Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
1.
Mol Metab ; 86: 101967, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38876267

ABSTRACT

OBJECTIVE: In response to bacterial inflammation, anorexia of acute illness is protective and is associated with the induction of fasting metabolic programs such as ketogenesis. Forced feeding during the anorectic period induced by bacterial inflammation is associated with suppressed ketogenesis and increased mortality. As ketogenesis is considered essential in fasting adaptation, we sought to determine the role of ketogenesis in illness-induced anorexia. METHODS: A mouse model of inducible hepatic specific deletion of the rate limiting enzyme for ketogenesis (HMG-CoA synthase 2, Hmgcs2) was used to investigate the role of ketogenesis in endotoxemia, a model of bacterial inflammation, and in prolonged starvation. RESULTS: Mice deficient of hepatic Hmgcs2 failed to develop ketosis during endotoxemia and during prolonged fasting. Surprisingly, hepatic HMGCS2 deficiency and the lack of ketosis did not affect survival, glycemia, or body temperature in response to endotoxemia. Mice with hepatic ketogenic deficiency also did not exhibit any defects in starvation adaptation and were able to maintain blood glucose, body temperature, and lean mass compared to littermate wild-type controls. Mice with hepatic HMGCS2 deficiency exhibited higher levels of plasma acetate levels in response to fasting. CONCLUSIONS: Circulating hepatic-derived ketones do not provide protection against endotoxemia, suggesting that alternative mechanisms drive the increased mortality from forced feeding during illness-induced anorexia. Hepatic ketones are also dispensable for surviving prolonged starvation in the absence of inflammation. Our study challenges the notion that hepatic ketogenesis is required to maintain blood glucose and preserve lean mass during starvation, raising the possibility of extrahepatic ketogenesis and use of alternative fuels as potential means of metabolic compensation.


Subject(s)
Hydroxymethylglutaryl-CoA Synthase , Ketosis , Liver , Starvation , Animals , Mice , Liver/metabolism , Starvation/metabolism , Hydroxymethylglutaryl-CoA Synthase/metabolism , Hydroxymethylglutaryl-CoA Synthase/genetics , Male , Ketosis/metabolism , Endotoxemia/metabolism , Adaptation, Physiological , Ketone Bodies/metabolism , Blood Glucose/metabolism , Mice, Inbred C57BL , Fasting/metabolism , Mice, Knockout , Anorexia/metabolism
2.
Cancer Med ; 13(12): e7393, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38923428

ABSTRACT

INTRODUCTION: A neurotrophic tropomyosin receptor kinase (NTRK)-tyrosine kinase inhibitor (TKI) has shown dramatic efficacy against malignant tumors harboring an NTRK fusion gene. However, almost all tumors eventually acquire resistance to NTRK-TKIs. METHOD: To investigate the mechanism of resistance to NTRK-TKIs, we established cells resistant to three types of NTRK-TKIs (larotrectinib, entrectinib, and selitrectinib) using KM12 colon cancer cells with a TPM3-NTRK1 rearrangement. RESULT: Overexpression of 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2) was observed in three resistant cells (KM12-LR, KM12-ER, and KM12-SR) by microarray analysis. Lower expression of sterol regulatory element-binding protein 2 (SREBP2) and peroxisome proliferator activated receptor α (PPARα) was found in two cells (KM12-ER and KM12-SR) in which HMGCS2 was overexpressed compared to the parental KM12 and KM12-LR cells. In resistant cells, knockdown of HMGCS2 using small interfering RNA improved the sensitivity to NTRK-TKI. Further treatment with mevalonolactone after HMGCS2 knockdown reintroduced the NTRK-TKI resistance. In addition, simvastatin and silibinin had a synergistic effect with NTRK-TKIs in resistant cells, and delayed tolerance was observed after sustained exposure to clinical concentrations of NTRK-TKI and simvastatin in KM12 cells. In xenograft mouse models, combination treatment with entrectinib and simvastatin reduced resistant tumor growth compared with entrectinib alone. CONCLUSION: These results suggest that HMGCS2 overexpression induces resistance to NTRK-TKIs via the mevalonate pathway in colon cancer cells. Statin inhibition of the mevalonate pathway may be useful for overcoming this mechanistic resistance.


Subject(s)
Drug Resistance, Neoplasm , Mevalonic Acid , Protein Kinase Inhibitors , Animals , Humans , Mice , Benzamides/pharmacology , Benzamides/therapeutic use , Cell Line, Tumor , Colonic Neoplasms/drug therapy , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Colonic Neoplasms/genetics , Hydroxymethylglutaryl-CoA Synthase/metabolism , Hydroxymethylglutaryl-CoA Synthase/genetics , Indazoles/pharmacology , Indazoles/therapeutic use , Mevalonic Acid/metabolism , Protein Kinase Inhibitors/pharmacology , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Receptor, trkA/metabolism , Receptor, trkA/genetics , Receptor, trkA/antagonists & inhibitors , Xenograft Model Antitumor Assays
3.
Cancer Lett ; 592: 216919, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38704133

ABSTRACT

Efforts to develop targetable molecular bases for drug resistance for pancreatic ductal adenocarcinoma (PDAC) have been equivocally successful. Using RNA-seq and ingenuity pathway analysis we identified that the superpathway of cholesterol biosynthesis is upregulated in gemcitabine resistant (gemR) tumors using a unique PDAC PDX model with resistance to gemcitabine acquired in vivo. Analysis of additional in vitro and in vivo gemR PDAC models showed that HMG-CoA synthase 2 (HMGCS2), an enzyme involved in cholesterol biosynthesis and rate limiting in ketogenesis, is overexpressed in these models. Mechanistic data demonstrate the novel findings that HMGCS2 contributes to gemR and confers metastatic properties in PDAC models, and that HMGCS2 is BRD4 dependent. Further, BET inhibitor JQ1 decreases levels of HMGCS2, sensitizes PDAC cells to gemcitabine, and a combination of gemcitabine and JQ1 induced regressions of gemR tumors in vivo. Our data suggest that decreasing HMGCS2 may reverse gemR, and that HMGCS2 represents a useful therapeutic target for treating gemcitabine resistant PDAC.


Subject(s)
Azepines , Carcinoma, Pancreatic Ductal , Deoxycytidine , Drug Resistance, Neoplasm , Gemcitabine , Hydroxymethylglutaryl-CoA Synthase , Pancreatic Neoplasms , Triazoles , Xenograft Model Antitumor Assays , Animals , Humans , Mice , Antimetabolites, Antineoplastic/pharmacology , Azepines/pharmacology , Bromodomain Containing Proteins , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/genetics , Cell Line, Tumor , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Drug Resistance, Neoplasm/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Hydroxymethylglutaryl-CoA Synthase/metabolism , Hydroxymethylglutaryl-CoA Synthase/genetics , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Transcription Factors/antagonists & inhibitors , Triazoles/pharmacology , Female , Mice, SCID
4.
Chemosphere ; 359: 142332, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38754493

ABSTRACT

Perfluorooctanesulfonic acid (PFOS) is a widely recognized environment pollutant known for its high bioaccumulation potential and a long elimination half-life. Several studies have shown that PFOS can alter multiple biological pathways and negatively affect human health. Considering the direct exposure to the gastrointestinal (GI) tract to environmental pollutants, PFOS can potentially disrupt intestinal homeostasis. However, there is limited knowledge about the effect of PFOS exposure on normal intestinal tissues, and its contribution to GI-associated diseases remains to be determined. In this study, we examined the effect of PFOS exposure on the gene expression profile of intestinal tissues of C57BL/6 mice using RNAseq analysis. We found that PFOS exposure in drinking water significantly downregulates mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2), a rate-limiting ketogenic enzyme, in intestinal tissues of mice. We found that diets containing the soluble fibers inulin and pectin, which are known to be protective against PFOS exposure, were ineffective in reversing the downregulation of HMGCS2 expression in vivo. Analysis of intestinal tissues also demonstrated that PFOS exposure leads to upregulation of proteins implicated in colorectal carcinogenesis, including ß-catenin, c-MYC, mTOR and FASN. Consistent with the in vivo results, PFOS exposure leads to downregulation of HMGCS2 in mouse and human normal intestinal organoids in vitro. Furthermore, we show that shRNA-mediated knockdown of HMGCS2 in a human normal intestinal cell line resulted in increased cell proliferation and upregulation of key proliferation-associated proteins such as cyclin D, survivin, ERK1/2 and AKT, along with an increase in lipid accumulation. In summary, our results suggest that PFOS exposure may contribute to pathological changes in normal intestinal cells via downregulation of HMGCS2 expression and upregulation of pro-carcinogenic signaling pathways that may increase the risk of colorectal cancer development.


Subject(s)
Alkanesulfonic Acids , Carcinogenesis , Down-Regulation , Fluorocarbons , Hydroxymethylglutaryl-CoA Synthase , Mice, Inbred C57BL , Animals , Alkanesulfonic Acids/toxicity , Fluorocarbons/toxicity , Hydroxymethylglutaryl-CoA Synthase/metabolism , Hydroxymethylglutaryl-CoA Synthase/genetics , Mice , Down-Regulation/drug effects , Intestinal Neoplasms/chemically induced , Intestinal Neoplasms/metabolism , Intestinal Neoplasms/pathology , Up-Regulation/drug effects , Environmental Pollutants/toxicity , Intestines/drug effects , Humans , Intestinal Mucosa/metabolism
5.
Acta Pharmacol Sin ; 45(9): 1898-1911, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38760545

ABSTRACT

Tacrolimus, one of the macrolide calcineurin inhibitors, is the most frequently used immunosuppressant after transplantation. Long-term administration of tacrolimus leads to dyslipidemia and affects liver lipid metabolism. In this study, we investigated the mode of action and underlying mechanisms of this adverse reaction. Mice were administered tacrolimus (2.5 mg·kg-1·d-1, i.g.) for 10 weeks, then euthanized; the blood samples and liver tissues were collected for analyses. We showed that tacrolimus administration induced significant dyslipidemia and lipid deposition in mouse liver. Dyslipidemia was also observed in heart or kidney transplantation patients treated with tacrolimus. We demonstrated that tacrolimus did not directly induce de novo synthesis of fatty acids, but markedly decreased fatty acid oxidation (FAO) in AML12 cells. Furthermore, we showed that tacrolimus dramatically decreased the expression of HMGCS2, the rate-limiting enzyme of ketogenesis, with decreased ketogenesis in AML12 cells, which was responsible for lipid deposition in normal hepatocytes. Moreover, we revealed that tacrolimus inhibited forkhead box protein O1 (FoxO1) nuclear translocation by promoting FKBP51-FoxO1 complex formation, thus reducing FoxO1 binding to the HMGCS2 promoter and its transcription ability in AML12 cells. The loss of HMGCS2 induced by tacrolimus caused decreased ketogenesis and increased acetyl-CoA accumulation, which promoted mitochondrial protein acetylation, thereby resulting in FAO function inhibition. Liver-specific HMGCS2 overexpression via tail intravenous injection of AAV8-TBG-HMGCS2 construct reversed tacrolimus-induced mitochondrial protein acetylation and FAO inhibition, thus removing the lipid deposition in hepatocytes. Collectively, this study demonstrates a novel mechanism of liver lipid deposition and hyperlipidemia induced by long-term administration of tacrolimus, resulted from the loss of HMGCS2-mediated ketogenesis and subsequent FAO inhibition, providing an alternative target for reversing tacrolimus-induced adverse reaction.


Subject(s)
Hydroxymethylglutaryl-CoA Synthase , Liver , Mice, Inbred C57BL , Tacrolimus , Animals , Tacrolimus/pharmacology , Mice , Male , Hydroxymethylglutaryl-CoA Synthase/metabolism , Hydroxymethylglutaryl-CoA Synthase/genetics , Humans , Liver/metabolism , Liver/drug effects , Lipid Metabolism/drug effects , Forkhead Box Protein O1/metabolism , Immunosuppressive Agents/pharmacology , Lipid Metabolism Disorders/metabolism , Lipid Metabolism Disorders/chemically induced , Lipid Metabolism Disorders/drug therapy , Cell Line
6.
Respir Res ; 25(1): 176, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658970

ABSTRACT

BACKGROUND: Abnormal lipid metabolism has recently been reported as a crucial signature of idiopathic pulmonary fibrosis (IPF). However, the origin and biological function of the lipid and possible mechanisms of increased lipid content in the pathogenesis of IPF remains undetermined. METHODS: Oil-red staining and immunofluorescence analysis were used to detect lipid accumulation in mouse lung fibrosis frozen sections, Bleomycin-treated human type II alveolar epithelial cells (AECIIs) and lung fibroblast. Untargeted Lipid omics analysis was applied to investigate differential lipid species and identified LysoPC was utilized to treat human lung fibroblasts and mice. Microarray and single-cell RNA expression data sets identified lipid metabolism-related differentially expressed genes. Gain of function experiment was used to study the function of 3-hydroxy-3-methylglutaryl-Coa Synthase 2 (HMGCS2) in regulating AECIIs lipid metabolism. Mice with AECII-HMGCS2 high were established by intratracheally delivering HBAAV2/6-SFTPC- HMGCS2 adeno-associated virus. Western blot, Co-immunoprecipitation, immunofluorescence, site-directed mutation and flow cytometry were utilized to investigate the mechanisms of HMGCS2-mediated lipid metabolism in AECIIs. RESULTS: Injured AECIIs were the primary source of accumulated lipids in response to Bleomycin stimulation. LysoPCs released by injured AECIIs could activate lung fibroblasts, thus promoting the progression of pulmonary fibrosis. Mechanistically, HMGCS2 was decreased explicitly in AECIIs and ectopic expression of HMGCS2 in AECIIs using the AAV system significantly alleviated experimental mouse lung fibrosis progression via modulating lipid degradation in AECIIs through promoting CPT1A and CPT2 expression by interacting with PPARα. CONCLUSIONS: These data unveiled a novel etiological mechanism of HMGCS2-mediated AECII lipid metabolism in the genesis and development of pulmonary fibrosis and provided a novel target for clinical intervention.


Subject(s)
Down-Regulation , Fibroblasts , Hydroxymethylglutaryl-CoA Synthase , Lipid Metabolism , Mice, Inbred C57BL , Animals , Humans , Male , Mice , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/pathology , Bleomycin/toxicity , Cells, Cultured , Fibroblasts/metabolism , Fibroblasts/pathology , Hydroxymethylglutaryl-CoA Synthase/metabolism , Hydroxymethylglutaryl-CoA Synthase/genetics , Hydroxymethylglutaryl-CoA Synthase/biosynthesis , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/pathology , Idiopathic Pulmonary Fibrosis/genetics , Lipid Metabolism/physiology , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/genetics
7.
Immun Inflamm Dis ; 12(3): e1191, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38477658

ABSTRACT

BACKGROUND: Diabetic cardiomyopathy (DCM) represents a major cause of heart failure and a large medical burden worldwide. This study screened the potentially regulatory targets of DCM and analyzed their roles in high glucose (HG)-induced cardiomyocyte injury. METHODS: Through GEO database, we obtained rat DCM expression chips and screened differentially expressed genes. Rat cardiomyocytes (H9C2) were induced with HG. 3-hydroxy-3-methylglutarylcoenzyme A synthase 2 (Hmgcs2) and microRNA (miR)-363-5p expression patterns in cells were measured by real-time quantitative polymerase chain reaction or Western blot assay, with the dual-luciferase assay to analyze their binding relationship. Then, 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay, lactate dehydrogenase assay, terminal deoxynucleotidyl transferase dUTP nick end labeling assay, enzyme-linked immunosorbent assay, and various assay kits were applied to evaluate cell viability, cytotoxicity, apoptosis, inflammation responses, and oxidative burden. RESULTS: Hmgcs2 was the vital hub gene in DCM. Hmgcs2 was upregulated in HG-induced cardiomyocytes. Hmgcs2 downregulation increased cell viability, decreased TUNEL-positive cell number, reduced HG-induced inflammation and oxidative stress. miR-363-5p is the upstream miRNA of Hmgcs2. miR-363-5p overexpression attenuated HG-induced cell injury. CONCLUSIONS: Hmgcs2 had the most critical regulatory role in DCM. We for the first time reported that miR-363-5p inhibited Hmgcs2 expression, thereby alleviating HG-induced cardiomyocyte injury.


Subject(s)
Diabetes Mellitus , Diabetic Cardiomyopathies , MicroRNAs , Animals , Rats , Myocytes, Cardiac , Inflammation , Glucose
8.
Am J Physiol Endocrinol Metab ; 326(4): E493-E502, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38381399

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is characterized by excess lipid accumulation that can progress to inflammation (nonalcoholic steatohepatitis, NASH), and fibrosis. Serum ß-hydroxybutyrate (ß-HB), a product of the ketogenic pathway, is commonly used as a surrogate marker for hepatic fatty acid oxidation (FAO). However, it remains uncertain whether this relationship holds true in the context of NAFLD in humans. We compared fasting serum ß-HB levels with direct measurement of liver mitochondrial palmitate oxidation in humans stratified based on NAFLD severity (n = 142). Patients were stratified based on NAFLD activity score (NAS): NAS = 0 (no disease), NAS = 1-2 (mild), NAS = 3-4 (moderate), and NAS ≥ 5 (advanced). Moderate and advanced NAFLD is associated with reductions in liver 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2), serum ß-HB, but not 3-hydroxy-3-methylglutaryl-CoA lyase (HMGCL) mRNA, relative to no disease. Worsening liver mitochondrial complete palmitate oxidation corresponded with lower HMGCS2 mRNA but not total (complete + incomplete) palmitate oxidation. Interestingly, we found that liver HMGCS2 mRNA and serum ß-HB correlated with liver mitochondrial ß-hydroxyacyl-CoA dehydrogenase (ß-HAD) activity and CPT1A mRNA. Also, lower mitochondrial mass and markers of mitochondrial turnover positively correlated with lower HMGCS2 in the liver. These data suggest that liver ketogenesis and FAO occur at comparable rates in individuals with NAFLD. Our findings support the utility of serum ß-HB to serve as a marker of liver injury and hepatic FAO in the context of NAFLD.NEW & NOTEWORTHY Serum ß-hydroxybutyrate (ß-HB) is frequently utilized as a surrogate marker for hepatic fatty acid oxidation; however, few studies have investigated this relationship during states of liver disease. We found that the progression of nonalcoholic fatty liver disease (NAFLD) is associated with reductions in circulating ß-HB and liver 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2). As well, decreased rates of hepatic fatty acid oxidation correlated with liver HMGCS2 mRNA and serum ß-HB. Our work supports serum ß-HB as a potential marker for hepatic fatty acid oxidation and liver injury during NAFLD.


Subject(s)
Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/metabolism , 3-Hydroxybutyric Acid/metabolism , Liver/metabolism , Obesity/metabolism , Ketone Bodies/metabolism , Biomarkers/metabolism , RNA, Messenger/metabolism , Palmitates/metabolism
9.
Phytomedicine ; 126: 155445, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38412666

ABSTRACT

BACKGROUND: Diabetic nephropathy (DN) is the primary cause of end-stage renal disease (ESRD), and the therapeutic strategies for DN are limited. Notoginsenoside Fc (Fc), a novel saponin isolated from Panax Notoginseng (PNG), has been reported to alleviate vascular injury in diabetic rats. However, the protective effects of Fc on DN remain unclear. PURPOSE: To investigate the beneficial effects and mechanisms of Fc on DN. METHODS: Db/db mice were treated with 2.5, 5 and 10 mg·kg-1·d-1 of Fc for 8 weeks. High glucose (HG) induced mouse glomerular endothelial cells (GECs) were treated with 2.5, 5 and 10 µM of Fc for 24 h. RESULTS: Our data found that Fc ameliorated urinary microalbumin level, kidney dysfunction and histopathological damage in diabetic mice. Moreover, Fc alleviated the accumulation of oxidative stress, the collapse of mitochondrial membrane potential and the expression of mitochondrial fission proteins, such as Drp-1 and Fis1, while increased the expression of mitochondrial fusion protein Mfn2. Fc also decreased pyroptosis-related proteins levels, such as TXNIP, NLRP3, cleaved caspase-1, and GSDMD-NT, indicating that Fc ameliorated GECs pyroptosis. In addition, 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2) expression was increased in diabetic group, which was partially abrogated by Fc. Our data further proved that knockdown of HMGCS2 could restrain HG-induced GECs mitochondrial dysfunction and pyroptosis. These results indicated that the inhibitory effects of Fc on mitochondrial damage and pyroptosis were associated with the suppression of HMGCS2. CONCLUSION: Taken together, this study clearly demonstrated that Fc ameliorated GECs pyroptosis and mitochondrial dysfunction partly through regulating HMGCS2 pathway, which might provide a novel drug candidate for DN.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Nephropathies , Ginsenosides , Mitochondrial Diseases , Rats , Mice , Animals , Diabetic Nephropathies/metabolism , Endothelial Cells , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Pyroptosis , Mitochondrial Diseases/metabolism , Hydroxymethylglutaryl-CoA Synthase/metabolism , Cell Cycle Proteins/metabolism
10.
Andrology ; 12(6): 1449-1462, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38273709

ABSTRACT

BACKGROUND: The relationship between erectile dysfunction (ED) and type 1 diabetes mellitus (T1DM) is currently a hot topic of medical research. It has been reported that autophagy plays a crucial role in causing erectile dysfunction in T1DM. Recent research has shown that mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2) is strongly linked to the development of T1DM. However, the specific mechanism by which it regulates the erectile function is not yet fully understood. OBJECTIVES: To investigate whether HMGCS2 affects erectile function in type 1 diabetic rats by regulating autophagy in corpus cavernosum endothelial cells (CCECs). MATERIALS AND METHODS: First, the rat model of T1DM was established. Then, the ratio of maximum penile intracavernous pressure (ICPmax) and mean arterial pressure (MAP) was detected to assess the erectile function in various groups, and the protein expression of HMGCS2, mTOR and p-mTOR was evaluated by western blot (WB) and immunohistochemistry (IHC). To explore the relationship between HMGCS2 and the mTOR signaling pathway in T1DM ED rats, we silenced the expression of HMGCS2 and activated the mTOR signaling pathway with MHY1485 in CCECs and then assessed the expression of beclin1, P62, LC3, autophagosome, endothelial nitric oxide synthase (eNOS), phosphorylation of eNOS (p-eNOS), and nitric oxide (NO) to evaluate autophagy and the erectile function by reverse transcription quantitative polymerase chain reaction and western blot. RESULTS: The study conducted on T1DM ED rats showed that the expression of HMGCS2 was significantly increased, while the autophagy was suppressed. Additionally, the mTOR signaling pathway was highly activated. In contrast, when HMGCS2 was silenced in vitro, p-mTOR/mTOR was reduced, and autophagy was improved. These effects were accompanied by the enhanced activity of eNOS. Furthermore, when HMGCS2 was silenced and the mTOR signaling pathway was simultaneously activated, the results revealed a decrease in autophagy as well as a reduction in activity of eNOS in comparison to just silencing HMGCS2 alone. DISCUSSION AND CONCLUSION: HMGCS2 upregulation in T1DM rats inhibited autophagy and eNOS activity by activating the mTOR pathway and led to a decrease in the erectile function.


Subject(s)
Autophagy , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 1 , Erectile Dysfunction , Hydroxymethylglutaryl-CoA Synthase , Rats, Sprague-Dawley , Signal Transduction , TOR Serine-Threonine Kinases , Animals , Male , Erectile Dysfunction/metabolism , Erectile Dysfunction/physiopathology , TOR Serine-Threonine Kinases/metabolism , Rats , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/complications , Hydroxymethylglutaryl-CoA Synthase/metabolism , Hydroxymethylglutaryl-CoA Synthase/genetics , Penis/metabolism , Endothelial Cells/metabolism , Nitric Oxide Synthase Type III/metabolism
11.
Physiology (Bethesda) ; 39(3): 0, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38260943

ABSTRACT

The discovery of insulin approximately a century ago greatly improved the management of diabetes, including many of its life-threatening acute complications like ketoacidosis. This breakthrough saved many lives and extended the healthy lifespan of many patients with diabetes. However, there is still a negative perception of ketone bodies stemming from ketoacidosis. Originally, ketone bodies were thought of as a vital source of energy during fasting and exercise. Furthermore, in recent years, research on calorie restriction and its potential impact on extending healthy lifespans, as well as studies on ketone bodies, have gradually led to a reevaluation of the significance of ketone bodies in promoting longevity. Thus, in this review, we discuss the emerging and hidden roles of ketone bodies in various organs, including the heart, kidneys, skeletal muscles, and brain, as well as their potential impact on malignancies and lifespan.


Subject(s)
Diabetes Mellitus , Ketosis , Humans , Ketone Bodies , Longevity , Heart
12.
Int Immunopharmacol ; 125(Pt A): 111131, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38149572

ABSTRACT

BACKGROUND: Previous study found that supplements with active vitamin D3 alleviated experimental colitis. The objective of this study was to investigate the possible role of 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2), a ketone synthase, on vitamin D3 protecting against experimental colitis. METHODS: HMGCS2 and vitamin D receptor (VDR) were measured in UC patients. The effects of vitamin D deficiency (VDD) and exogenous 1,25(OH)2D3 supplementation on experimental colitis were investigated in dextran sulfate sodium (DSS)-treated mice. DSS-induced oxidative stress and inflammation were analyzed in HT-29 cells. HMGCS2 was detected in 1,25(OH)2D3-pretreated HT-29 cells and mouse intestines. HMGCS2 was silenced to investigate the role of HMGCS2 in 1,25(OH)2D3 protecting against experimental colitis. RESULTS: Intestinal HMGCS2 downregulation was positively correlated with VDR reduction in UC patients. The in vivo experiments showed that VDD exacerbated DSS-induced colitis. By contrast, 1,25(OH)2D3 supplementation ameliorated DSS-induced colon damage, oxidative stress and inflammation. HMGCS2 was up-regulated after 1,25(OH)2D3 supplementation both in vivo and in vitro. Transfection with HMGCS2-siRNA inhibited antioxidant and anti-inflammatory effects of 1,25(OH)2D3 in DSS-treated HT-29 cells. CONCLUSION: 1,25(OH)2D3 supplementation up-regulates HMGCS2, which is responsible for 1,25(OH)2D3-mediated protection against oxidative stress and inflammation in DSS-induced colitis. These findings provide a potential therapeutic strategy for alleviating colitis-associated oxidative stress and inflammation.


Subject(s)
Colitis , Humans , Mice , Animals , Colitis/chemically induced , Colitis/drug therapy , Colitis/prevention & control , Inflammation/drug therapy , Receptors, Calcitriol/genetics , Receptors, Calcitriol/metabolism , Cholecalciferol/therapeutic use , Oxidative Stress , Dextran Sulfate/pharmacology , Mice, Inbred C57BL , Hydroxymethylglutaryl-CoA Synthase
13.
Front Oncol ; 13: 1218735, 2023.
Article in English | MEDLINE | ID: mdl-37692839

ABSTRACT

Gastrointestinal malignancies, including colon adenocarcinoma (COAD) and liver hepatocellular carcinoma (LIHC), remain leading causes of cancer-related deaths worldwide. To better understand the underlying mechanisms of these cancers and identify potential therapeutic targets, we analyzed publicly accessible Cancer Genome Atlas datasets of COAD and LIHC. Our analysis revealed that differentially expressed genes (DEGs) during early tumorigenesis were associated with cell cycle regulation. Additionally, genes related to lipid metabolism were significantly enriched in both COAD and LIHC, suggesting a crucial role for dysregulated lipid metabolism in their development and progression. We also identified a subset of DEGs associated with mitochondrial function and structure, including upregulated genes involved in mitochondrial protein import and respiratory complex assembly. Further, we identified mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase (HMGCS2) as a crucial regulator of cancer cell metabolism. Using a genome-scale metabolic model, we demonstrated that HMGCS2 suppression increased glycolysis, lipid biosynthesis, and elongation while decreasing fatty acid oxidation in colon cancer cells. Our study highlights the potential contribution of dysregulated lipid metabolism, including ketogenesis, to COAD and LIHC development and progression and identifies potential therapeutic targets for these malignancies.

14.
Aging (Albany NY) ; 15(15): 7794-7810, 2023 08 09.
Article in English | MEDLINE | ID: mdl-37561521

ABSTRACT

The respiratory and cardiovascular systems are often the most severely impacted by the rapid onset of sepsis, which can lead to multiple organ failure. The mortality has ranged from 10 to 40% when it has evolved into septic shock. This study sought to demonstrate the potential and role of Hmgcs2 in safeguarding against cardiovascular harm in septic mouse models. The cecal ligament and puncture (CLP) model was used to induce sepsis in C57BL/6 mice, with Hmgcs2 expression in the myocardium of the mice being heightened and inflammatory factors being augmented. Subsequently, we utilized ASOs to silence the hmgcs2 gene, and found that silencing accelerated septic myocardial injury and cardiac dysfunction in CLP mice models. In contrast, hmgcs2 attenuated inflammation and apoptosis and protected against septic cardiomyopathy in murine septicemia models. Src production, spurred on by Hmgcs2, triggered the PI3K/Akt pathway and augmented M2 macrophage polarization. Moreover, the inhibition of M2 polarization by an Src antagonist significantly contributed to apoptosis of cardiomyocytes. Our research revealed that Hmgcs2 inhibited the activation of pro-inflammatory macrophages and, through Src-dependent activation of PI3K/Akt pathway, promoted the anti-inflammatory phenotype, thus safeguarding myocardial damage from sepsis. This offers a novel theoretical basis for prevention and treatment of infectious complications.


Subject(s)
Heart Injuries , Sepsis , Mice , Animals , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Mice, Inbred C57BL , Macrophages/metabolism , Myocytes, Cardiac/metabolism , Sepsis/metabolism
15.
Front Immunol ; 14: 1185517, 2023.
Article in English | MEDLINE | ID: mdl-37457727

ABSTRACT

Introduction: The Unfolded Protein Response, a mechanism triggered by the cell in response to Endoplasmic reticulum stress, is linked to inflammatory responses. Our aim was to identify novel Unfolded Protein Response-mechanisms that might be involved in triggering or perpetuating the inflammatory response carried out by the Intestinal Epithelial Cells in the context of Inflammatory Bowel Disease. Methods: We analyzed the transcriptional profile of human Intestinal Epithelial Cell lines treated with an Endoplasmic Reticulum stress inducer (thapsigargin) and/or proinflammatory stimuli. Several genes were further analyzed in colonic biopsies from Ulcerative Colitis patients and healthy controls. Lastly, we generated Caco-2 cells lacking HMGCS2 by CRISPR Cas-9 and analyzed the functional implications of its absence in Intestinal Epithelial Cells. Results: Exposure to a TLR ligand after thapsigargin treatment resulted in a powerful synergistic modulation of gene expression, which led us to identify new genes and pathways that could be involved in inflammatory responses linked to the Unfolded Protein Response. Key differentially expressed genes in the array also exhibited transcriptional alterations in colonic biopsies from active Ulcerative Colitis patients, including NKG2D ligands and the enzyme HMGCS2. Moreover, functional studies showed altered metabolic responses and epithelial barrier integrity in HMGCS2 deficient cell lines. Conclusion: We have identified new genes and pathways that are regulated by the Unfolded Protein Response in the context of Inflammatory Bowel Disease including HMGCS2, a gene involved in the metabolism of Short Chain Fatty Acids that may have an important role in intestinal inflammation linked to Endoplasmic Reticulum stress and the resolution of the epithelial damage.


Subject(s)
Colitis, Ulcerative , Inflammatory Bowel Diseases , Humans , Colitis, Ulcerative/pathology , Caco-2 Cells , Thapsigargin , Endoplasmic Reticulum Stress/genetics , Inflammatory Bowel Diseases/metabolism , Epithelial Cells/metabolism , Hydroxymethylglutaryl-CoA Synthase
16.
Life Sci ; 328: 121827, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37276910

ABSTRACT

AIMS: In this study, we aimed to investigate previously unrecognized lipid metabolic perturbations in tamoxifen-resistant breast cancer (BC) by conducting comprehensive metabolomics and transcriptomics analysis. We identified the role of 3-hydroxy-3-methylglutary-coenzyme-A-synthase 2 (HMGCS2), a key enzyme responsible for ketogenesis, in tamoxifen-resistant BC growth. MAIN METHODS: Comprehensive metabolomics (CE-TOFMS, LC-TOFMS) and transcriptiomics analysis were performed to characterize metabolic pathways in tamoxifen-resistant BC cells. The upregulation of HMGCS2 were verified thorugh immunohistochemistry (IHC) in clinical samples obtained from patients with recurrent BC. HMGCS2 inhibitor was discovered through surface plasmon resonance analysis, enzyme assay, and additional molecular docking studies. The effect of HMGCS2 suppression on tumor growth was studied thorugh BC xenograft model, and intratumoral lipid metabolites were analyzed via MALDI-TOFMS imaging. KEY FINDINGS: We revealed that the level of HMGCS2 was highly elevated in both tamoxifen-resistant T47D sublines (T47D/TR) and clinical refractory tumor specimens from patients with ER+ breast cancer, who had been treated with adjuvant tamoxifen. Suppression of HMGCS2 in T47D/TR resulted in the accumulation of mitochondrial reactive oxygen species (mtROS) and apoptotic cell death. Further, we identified alphitolic acid, a triterpenoid natural product, as a novel HMGCS2-specific inhibitor that elevated mtROS levels and drastically retarded the growth of T47D/TR in in vitro and in vivo experiments. SIGNIFICANCE: Enhanced ketogenesis with upregulation of HMGCS2 is a potential metabolic vulnerability of tamoxifen-resistant BC that offers a new therapeutic opportunity for treating patients with ER+ BC that are refractory to tamoxifen treatment.


Subject(s)
Breast Neoplasms , Tamoxifen , Humans , Female , Tamoxifen/pharmacology , Tamoxifen/therapeutic use , Breast Neoplasms/pathology , Hydroxymethylglutaryl-CoA Synthase/metabolism , HMGB2 Protein/metabolism , HMGB2 Protein/pharmacology , Molecular Docking Simulation , Cell Line, Tumor , Neoplasm Recurrence, Local/drug therapy , Apoptosis , Oxidative Stress , Lipids/pharmacology , Drug Resistance, Neoplasm
17.
Aging Cell ; 22(6): e13833, 2023 06.
Article in English | MEDLINE | ID: mdl-37060184

ABSTRACT

Accumulating evidence suggests health benefits of ketone bodies, and especially for longevity. However, the precise role of endogenous ketogenesis in mammalian life span, and the safety and efficacy of the long-term exogenous supplementation of ketone bodies remain unclear. In the present study, we show that a deficiency in endogenous ketogenesis, induced by whole-body Hmgcs2 deletion, shortens life span in mice, and that this is prevented by daily ketone body supplementation using a diet containing 1,3-butanediol, a precursor of ß-hydroxybutyrate. Furthermore, feeding the 1,3-butanediol-containing diet from early in life increases midlife mortality in normal mice, but in aged mice it extends life span and prevents the high mortality associated with atherosclerosis in ApoE-deficient mice. By contrast, an ad libitum low-carbohydrate ketogenic diet markedly increases mortality. In conclusion, endogenous ketogenesis affects mammalian survival, and ketone body supplementation may represent a double-edged sword with respect to survival, depending on the method of administration and health status.


Subject(s)
Ketone Bodies , Longevity , Mice , Animals , Butylene Glycols , 3-Hydroxybutyric Acid , Mammals
18.
EMBO Mol Med ; 15(2): e16581, 2023 02 08.
Article in English | MEDLINE | ID: mdl-36629048

ABSTRACT

Mitochondria comprise the central metabolic hub of cells and their imbalance plays a pathogenic role in chronic kidney disease (CKD). Here, we studied Lon protease 1 (LONP1), a major mitochondrial protease, as its role in CKD pathogenesis is unclear. LONP1 expression was decreased in human patients and mice with CKD, and tubular-specific Lonp1 overexpression mitigated renal injury and mitochondrial dysfunction in two different models of CKD, but these outcomes were aggravated by Lonp1 deletion. These results were confirmed in renal tubular epithelial cells in vitro. Mechanistically, LONP1 downregulation caused mitochondrial accumulation of the LONP1 substrate, 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2), which disrupted mitochondrial function and further accelerated CKD progression. Finally, computer-aided virtual screening was performed, which identified a novel LONP1 activator. Pharmacologically, the LONP1 activator attenuated renal fibrosis and mitochondrial dysfunction. Collectively, these results imply that LONP1 is a promising therapeutic target for treating CKD.


Subject(s)
Protease La , Renal Insufficiency, Chronic , Animals , Humans , Mice , ATP-Dependent Proteases/metabolism , Epithelial Cells/metabolism , Hydroxymethylglutaryl-CoA Synthase/metabolism , Kidney/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Protease La/metabolism , Renal Insufficiency, Chronic/metabolism
19.
Front Med ; 17(2): 339-351, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36602721

ABSTRACT

Ketone bodies have beneficial metabolic activities, and the induction of plasma ketone bodies is a health promotion strategy. Dietary supplementation of sodium butyrate (SB) is an effective approach in the induction of plasma ketone bodies. However, the cellular and molecular mechanisms are unknown. In this study, SB was found to enhance the catalytic activity of 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2), a rate-limiting enzyme in ketogenesis, to promote ketone body production in hepatocytes. SB administrated by gavage or intraperitoneal injection significantly induced blood ß-hydroxybutyrate (BHB) in mice. BHB production was induced in the primary hepatocytes by SB. Protein succinylation was altered by SB in the liver tissues with down-regulation in 58 proteins and up-regulation in 26 proteins in the proteomics analysis. However, the alteration was mostly observed in mitochondrial proteins with 41% down- and 65% up-regulation, respectively. Succinylation status of HMGCS2 protein was altered by a reduction at two sites (K221 and K358) without a change in the protein level. The SB effect was significantly reduced by a SIRT5 inhibitor and in Sirt5-KO mice. The data suggests that SB activated HMGCS2 through SIRT5-mediated desuccinylation for ketone body production by the liver. The effect was not associated with an elevation in NAD+/NADH ratio according to our metabolomics analysis. The data provide a novel molecular mechanism for SB activity in the induction of ketone body production.


Subject(s)
Ketone Bodies , Sirtuins , Mice , Animals , Butyric Acid/pharmacology , Butyric Acid/metabolism , Ketone Bodies/metabolism , Liver/metabolism , Hydroxybutyrates/metabolism , Down-Regulation , Sirtuins/genetics , Sirtuins/metabolism , Hydroxymethylglutaryl-CoA Synthase/genetics , Hydroxymethylglutaryl-CoA Synthase/metabolism
20.
J Alzheimers Dis ; 91(1): 407-426, 2023.
Article in English | MEDLINE | ID: mdl-36442191

ABSTRACT

BACKGROUND: Accumulation of hyperphosphorylated Tau (pTau) contributes to the formation of neurofibrillary tangles in Alzheimer's disease (AD), and targeting Tau/pTau metabolism has emerged as a therapeutic approach. We have previously reported that mitochondrial 3-hydroxy-3-methylglutaryl-COA synthase 2 (HMGCS2) is involved in AD by promoting autophagic clearance of amyloid-ß protein precursor via ketone body-associated mechanism, whether HMGCS2 may also regulate Tau metabolism remains elusive. OBJECTIVE: The present study was to investigate the role of HMGCS2 in Tau/p degradation. METHODS: The protein levels of Tau and pTau including pT217 and pT181, as well as autophagic markers LAMP1 and LC3-II were assessed by western blotting. The differentially regulated genes by HMGCS2 were analyzed by RNA sequencing. Autophagosomes were assessed by transmission electron microscopy. RESULTS: HMGCS2 significantly decreased Tau/pTau levels, which was paralleled by enhanced formation of autophagic vacuoles and prevented by autophagic regulators chloroquine, bafilomycin A1, 3-methyladenine, and rapamycin. Moreover, HMGCS2-induced alterations of LAMP1/LC3-II and Tau/pTau levels were mimicked by ketone body acetoacetate or ß-hydroxybutyrate. Further RNA-sequencing identified ankyrin repeat domain 24 (ANKRD24) as a target gene of HMGCS2, and silencing of ANKRD24 reduced LAMP1/LC3-II levels, which was accompanied by the altered formation of autophagic vacuoles, and diminished the effect of HMGCS2 on Tau/pTau. CONCLUSION: HMGCS2 promoted autophagic clearance of Tau/pTau, in which ketone body and ANKRD24 played an important role.


Subject(s)
Alzheimer Disease , tau Proteins , Humans , tau Proteins/metabolism , Alzheimer Disease/metabolism , Amyloid beta-Protein Precursor/metabolism , Ketone Bodies , Sirolimus/pharmacology , Autophagy/physiology , Hydroxymethylglutaryl-CoA Synthase/genetics , Hydroxymethylglutaryl-CoA Synthase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL