1A mRNA expression levels were upregulated in GDM, while miR-543 expression levels were downregulated. A significant positive correlation between hsa_circ_0024838 and newborn weight was observed. Both hsa_circ_0024838 and HIF1A possessed binding sites for miR-543. Overexpressing hsa_circ_0024838 in high-glucose (HG)-cultured trophoblasts can partially reverse HG-induced reduction in trophoblast cell proliferation/migration and increase apoptosis. But this reversal can be negated by co-transfection with miR-543 mimics. The effects of miR-543 can be counteracted by HIF1A. DISCUSSION: Hsa_circ_0024838 can regulate the expression of HIF1A by interacting with miR-543. This regulates the HIF1A signaling pathway and enhance vitality in trophoblast cells.


Subject(s)
Diabetes, Gestational , Hypoxia-Inducible Factor 1, alpha Subunit , MicroRNAs , RNA, Circular , Trophoblasts , Humans , Diabetes, Gestational/genetics , Diabetes, Gestational/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Female , RNA, Circular/genetics , RNA, Circular/metabolism , Pregnancy , Trophoblasts/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Adult
11.
Eur J Appl Physiol ; 124(7): 1943-1958, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38753016

ABSTRACT

PURPOSE: Genetic factors are important in terms of athletic performance. Recent studies to determine the relationship between the genes that lead to physiological responses have attracted attention. In this respect, this meta-analysis study was designed to examine the relationship between genetic polymorphism (BDKRB2 rs5810761, GNB3 rs5443, HIF1A rs11549565, MCT1 rs1049434, NOS3 rs2070744) and endurance athlete's status. METHODS: The search included studies published from 2009 to 2022. To determine the relevant studies, Pubmed, Web of Science databases were systematically scanned. Only case-control studies were included in the meta-analysis. To determine the relevant studies, Pubmed, Web of Science databases were systematically scanned, and a total of 31 studies met the criteria for inclusion in the meta-analysis. Relevant data from the included studies were collected and analyzed using a random effects or fixed effects model. The effect size was calculated as the odds ratio or a risk ratio the corresponding 95% confidence intervals. RESULTS: According to the results of the analysis, BDKRB2 rs5810761 + 9 allele, and NOS3 rs2070744 T allele were significantly more prevalent in endurance athletes (p < 0.05). Genotype distributions of BDKRB2 rs5810761, MCT1 rs1049434, and NOS3 rs2070744 showed significant differences in the dominant model (p < 0.05). However, no significant association was found between endurance athlete status and GNB3 rs5443 and HIF1A rs11549465 polymorphisms. CONCLUSION: These results show that some gene polymorphisms play an important role in endurance athlete status and suggest that having a specific genetic basis may also confer a physiological advantage for performance.


Subject(s)
Hypoxia-Inducible Factor 1, alpha Subunit , Monocarboxylic Acid Transporters , Physical Endurance , Polymorphism, Single Nucleotide , Symporters , Humans , Physical Endurance/genetics , Symporters/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Monocarboxylic Acid Transporters/genetics , Nitric Oxide Synthase Type III/genetics , Athletes , Athletic Performance/physiology , Heterotrimeric GTP-Binding Proteins/genetics , Receptors, G-Protein-Coupled/genetics
12.
Cancers (Basel) ; 16(7)2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38610951

ABSTRACT

This study investigates the roles of RUVBL1 and HIF1A in ccRCC development and explores their clinical significance as prognostic biomarkers. mRNA and protein expressions were analyzed using TCGA data and an institutional tissue cohort, respectively. Correlations with clinicopathological parameters and patient outcomes were assessed. TCGA data revealed significantly elevated RUVBL1 mRNA expression in ccRCC tissues, associated with advanced histological grade, T stage, lymph node metastasis, and clinical stage. High RUVBL1 mRNA expression correlated with inferior overall survival and served as an adverse prognostic factor. Similarly, HIF1A mRNA expression was significantly higher in ccRCC tissues, correlating with worse overall survival and acting as an adverse prognostic factor for treatment outcomes. Simultaneous evaluation of RUVBL1 and HIF1A mRNA expression demonstrated enhanced prognostic capacity, surpassing the predictive power of individual markers. Immunohistochemical staining confirmed substantial upregulation of both RUVBL1 and HIF-1α proteins in ccRCC tissues. Furthermore, high expression of both RUVBL1 and HIF-1α proteins was significantly associated with shorter patient survival time. Our findings underscore the significance of RUVBL1 and HIF-1α as potential prognostic markers in ccRCC, paving the way for further research to translate these insights into clinically relevant applications.

13.
Cell Signal ; 119: 111170, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38604344

ABSTRACT

Cadmium (Cd) is an environmental risk factor of cardiovascular diseases. Researchers have found that Cd exposure causes energy metabolic disorders in the heart decades ago. However, the underlying molecular mechanisms are still elusive. In this study, male C57BL/6 J mice were exposed to cadmium chloride (CdCl2) through drinking water for 4 weeks. We found that exposure to CdCl2 increased glucose uptake and utilization, and disrupted normal metabolisms in the heart. In vitro studies showed that CdCl2 specifically increased endothelial glucose uptake without affecting cardiomyocytic glucose uptake and endothelial fatty acid uptake. The glucose transporter 1 (GLUT1) as well as its transcription factor HIF1A was significantly increased after CdCl2 treatment in endothelial cells. Further investigations found that CdCl2 treatment upregulated HIF1A expression by inhibiting its degradation through ubiquitin-proteasome pathway, thereby promoted its transcriptional activation of SLC2A1. Administration of HIF1A small molecule inhibitor echinomycin and A-485 reversed CdCl2-mediated increase of glucose uptake in endothelial cells. In accordance with this, intravenous injection of echinomycin effectively ameliorated CdCl2-mediated metabolic disruptions in the heart. Our study uncovered the molecular mechanisms of Cd in contributing cardiac metabolic disruption by inhibiting HIF1A degradation and increasing GLUT1 transcriptional expression. Inhibition of HIF1A could be a potential strategy to ameliorate Cd-mediated cardiac metabolic disorders and Cd-related cardiovascular diseases.


Subject(s)
Glucose Transporter Type 1 , Glucose , Signal Transduction , Animals , Humans , Male , Mice , Cadmium/toxicity , Cadmium Chloride , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Glucose/metabolism , Glucose Transporter Type 1/metabolism , Glucose Transporter Type 1/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Mice, Inbred C57BL , Myocardium/metabolism , Signal Transduction/drug effects
14.
J Ethnopharmacol ; 329: 118061, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38614265

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Fangji Huangqi Decoction (FHD) is frequently prescribed for the clinical treatment of wind-cold and wind-dampness pathogenic superficial deficiency syndrome. It also has a notable curative effect on rheumatoid arthritis (RA). AIM OF THE STUDY: The study aimed to explore the possible mechanism of FHD against RA and provided a theoretical basis for alternative therapies for RA. MATERIALS AND METHODS: We used UPLC-Q-TOF-MS to analysis the ingredients and absorbed blood components of FHD. At the same time, the collagen-induced arthritis (CIA) rat model was established to estimate the therapeutic effects on FHD by considering body weight, arthritis score, paw swelling, autonomous movement ability, and synovial microvessel counts. Subsequently, immunofluorescence, immunohistochemistry, and Western blot were employed to detect the anti-angiogenic capacity of FHD in vivo, as well as the levels of apoptosis and autophagy in the synovial tissue. In addition, flow cytometry and Western blot were used to assess the effects of FHD on apoptosis and autophagy in MH7A cells. The effects of FHD on the proliferation and migration of MH7A cells were measured by CCK8 assay, cell migration and, invasion experiments. Finally, a tube formation assay was performed to evaluate the angiogenic capacity of FHD in co-cultures of MH7A cells and HUVEC cells. RESULTS: Through testing of FHD's original formula, a total of 26 active ingredients have been identified, with 17 of them being absorbed into the bloodstream. FHD significantly improved the pathological symptoms and synovial hyperplasia of CIA rats. FHD could suppress the expression of HIF-1α, promote apoptosis in CIA rat synovial tissue, and suppress autophagy and angiogenesis. In vitro experiments showed that serum containing FHD inhibited the proliferation, migration, and invasion of MH7A cells, and also suppressed the expression of autophagy-related proteins while promoting apoptosis. FHD markedly repressed the expression of HIF-1α protein in TNF-α-stimulated MH7A cells and inhibited the tube formation capacity induced by MH7A cells in HUVEC cells. CONCLUSIONS: The study had proven that FHD played an excellent anti-RA role, which may be attributed to its potential mechanism of regulating the balance between autophagy and apoptosis in RA FLS by suppressing the HIF-1α, thus contributing to its anti-angiogenic activities.


Subject(s)
Apoptosis , Arthritis, Experimental , Arthritis, Rheumatoid , Autophagy , Drugs, Chinese Herbal , Hypoxia-Inducible Factor 1, alpha Subunit , Neovascularization, Pathologic , Animals , Apoptosis/drug effects , Drugs, Chinese Herbal/pharmacology , Autophagy/drug effects , Arthritis, Rheumatoid/drug therapy , Arthritis, Experimental/drug therapy , Arthritis, Experimental/pathology , Rats , Male , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Neovascularization, Pathologic/drug therapy , Cell Line , Cell Movement/drug effects , Cell Proliferation/drug effects , Human Umbilical Vein Endothelial Cells/drug effects , Synovial Membrane/drug effects , Synovial Membrane/metabolism , Antirheumatic Agents/pharmacology , Angiogenesis
15.
J Transl Med ; 22(1): 238, 2024 03 04.
Article in English | MEDLINE | ID: mdl-38438847

ABSTRACT

Mitochondria are cytoplasmic organelles having a fundamental role in the regulation of neural stem cell (NSC) fate during neural development and maintenance.During embryonic and adult neurogenesis, NSCs undergo a metabolic switch from glycolytic to oxidative phosphorylation with a rise in mitochondrial DNA (mtDNA) content, changes in mitochondria shape and size, and a physiological augmentation of mitochondrial reactive oxygen species which together drive NSCs to proliferate and differentiate. Genetic and epigenetic modifications of proteins involved in cellular differentiation (Mechanistic Target of Rapamycin), proliferation (Wingless-type), and hypoxia (Mitogen-activated protein kinase)-and all connected by the common key regulatory factor Hypoxia Inducible Factor-1A-are deemed to be responsible for the metabolic shift and, consequently, NSC fate in physiological and pathological conditions.Both primary mitochondrial dysfunction due to mutations in nuclear DNA or mtDNA or secondary mitochondrial dysfunction in oxidative phosphorylation (OXPHOS) metabolism, mitochondrial dynamics, and organelle interplay pathways can contribute to the development of neurodevelopmental or progressive neurodegenerative disorders.This review analyses the physiology and pathology of neural development starting from the available in vitro and in vivo models and highlights the current knowledge concerning key mitochondrial pathways involved in this process.


Subject(s)
Mitochondrial Diseases , Neural Stem Cells , Neurodegenerative Diseases , Adult , Humans , Mitochondria , DNA, Mitochondrial/genetics , Oxidative Phosphorylation , Hypoxia
16.
Sci Rep ; 14(1): 5845, 2024 03 10.
Article in English | MEDLINE | ID: mdl-38462658

ABSTRACT

Globally, breast cancer is the second most common cause of cancer-related deaths among women. In breast cancer, microRNAs (miRNAs) are essential for both the initiation and development of tumors. It has been suggested that the tumor suppressor microRNA-561-3p (miR-561-3p) is crucial in arresting the growth of cancer cells. Further research is necessary to fully understand the role and molecular mechanism of miR-561 in human BC. The aim of this study was to investigate the inhibitory effect of miR-561-3p on ZEB1, HIF1A, and MYC expression as oncogenes that have the most impact on PD-L1 overexpression and cellular processes such as proliferation, apoptosis, and cell cycle in breast cancer (BC) cell lines. The expression of ZEB1, HIF1A, and MYC genes and miR-561-3p were measured in BC clinical samples and cell lines via qRT-PCR. The luciferase assay, MTT, Annexin-PI staining, and cell cycle experiments were used to assess the effect of miR-561-3p on candidate gene expression, proliferation, apoptosis, and cell cycle progression. Flow cytometry was used to investigate the effects of miR-561 on PD-L1 suppression in the BC cell line. The luciferase assay showed that miRNA-561-3p targets the 3'-UTRs of ZEB1, HIF1A and MYC genes significantly. In BC tissues, the qRT-PCR results demonstrated that miR-561-3p expression was downregulated and the expression of ZEB1, HIF1A and MYC genes was up-regulated. It was shown that overexpression of miR-561-3p decreased PD-L1 expression and BC cell proliferation, and induced apoptosis and cell cycle arrest through downregulation of candidate oncogenes. Furthermore, inhibition of candidate genes by miR-561-3p reduced PD-L1 at both mRNA and protein levels. Our research investigated the impact of miR-561-3p on the expression of ZEB1, HIF1A and MYC in breast cancer cells for the first time. Our findings may help clarify the role of miR-561-3p in PD-L1 regulation and point to this miR as a potential biomarker and novel therapeutic target for cancer immunotherapy.


Subject(s)
Breast Neoplasms , MicroRNAs , Humans , Female , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , Breast Neoplasms/pathology , Genes, myc , Cell Line, Tumor , Cell Proliferation/genetics , MicroRNAs/metabolism , Luciferases/metabolism , Cell Movement/genetics , Gene Expression Regulation, Neoplastic , Zinc Finger E-box-Binding Homeobox 1/genetics , Zinc Finger E-box-Binding Homeobox 1/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
17.
Protein Cell ; 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38476024

ABSTRACT

Coactivator-associated arginine methyltransferase 1 (CARM1) promotes the development and metastasis of estrogen receptor alpha (ERα)-positive breast cancer. The function of CARM1 in triple-negative breast cancer (TNBC) is still unclear and requires further exploration. Here, we report that CARM1 promotes proliferation, epithelial-mesenchymal transition (EMT), and stemness in TNBC. CARM1 is upregulated in multiple cancers and its expression correlates with breast cancer progression. Genome-wide analysis of CARM1 showed that CARM1 is recruited by hypoxia-inducible factor 1 subunit alpha (HIF1A) and occupy the promoters of CDK4, Cyclin D1, ß-catenin, HIF1A, MALAT1, and SIX1 critically involved in cell cycle, HIF-1 signaling pathway, Wnt signaling pathway, VEGF signaling pathway, thereby modulating the proliferation and invasion of TNBC cells. We demonstrated that CARM1 is physically associated with and directly interacts with HIF1A. Moreover, we found that ellagic acid, an inhibitor of CARM1, can suppress the proliferation and metastasis of TNBC by directly inhibiting CDK4 expression. Our research has determined the molecular basis of CARM1 carcinogenesis in TNBC and its effective natural inhibitor, which may provide new ideas and drugs for cancer therapy.

18.
Laryngoscope Investig Otolaryngol ; 9(2): e1233, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38525120

ABSTRACT

Objective: Cholesteatoma is a hyperproliferative, pseudoneoplastic lesion of the middle ear characterized by aggressive growth and bone destruction. Hypoxia-inducible factor-1α (HIF-1α, also known as HIF1A) is a key transcription factor that enters the nucleus and upregulates many genes involved in cancer progression in the oxygen-free environment. This study is designed to explore the role and mechanism of HIF1A in the progression of cholesteatoma. Methods: HIF1A and endothelin converting enzyme 1 (ECE1) levels were determined using real-time quantitative polymerase chain reaction. The protein levels of HIF1A, Cyclin D1, proliferating cell nuclear antigen, and ECE1 were measured using western blot. Cell viability, proliferation, and cell cycle progression were analyzed using cell counting kit-8, Colony formation, 5-ethynyl-2'-deoxyuridine, and flow cytometry assays. Binding between HIF-1α and ECE1 promoter was predicted by Jaspar and verified using Chromatin immunoprecipitation and dual-luciferase reporter assays. Results: HIF1A and ECE1 were highly expressed in cholesteatoma patients and keratinocytes. Moreover, HIF1A knockdown might suppress the cell viability, proliferation, and cycle progression of cholesteatoma keratinocytes. Furthermore, HIF1A upregulated the transcription of ECE1 through binding to its promoter region. Conclusion: HIF1A might expedite cholesteatoma keratinocyte proliferation partly by increasing ECE1 expression, providing a possible therapeutic target for the cholesteatoma treatment.

19.
Sci Rep ; 14(1): 6738, 2024 03 20.
Article in English | MEDLINE | ID: mdl-38509125

ABSTRACT

Hypoxia-Inducible Factor-1α (HIF-1α) has presented a new direction for ischemic preconditioning of surgical flaps to promote their survival. In a previous study, we demonstrated the effectiveness of HIF-1a DNA plasmids in this application. In this study, to avoid complications associated with plasmid use, we sought to express HIF-1α through mRNA transfection and determine its biological activity by measuring the upregulation of downstream angiogenic genes. We transfected six different HIF-1a mRNAs-one predominant, three variant, and two novel mutant isoforms-into primary human dermal fibroblasts using Lipofectamine, and assessed mRNA levels using RT-qPCR. At all time points examined after transfection (3, 6, and 10 h), the levels of HIF-1α transcript were significantly higher in all HIF-1α transfected cells relative to the control (all p < 0.05, unpaired Student's T-test). Importantly, the expression of HIF-1α transcription response genes (VEGF, ANG-1, PGF, FLT1, and EDN1) was significantly higher in the cells transfected with all isoforms than with the control at six and/or ten hours post-transfection. All isoforms were transfected successfully into human fibroblast cells, resulting in the rapid upregulation of all five downstream angiogenic targets tested. These findings support the potential use of HIF-1α mRNA for protecting ischemic dermal flaps.


Subject(s)
Hypoxia-Inducible Factor 1, alpha Subunit , Vascular Endothelial Growth Factor A , Humans , Vascular Endothelial Growth Factor A/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , RNA, Messenger/metabolism , Transfection , Intercellular Signaling Peptides and Proteins/genetics , Protein Isoforms/genetics
20.
Pathol Res Pract ; 255: 155193, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38364650

ABSTRACT

Pituitary adenomas (PA) include about one third of primary central nervous tumors in adolescent and young adult. Despite extensive research, the underlying mechanism of PA tumorigenesis is still unknown. In the present study, through bioinformatics analysis of a PA-related dataset downloaded from GEO database, we attempted to identify pair(s) of lncRNA/target mRNA whose expression changes may be involved in the tumorigenesis of PAs. For this end, we evaluated expression of a set of bioinformatically obtained genes in 46 PA tissues against adjacent non-tumor pituitary tissues. The bioinformatics step led to selection of four genes for validation through expression assays. Expression levels of HIF1A and MAPK1 were increased in NFPA tissues (P < 0.0001 and =0.0042, respectively). Expression level of BANCR was significantly decreased in tumor tissues (P < 0.0001). However, expression of STAT3 was not meaningfully different between the two tissue types (P = 0.56). Since there was no significant correlation between MAPK1 and BANCR expressions in either tumor or adjacent normal tissues, the regulatory effect of BANCR on MAPK1 was not confirmed. In conclusion, this study offers information about deregulation of bioinformatically identified genes in PA tumors and indicates that further studies in this field is needed to understand the involved molecular mechanisms.


Subject(s)
Adenoma , Pituitary Neoplasms , Adolescent , Young Adult , Humans , Pituitary Neoplasms/pathology , Adenoma/pathology , Carcinogenesis
SELECTION OF CITATIONS
SEARCH DETAIL