Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Cancer Metab ; 12(1): 7, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38395945

ABSTRACT

BACKGROUND: Hypoxia contributes to cancer progression through various molecular mechanisms and hepatocellular carcinoma (HCC) is one of the most hypoxic malignancies. Hypoxia-inducible gene domain protein-1a (HIGD1A) is typically induced via epigenetic regulation and promotes tumor cell survival during hypoxia. However, the role of HIGD1A in HCC remains unknown. METHODS: HIGD1A expression was determined in 24 pairs of human HCC samples and para-tumorous tissues. Loss-of-function experiments were conducted both in vivo and in vitro to explore the role of HIGD1A in HCC proliferation and metastasis. RESULTS: Increased HIGD1A expression was found in HCC tissues and cell lines, which was induced by hypoxia or low-glucose condition. Moreover, HIGD1A knockdown in HCC cells arrested the cell cycle at the G2/M phase and promoted hypoxia-induced cell apoptosis, resulting in great inhibition of cell proliferation, migration, and invasion, as well as tumor xenograft formation. Interestingly, these anti-tumor effects were not observed in normal hepatocyte cell line L02. Further, HIGD1A knockdown suppressed the expression of ornithine decarboxylase 1 (ODC1), a rate-limiting enzyme of polyamine metabolism under c-Myc regulation. HIGD1A was found to bind with the c-Myc promoter region, and its knockdown decreased the levels of polyamine metabolites. Consistently, the inhibitory effect on HCC phenotype by HIGD1A silencing could be reversed by overexpression of c-Myc or supplementation of polyamines. CONCLUSIONS: Our results demonstrated that HIGD1A activated c-Myc-ODC1 nexus to regulate polyamine synthesis and to promote HCC survival and malignant phenotype, implying that HIGD1A might represent a novel therapeutic target for HCC.

2.
Scand J Gastroenterol ; 59(4): 445-455, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38053282

ABSTRACT

BACKGROUND: Accompanied by the growing prevalence of nonalcoholic fatty liver disease (NAFLD), the coexistence of chronic hepatitis B (CHB) and NAFLD has increased. In the context of CHB, there is limited understanding of the factors that influence the development of NASH. METHODS: We enrolled CHB combined NAFLD patients who had liver biopsy and divided them to NASH vs. non-NASH groups. A whole transcriptome chip was used to examine the expression profiles of long noncoding RNAs (lncRNAs) and mRNA in biopsied liver tissues. The function analysis of HIGD1A were performed. We knocked down or overexpressed HIGD1A in HepG2.2.15 cells by transient transfection of siRNA-HIGD1A or pcDNA-HIGD1A. In vivo investigations were conducted using hepatitis B virus (HBV) transgenic mice. RESULTS: In 65 patients with CHB and NAFLD, 28 were patients with NASH, and 37 were those without NASH. After screening 582 differentially expressed mRNAs, GO analysis revealed differentially expressed mRNAs acting on nicotinamide adenine dinucleotide phosphate (NADPH), which influenced redox enzyme activity. KEGG analysis also shown that they were involved in the NAFLD signaling pathway. The function analysis revealed that HIGD1A was associated with the mitochondrion. Then, both in vivo and in vitro CHB model, HIGD1A was significantly higher in the NASH group than in the non-NASH group. HIGD1A knockdown impaired mitochondrial transmembrane potential and induced cell apoptosis in HepG2.2.15 cells added oleic acid and palmitate. On the contrary, hepatic HIGD1A overexpression ameliorated free fatty acids-induced apoptosis and oxidative stress. Furthermore, HIGD1A reduced reactive oxygen species (ROS) level by increasing glutathione (GSH) expression, but Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK)/Acetyl-CoA carboxylase (ACC) pathway was not involved. CONCLUSION: Both in vivo and in vitro CHB model, an upward trend of HIGD1A was observed in the NASH-related inflammatory response. HIGDIA played a protective role in cells against oxidative stress. Our data suggested that HIGD1A may be a positive regulator of NASH within the CHB context.


Subject(s)
Hepatitis B, Chronic , Non-alcoholic Fatty Liver Disease , Mice , Animals , Humans , Non-alcoholic Fatty Liver Disease/pathology , Hepatitis B, Chronic/complications , Liver/pathology , Hepatitis B virus/genetics , Reactive Oxygen Species/metabolism
3.
Cell Rep ; 42(7): 112731, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37393616

ABSTRACT

Energy-dissipating adipocytes have the potential to improve metabolic health. Here, we identify hypoxia-induced gene domain protein-1a (HIGD1A), a mitochondrial inner membrane protein, as a positive regulator of adipose browning. HIGD1A is induced in thermogenic fats by cold exposure. Peroxisome proliferator-activated receptor gamma (PPARγ) transactivates HIGD1A expression synergistically with peroxisome proliferators-activated receptor γ coactivator α (PGC1α). HIGD1A knockdown inhibits adipocyte browning, whereas HIGD1A upregulation promotes the browning process. Mechanistically, HIGD1A deficiency impairs mitochondrial respiration to increase reactive oxygen species (ROS) level. This increases NAD+ consumption for DNA damage repair and curtails the NAD+/NADH ratio, which inhibits sirtuin1 (SIRT1) activity, thereby compromising adipocyte browning. Conversely, overexpression of HIGD1A blunts the above process to promote adaptive thermogenesis. Furthermore, mice with HIGD1A knockdown in inguinal and brown fat have impaired thermogenesis and are prone to diet-induced obesity (DIO). Overexpression of HIGD1A favors adipose tissue browning, ultimately preventing DIO and metabolic disorders. Thus, the mitochondrial protein HIGD1A links SIRT1 activity to adipocyte browning by inhibiting ROS levels.


Subject(s)
NAD , Sirtuin 1 , Animals , Mice , Adipocytes, Brown/metabolism , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , DNA Damage , Mice, Inbred C57BL , NAD/metabolism , Obesity/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Reactive Oxygen Species/metabolism , Sirtuin 1/genetics , Sirtuin 1/metabolism , Thermogenesis/genetics
4.
J Adv Res ; 2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37479180

ABSTRACT

INTRODUCTION: Although colon (COAD) and rectal adenocarcinoma (READ) combined to refer to colorectal cancer (CRC), substantial clinical evidence urged that CRC should be treated as two different cancers due to compared with READ, COAD showed higher morbidity and worse 5-year survival. OBJECTIVES: This study has tried to screen for the crucial gene that caused the worse prognosis and investigate its mechanism for mediating tumor growth and metastases in COAD. Meanwhile, the potential anti-COAD compound implicated in this mechanism was identified and testified from 1,855 food-borne chemical kits. This study aims to bring a new perspective to the development of new anti-COAD drugs and personalized medicine for patients with COAD. METHODS AND RESULTS: The survival-related hub genes in COAD and READ were screened out from The Cancer Genome Atlas (TCGA) database and the results showed that HIGD1A, lower expressed in COAD than in READ, was associated with poor prognosis in COAD patients, but not in READ. Over-expressed HIGD1A suppressed CRC cell proliferation, invasion, and migration in vitro and in vivo. Meanwhile, the different expressed microRNA profiles between COAD and READ showed that miR-501-3p was highly expressed in COAD and inhibited HIGD1A expression by targeting 3'UTR of HIGD1A. MiR-501-3p mimics promoted cell proliferation and metastasis in CRC cells. In addition, Procyanidin C1 (PCC1), a kind of natural polyphenol has been verified as a potential miR-501-3p inhibitor. In vitro and in vivo, PCC1 promoted HIGD1A expression by suppressing miR-501-3p and resulted in inhibited tumor growth and metastasis. CONCLUSION: The present study verified that miR-501-3p/HIGD1A axis mediated tumor growth and metastasis in COAD. PCC1, a flavonoid that riched in food exerts anti-COAD effects by inhibiting miR-501-3p and results in the latter losing the ability to suppress HIGD1A expression. Subsequently, unfettered HIGD1A inhibited tumor growth and metastasis in COAD.

5.
J Med Virol ; 95(4): e28749, 2023 04.
Article in English | MEDLINE | ID: mdl-37185850

ABSTRACT

Hepatitis B Virus (HBV) replication has been reported to be restricted by the intrahepatic host restriction factors and antiviral signaling pathways. The intracellular mechanisms underlying the significant viremia difference among different phases of the natural history chronic HBV infection remain elusive. We herein report that the hypoxia-induced gene domain protein-1a (HIGD1A) was highly expressed in the liver of inactive HBV carriers with low viremia. Ectopic expression of HIGD1A in hepatocyte-derived cells significantly inhibited HBV transcription and replication in a dose-dependent manner, while silence of HIGD1A promoted HBV gene expression and replication. Similar results were also observed in both de novo HBV-infected cell culture model and HBV persistence mouse model. Mechanistically, HIGD1A is located on the mitochondrial inner membrane and activates nuclear factor kappa B (NF-κB) signaling pathway through binding to paroxysmal nonkinesigenic dyskinesia (PNKD), which further enhances the expression of a transcription factor NR2F1 to inhibit HBV transcription and replication. Consistently, knockdown of PNKD or NR2F1 and blockage of NF-κB signaling pathway abrogated the inhibitory effect of HIGD1A on HBV replication. Mitochondrial HIGD1A exploits the PNKD-NF-κB-NR2F1 nexus to act as a host restriction factor of HBV infection. Our study thus shed new lights on the regulation of HBV by hypoxia-related genes and related antiviral strategies.


Subject(s)
Hepatitis B virus , Hepatitis B , Animals , Mice , Antiviral Agents/pharmacology , Hepatitis B virus/physiology , NF-kappa B/genetics , NF-kappa B/metabolism , Viral Transcription , Viremia , Virus Replication , Humans
6.
Pathol Res Pract ; 245: 154463, 2023 May.
Article in English | MEDLINE | ID: mdl-37086631

ABSTRACT

Hypoxia contributes to the tumorigenesis and metastasis of the tumor. However, the detailed mechanisms underlying hypoxia and kidney renal clear cell carcinoma (KIRC) development and progression remain unclear. Here, we investigated the role of the system HIG1 hypoxia inducible domain family member 1 A (HIGD1A) in the proliferation and metastasis of KIRC and elucidated the underlying molecular mechanisms. The expression of HIGD1A is significantly downregulated in KIRC due to promoter hypermethylation. HIGD1A could serve as a valuable diagnostic biomarker in KIRC. In addition, ectopic overexpression of HIGD1A significantly suppressed the growth and invasive capacity of KIRC cells in vitro under normal glucose conditions. Interestingly, the suppressive efficacy in invasion is much more significant when depleted glucose, but not in proliferation. Furthermore, mRNA expression of HIGD1A positively correlates with CDH1 and EPCAM, while negatively correlated with VIM and SPARC, indicating that HIGD1A impedes invasion of KIRC by regulating epithelial-mesenchymal transition (EMT). Our data suggest that HIGD1A is a potential diagnostic biomarker and tumor suppressor in KIRC.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Biomarkers , Carcinoma, Renal Cell/pathology , DNA , Kidney/pathology , Kidney Neoplasms/pathology
7.
Thorac Cancer ; 14(10): 913-928, 2023 04.
Article in English | MEDLINE | ID: mdl-36808485

ABSTRACT

BACKGROUND: The present study aimed to investigate the function of miR-3529-3p in lung adenocarcinoma and MnO2 -SiO2 -APTES (MSA) as a promising multifunctional delivery agent for lung adenocarcinoma therapy. METHODS: Expression levels of miR-3529-3p were evaluated in lung carcinoma cells and tissues by qRT-PCR. The effects of miR-3529-3p on apoptosis, proliferation, metastasis and neovascularization were assessed by CCK-8, FACS, transwell and wound healing assays, tube formation and xenografts experiments. Luciferase reporter assays, western blot, qRT-PCR and mitochondrial complex assay were used to determine the targeting relationship between miR-3529-3p and hypoxia-inducible gene domain family member 1A (HIGD1A). MSA was fabricated using MnO2 nanoflowers, and its heating curves, temperature curves, IC50, and delivery efficiency were examined. The hypoxia and reactive oxygen species (ROS) production was investigated by nitro reductase probing, DCFH-DA staining and FACS. RESULTS: MiR-3529-3p expression was reduced in lung carcinoma tissues and cells. Transfection of miR-3529-3p could promote apoptosis and suppress cell proliferation, migration and angiogenesis. As a target of miR-3529-3p, HIGD1A expression was downregulated, through which miR-3529-3p could disrupt the activities of complexes III and IV of the respiratory chain. The multifunctional nanoparticle MSA could not only efficiently deliver miR-3529-3p into cells, but also enhance the antitumor function of miR-3529-3p. The underlying mechanism may be that MSA alleviates hypoxia and has synergistic effects in cellular ROS promotion with miR-3529-3p. CONCLUSIONS: Our results establish the antioncogenic role of miR-3529-3p, and demonstrate that miR-3529-3p delivered by MSA has enhanced tumor suppressive effects, probably through elevating ROS production and thermogenesis.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , MicroRNAs , Nanoparticles , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Silicon Dioxide/metabolism , Manganese Compounds , Reactive Oxygen Species/metabolism , Cell Line, Tumor , Oxides/pharmacology , Oxides/metabolism , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/therapy , Adenocarcinoma of Lung/pathology , Lung Neoplasms/genetics , Lung Neoplasms/therapy , Lung Neoplasms/metabolism , Cell Proliferation/genetics , Phototherapy , Gene Expression Regulation, Neoplastic
8.
Mitochondrion ; 69: 171-182, 2023 03.
Article in English | MEDLINE | ID: mdl-36804467

ABSTRACT

Mitochondria play a central role in cellular energy conversion, metabolism, and cell proliferation. The regulation of mitochondrial function by HIGD1A, which is located on the inner membrane of the mitochondria, is essential to maintain cell survival under hypoxic conditions. In recent years, there have been shown other cellular pathways and mechanisms involving HIGD1A diametrically or through its interaction. As a novel regulator, HIGD1A maintains mitochondrial integrity and enhances cell viability under hypoxic conditions, increasing cell resistance to hypoxia. HIGD1A mainly targets cytochrome c oxidase by regulating downstream signaling pathways, which affects the ATP generation system and subsequently alters mitochondrial respiratory function. In addition, HIGD1A plays a dual role in cell survival in distinct degree hypoxia regions of the tumor. Under mild and moderate anoxic areas, HIGD1A acts as a positive regulator to promote cell growth. However, HIGD1A plays a role in inhibiting cell growth but retaining cellular activity under severe anoxic areas. We speculate that HIGD1A engages in tumor recurrence and drug resistance mechanisms. This review will focus on data concerning how HIGD1A regulates cell viability under hypoxic conditions. Therefore, HIGD1A could be a potential therapeutic target for hypoxia-related diseases.


Subject(s)
Hypoxia , Mitochondria , Mitochondrial Proteins , Humans , Electron Transport Complex IV/metabolism , Hypoxia/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/genetics
9.
Cells ; 9(12)2020 12 06.
Article in English | MEDLINE | ID: mdl-33291261

ABSTRACT

The biogenesis and function of eukaryotic cytochrome c oxidase or mitochondrial respiratory chain complex IV (CIV) undergo several levels of regulation to adapt to changing environmental conditions. Adaptation to hypoxia and oxidative stress involves CIV subunit isoform switch, changes in phosphorylation status, and modulation of CIV assembly and enzymatic activity by interacting factors. The latter include the Hypoxia Inducible Gene Domain (HIGD) family yeast respiratory supercomplex factors 1 and 2 (Rcf1 and Rcf2) and two mammalian homologs of Rcf1, the proteins HIGD1A and HIGD2A. Whereas Rcf1 and Rcf2 are expressed constitutively, expression of HIGD1A and HIGD2A is induced under stress conditions, such as hypoxia and/or low glucose levels. In both systems, the HIGD proteins localize in the mitochondrial inner membrane and play a role in the biogenesis of CIV as a free unit or as part as respiratory supercomplexes. Notably, they remain bound to assembled CIV and, by modulating its activity, regulate cellular respiration. Here, we will describe the current knowledge regarding the specific and overlapping roles of the several HIGD proteins in physiological and stress conditions.


Subject(s)
Electron Transport Complex IV/metabolism , Gene Expression Regulation, Enzymologic , Hypoxia , Saccharomyces cerevisiae/metabolism , Animals , Cell Survival , Cytochromes c , Glucose/metabolism , Humans , Hypoxia/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Mice , Mitochondrial Membranes/metabolism , Mitochondrial Proteins/metabolism , Oxidative Stress , Phosphorylation , Phylogeny , Protein Domains , Protein Isoforms , Saccharomyces cerevisiae Proteins/genetics
10.
Cell Rep ; 31(5): 107607, 2020 05 05.
Article in English | MEDLINE | ID: mdl-32375044

ABSTRACT

The mitochondrial respiratory chain enzymes are organized as individual complexes and supercomplexes, whose biogenesis remains to be fully understood. To disclose the role of the human Hypoxia Inducible Gene Domain family proteins HIGD1A and HIGD2A in these processes, we generate and characterize HIGD-knockout (KO) cell lines. We show that HIGD2A controls and coordinates the modular assembly of isolated and supercomplexed complex IV (CIV) by acting on the COX3 assembly module. In contrast, HIGD1A regulates CIII and CIII-containing supercomplex biogenesis by supporting the incorporation of UQCRFS1. HIGD1A also clusters with COX4-1 and COX5A CIV subunits and, when overexpressed, suppresses the CIV biogenesis defect of HIGD2A-KO cells. We conclude that HIGD1A and HIGD2A have both independent and overlapping functions in the biogenesis of respiratory complexes and supercomplexes. Our data illuminate the existence of multiple pathways to assemble these structures by dynamic HIGD-mediated CIV biogenesis, potentially to adapt to changing environmental and nutritional conditions.


Subject(s)
Intracellular Signaling Peptides and Proteins/metabolism , Iron-Sulfur Proteins/metabolism , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Mitochondrial Proteins/metabolism , Electron Transport Complex IV/metabolism , Humans
11.
Gene ; 685: 136-142, 2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30391442

ABSTRACT

HIGD1A can reduce ROS and apoptosis in cells under low-glucose or hypoxic conditions, and HIGD1A is one of the target genes for miR-375, according to our previous studies. However, it is not known whether miR-375 can indirectly regulate ROS and apoptosis in porcine Sertoli cells. To answer this question, HIGD1A and miR-375 were overexpressed in porcine Sertoli cells, and ROS and apoptosis were assayed. The results showed that ROS levels and expression levels of CASPASE3 in HIGD1A-overexpressing cells were significantly lower than those in the control cells. However, ROS levels and CASPASE3 expression in miR-375-overexpressing cells were significantly higher than those in the control cells. The rate of apoptosis in HIGD1A-overexpressing cells was significantly lower than that in miR-375-overexpressing cells. Considering that the HIGD1A gene is a target of miR-375, these findings suggest that miR-375 can induce an increase in ROS levels and apoptosis by inhibiting HIGD1A in porcine ST cells.


Subject(s)
Apoptosis/genetics , Gene Expression Regulation , MicroRNAs/genetics , RNA Interference , Reactive Oxygen Species/metabolism , Animals , Caspase 3/genetics , Caspase 3/metabolism , Cell Line , Swine
12.
J Mol Neurosci ; 66(3): 462-473, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30302618

ABSTRACT

HIGD1A (hypoxia-induced gene domain protein-1a), a mitochondrial inner membrane protein present in various cell types, has been mainly associated with anti-apoptotic processes in response to stressors. Our previous findings have shown that Higd1a mRNA is widely expressed across the central nervous system (CNS), exhibiting an increasing expression in the spinal cord from postnatal day 1 (P1) to 15 (P15) and changes in the distribution pattern from P1 to P90. During the first weeks of postnatal life, the great plasticity of the CNS is accompanied by cell death/survival decisions. So we first describe HIGD1A expression throughout the brain during early postnatal life in female and male pups. Secondly, based on the fact that in some areas this process is influenced by the sex of individuals, we explore HIGD1A expression in the sexual dimorphic nucleus (SDN) of the medial preoptic area, a region that is several folds larger in male than in female rats, partly due to sex differences in the process of apoptosis during this period. Immunohistochemical analysis revealed that HIGD1A is widely but unevenly expressed throughout the brain. Quantitative Western blot analysis of the parietal cortex, diencephalon, and spinal cord from both sexes at P1, P5, P8, and P15 showed that the expression of this protein is predominantly high and changes with age but not sex. Similarly, in the sexual dimorphic nucleus, the expression of HIGD1A varied according to age, but we were not able to detect significant differences in its expression according to sex. Altogether, these results suggest that HIGD1A protein is expressed in several areas of the central nervous system following a pattern that quantitatively changes with age but does not seem to change according to sex.


Subject(s)
Central Nervous System/metabolism , Gene Expression Regulation, Developmental , Neoplasm Proteins/genetics , Animals , Central Nervous System/growth & development , Female , Male , Rats , Rats, Wistar
13.
Asian-Australas J Anim Sci ; 31(8): 1103-1109, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29514449

ABSTRACT

OBJECTIVE: This study aimed to screen and identify the target genes of miR-375 in pig Sertoli (ST) cells and to elucidate the effect of miR-375 on the proliferation of ST cells. METHODS: In this study, bioinformatics software was used to predict and verify miR-375 target genes. Quantitative polymerase chain reaction (PCR) was used to detect the relationship between miR-375 and its target genes in ST cells. Enzyme-linked immunosorbent assay (ELISA) of rearranged L-myc fusion (RLF) and hypoxia-induced gene domain protein 1A (HIGD1A) was performed on porcine ST cells, which were transfected with a miR-375 mimics and inhibitor to verify the results. Dual luciferase reporter gene assays were performed to assess the interactions among miR-375, RLF, and HIGD1A. The effect of miR-375 on the proliferation of ST cells was analyzed by CellTiter 96 AQueous One Solution Cell Proliferation Assay (MTS). RESULTS: Five possible target genes of miR-375, including RLF, HIGD1A, colorectal cancer associated 2, POU class 3 homeobox 1, and WW domain binding protein 1 like, were found. The results of quantitative PCR suggested that mRNA expression of RLF and HIGD1A had a negative correlation with miR-375, indicating that RLF and HIGD1A are likely the target genes of miR-375. The ELISA results revealed that RLF and HIGD1A were negatively correlated with the miR-375 protein level. The luminescence results for the miR-375 group co-transfected with wild-type RLF and HIGD1A vector were significantly lower than those of the miR-375 group co-transfected with the blank vector or mutant RLF and HIGD1A vectors. The present findings suggest that RLF and HIGD1A are target genes of miR-375 and that miR-375 inhibits ST cell proliferation according to MTS analysis. CONCLUSION: It was speculated that miR-375 affects cell proliferation through its target genes, which play an important role in the development of testicular tissue.

SELECTION OF CITATIONS
SEARCH DETAIL