Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 480
Filter
1.
Proc Natl Acad Sci U S A ; 121(29): e2313370121, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38985769

ABSTRACT

Heat Shock Factor 1 (HSF1) is best known as the master transcriptional regulator of the heat-shock response (HSR), a conserved adaptive mechanism critical for protein homeostasis (proteostasis). Combining a genome-wide RNAi library with an HSR reporter, we identified Jumonji domain-containing protein 6 (JMJD6) as an essential mediator of HSF1 activity. In follow-up studies, we found that JMJD6 is itself a noncanonical transcriptional target of HSF1 which acts as a critical regulator of proteostasis. In a positive feedback circuit, HSF1 binds and promotes JMJD6 expression, which in turn reduces heat shock protein 70 (HSP70) R469 monomethylation to disrupt HSP70-HSF1 repressive complexes resulting in enhanced HSF1 activation. Thus, JMJD6 is intricately wired into the proteostasis network where it plays a critical role in cellular adaptation to proteotoxic stress.


Subject(s)
HSP70 Heat-Shock Proteins , Heat Shock Transcription Factors , Heat-Shock Response , Jumonji Domain-Containing Histone Demethylases , Proteostasis , Humans , Heat Shock Transcription Factors/metabolism , Heat Shock Transcription Factors/genetics , Heat-Shock Response/physiology , Jumonji Domain-Containing Histone Demethylases/metabolism , Jumonji Domain-Containing Histone Demethylases/genetics , HSP70 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/genetics , Proteostasis/physiology , Feedback, Physiological , Adaptation, Physiological , HEK293 Cells , Proteotoxic Stress
2.
J Mol Biol ; 436(14): 168642, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38848866

ABSTRACT

The heat shock response (HSR) is a gene regulatory program controlling expression of molecular chaperones implicated in aging, cancer, and neurodegenerative disease. Long presumed to be activated by toxic protein aggregates, recent work suggests a new functional paradigm for the HSR in yeast. Rather than toxic aggregates, adaptive biomolecular condensates comprised of orphan ribosomal proteins (oRP) and stress granule components have been shown to be physiological chaperone clients. By titrating away the chaperones Sis1 and Hsp70 from the transcription factor Hsf1, these condensates activate the HSR. Upon release from Hsp70, Hsf1 forms spatially distinct transcriptional condensates that drive high expression of HSR genes. In this manner, the negative feedback loop controlling HSR activity - in which Hsf1 induces Hsp70 expression and Hsp70 represses Hsf1 activity - is embedded in the biophysics of the system. By analogy to phosphorylation cascades that transmit information via the dynamic activity of kinases, we propose that the HSR is organized as a condensate cascade that transmits information via the localized activity of molecular chaperones.


Subject(s)
Heat-Shock Response , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , HSP70 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/genetics , Molecular Chaperones/metabolism , Molecular Chaperones/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Heat-Shock Proteins/metabolism , Heat-Shock Proteins/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Biomolecular Condensates/metabolism , Ribosomal Proteins/metabolism , Ribosomal Proteins/genetics , Heat Shock Transcription Factors/metabolism , Heat Shock Transcription Factors/genetics , Phosphorylation
3.
Am J Cancer Res ; 14(5): 2072-2087, 2024.
Article in English | MEDLINE | ID: mdl-38859866

ABSTRACT

Heat shock factor 1 (HSF1), an essential transcription factor for stress response, is exploited by various tumors to facilitate their initiation, progression, invasion, and migration. Amplification of HSF1 is widely regarded as an indicator in predicting cancer severity, the likelihood of treatment failure and reduced patient survival. Notably, HSF1 is markedly amplified in 40% of pancreatic cancer (PC), which typically have limited treatment options. HSF1 has been proven to be a promising therapeutic target for multiple cancers. However, a direct small molecule HSF1 inhibitor with sufficient bioactivity and reliable safety has not been developed clinically. In this study, we successfully established a high-throughput screening system utilizing luciferase reporter assay specifically designed for HSF1, which leads to the discovery of a potent small molecule inhibitor targeting HSF1. Homoharringtonine (HHT) selectively inhibited PC cell viability with high HSF1 expression and induced a markedly stronger tumor regression effect in the subcutaneous xenograft model than the comparator drug KRIBB11, known for its direct action on HSF1. Moreover, HHT shows promise in countering the resistance encountered with HSP90 inhibitors, which have been observed to increase heat shock response intensity in clinical trials. Mechanistically, HHT directly bound to HSF1, suppressing its expression and thereby inhibiting transcription of HSF1 target genes. In conclusion, our work presents a preclinical discovery and validation for HHT as a HSF1 inhibitor for PC treatment.

4.
Fish Shellfish Immunol ; 151: 109660, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38830519

ABSTRACT

Heat shock factor binding protein 1 (HSBP1) is known to regulate the activity of heat shock factor 1 (HSF1) and the early development of organisms. To understand the involvement of HSBP1 in the heat shock response and embryonic and larval development of Pacific abalone (Haliotis discus hannai), the Hdh-HSBP1 gene was sequenced from the digestive gland (DG) tissue. The full-length sequence of Hdh-HSBP1 encompassed 738 nucleotides, encoding an 8.42 kDa protein consisting of 75 deduced amino acids. The protein contains an HSBP1 domain and a coiled-coil domain, which are conserved features in the HSBP1 protein family. Protein-protein molecular docking revealed that the coiled-coil region of Hdh-HSBP1 binds to the coiled-coil region of Hdh-HSF1. Tissue expression analysis demonstrated that the highest Hdh-HSBP1 expression occurred in the DG, whereas seasonal expression analysis revealed that this gene was most highly expressed in summer. In heat-stressed abalone, the highest expression of Hdh-HSBP1 occurred at 30 °C. Moreover, time-series analysis revealed that the expression of this gene began to increase significantly at 6 h post-heat stress, with higher expression observed at 12 h and 24 h post-heat stress. Furthermore, Hdh-HSBP1 mRNA expression showed a link to ROS production. Additionally, the expression of Hdh-HSBP1 showed significantly higher expression in the early stages of embryonic development in Pacific abalone. These results suggest that Hdh-HSBP1 plays a crucial role in the stress physiology of Pacific abalone by interacting with Hdh-HSF1, as well as its embryonic development.


Subject(s)
Amino Acid Sequence , Gastropoda , Heat-Shock Response , Phylogeny , Animals , Gastropoda/genetics , Sequence Alignment/veterinary , Heat-Shock Proteins/genetics , Heat-Shock Proteins/chemistry , Heat-Shock Proteins/metabolism , Gene Expression Profiling/veterinary , Gene Expression Regulation , Base Sequence , Molecular Docking Simulation
5.
Mol Cell Biol ; 44(5): 165-177, 2024.
Article in English | MEDLINE | ID: mdl-38758542

ABSTRACT

Systemic amyloid A (AA) amyloidosis, which is considered the second most common form of systemic amyloidosis usually takes place several years prior to the occurrence of chronic inflammation, generally involving the kidney. Activated HSF1, which alleviated unfolded protein response (UPR) or enhanced HSR, is the potential therapeutic target of many diseases. However, the effect of HSF1 on AA amyloidosis remains unclear. This study focused on evaluating effect of HSF1 on AA amyloidosis based on HSF1 knockout mice. As a result, aggravated amyloid deposits and renal dysfunction have been found in HSF1 knockout mice. In progressive AA amyloidosis, HSF1 deficiency enhances serum amyloid A production might to lead to severe AA amyloid deposition in mice, which may be related to deactivated unfolded protein response as well as enhanced inflammation. Thus, HSF1 plays a significant role on UPR related pathway impacting AA amyloid deposition, which can mitigate amyloidogenic proteins from aggregation pathologically and is the possible way for intervening with the pathology of systemic amyloid disorder. In conclusion, HSF1 could not only serve as a new target for AA amyloidosis treatment in the future, but HSF1 knockout mice also can be considered as a valuable novel animal model for renal AA amyloidosis.


Subject(s)
Amyloidosis , Heat Shock Transcription Factors , Kidney , Mice, Knockout , Unfolded Protein Response , Animals , Amyloidosis/metabolism , Amyloidosis/genetics , Amyloidosis/pathology , Heat Shock Transcription Factors/metabolism , Heat Shock Transcription Factors/genetics , Mice , Kidney/pathology , Kidney/metabolism , Serum Amyloid A Protein/metabolism , Serum Amyloid A Protein/genetics , Disease Models, Animal , Kidney Diseases/metabolism , Kidney Diseases/pathology , Kidney Diseases/genetics , Kidney Diseases/etiology , Mice, Inbred C57BL
6.
Discov Oncol ; 15(1): 165, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748048

ABSTRACT

OBJECTIVE: Circular RNAs (circRNAs) are involved in the development of human cancers, including cervical cancer (CC). However, the role and mechanism of circ_0006789 (circSLC25A43) in CC are unclear. The purpose of this study was to investigate the functional role of circ_0006789 in CC. METHODS: The expression of circ_0006789 in CC tissues and cell lines was examined by RT-qPCR. The characterization of circ_0006789 in CC cells was verified by subcellular localisation, actinomycin D assay, and RNase R assay. After circ_0006789 was knocked down in CC cell lines, the proliferation, apoptosis, migration and invasion of CC cells were assessed by CCK-8 method, flow cytometry, and Transwell assay. RIP assay, FISH assay, dual luciferase reporter gene assay and Western blot were used to investigate the regulatory mechanism between circ_0006789, miR-615-5p and heat shock factor 1 (HSF1). RESULTS: circ_0006789 was upregulated in CC tissues and cell lines. CC cells were inhibited in their proliferation, migration, and invasion, as well as promoted to apoptosis when circ_0006789 was knocked down. It was found that circ_0006789 targeted miR-615-5p, and miR-615-5p expression was inversely correlated with circ_0006789 expression. Furthermore, HSF1 was a target gene of miR-615-5p. Furthermore, the suppressive effects on HeLa cells mediated by circ_0006789 knockdown were counter-balanced when miR-615-5p was knocked down and HSF1 was overexpressed. Mechanistically, circ_0006789 was found to promote CC development by reducing miR-615-5p and increasing HSF1 expressions. CONCLUSION: circ_0006789 accelerates CC development via the miR-615-5p/HSF1 axis.

7.
Cell Rep ; 43(6): 114279, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38795346

ABSTRACT

Heat shock can be a lethal stressor. Previously, we described a CUL-6/cullin-ring ubiquitin ligase complex in the nematode Caenorhabditis elegans that is induced by intracellular intestinal infection and proteotoxic stress and that promotes improved survival upon heat shock (thermotolerance). Here, we show that CUL-6 promotes thermotolerance by targeting the heat shock protein HSP-90 for degradation. We show that CUL-6-mediated lowering of HSP-90 protein levels, specifically in the intestine, improves thermotolerance. Furthermore, we show that lysosomal function is required for CUL-6-mediated promotion of thermotolerance and that CUL-6 directs HSP-90 to lysosome-related organelles upon heat shock. Altogether, these results indicate that a CUL-6 ubiquitin ligase promotes organismal survival upon heat shock by promoting HSP-90 degradation in intestinal lysosomes. Thus, HSP-90, a protein commonly associated with protection against heat shock and promoting degradation of other proteins, is itself degraded to protect against heat shock.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , HSP90 Heat-Shock Proteins , Intestines , Lysosomes , Thermotolerance , Animals , Lysosomes/metabolism , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/physiology , Caenorhabditis elegans Proteins/metabolism , HSP90 Heat-Shock Proteins/metabolism , Proteolysis , Cullin Proteins/metabolism , Heat-Shock Response , Ubiquitin-Protein Ligases/metabolism
8.
Genes Dev ; 38(9-10): 380-392, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38816072

ABSTRACT

The ability to sense and respond to proteotoxic insults declines with age, leaving cells vulnerable to chronic and acute stressors. Reproductive cues modulate this decline in cellular proteostasis to influence organismal stress resilience in Caenorhabditis elegans We previously uncovered a pathway that links the integrity of developing embryos to somatic health in reproductive adults. Here, we show that the nuclear receptor NHR-49, an ortholog of mammalian peroxisome proliferator-activated receptor α (PPARα), regulates stress resilience and proteostasis downstream from embryo integrity and other pathways that influence lipid homeostasis and upstream of HSF-1. Disruption of the vitelline layer of the embryo envelope, which activates a proteostasis-enhancing intertissue pathway in somatic cells, triggers changes in lipid catabolism gene expression that are accompanied by an increase in fat stores. NHR-49, together with its coactivator, MDT-15, contributes to this remodeling of lipid metabolism and is also important for the elevated stress resilience mediated by inhibition of the embryonic vitelline layer. Our findings indicate that NHR-49 also contributes to stress resilience in other pathways known to change lipid homeostasis, including reduced insulin-like signaling and fasting, and that increased NHR-49 activity is sufficient to improve proteostasis and stress resilience in an HSF-1-dependent manner. Together, our results establish NHR-49 as a key regulator that links lipid homeostasis and cellular resilience to proteotoxic stress.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Lipid Metabolism , Proteostasis , Receptors, Cytoplasmic and Nuclear , Reproduction , Signal Transduction , Stress, Physiological , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/physiology , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Lipid Metabolism/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, Cytoplasmic and Nuclear/genetics , Reproduction/genetics , Reproduction/physiology , Mediator Complex/genetics , Mediator Complex/metabolism
9.
Biofactors ; 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38572919

ABSTRACT

Klotho is an antiaging protein that has multiple functions. The purpose of this study is to investigate whether soluble klotho plays a role in cellular stress response pathways. We found that klotho deficiency (kl-/-) largely decreased HSF1 levels and impaired heat shock protein expression. Interestingly, recombinant soluble klotho-induced HSF1 and HSPs such as HSP90, HSP70, and HSP27 in kl-/- mouse embryonic fibroblasts (MEFs). Soluble Klotho treatment also induced cell proliferation and HSF1 promoter activity in MEF kl-/- cells in a concentration-dependent manner. Furthermore, using point mutagenesis, we identified regulatory/binding sites of transcription factors EGR1 regulated by soluble klotho in the HSF1 promoter. Taken together, our findings unravel the molecular basis of klotho and provide molecular evidence supporting a direct interaction between soluble klotho and HSF1-mediated stress response pathway.

10.
Sci Rep ; 14(1): 8241, 2024 04 08.
Article in English | MEDLINE | ID: mdl-38589452

ABSTRACT

Female breast cancer is the most diagnosed cancer worldwide. Triple negative breast cancer (TNBC) is the most aggressive type and there is no existing endocrine or targeted therapy. Modulated electro-hyperthermia (mEHT) is a non-invasive complementary cancer therapy using an electromagnetic field generated by amplitude modulated 13.56 MHz frequency that induces tumor cell destruction. However, we have demonstrated a strong induction of the heat shock response (HSR) by mEHT, which can result in thermotolerance. We hypothesized that inhibition of the heat shock factor 1 (HSF1) can synergize with mEHT and enhance tumor cell-killing. Thus, we either knocked down the HSF1 gene with a CRISPR/Cas9 lentiviral construct or inhibited HSF1 with a specific small molecule inhibitor: KRIBB11 in vivo. Wild type or HSF1-knockdown 4T1 TNBC cells were inoculated into the mammary gland's fat pad of BALB/c mice. Four mEHT treatments were performed every second day and the tumor growth was followed by ultrasound and caliper. KRIBB11 was administrated intraperitoneally at 50 mg/kg daily for 8 days. HSF1 and Hsp70 expression were assessed. HSF1 knockdown sensitized transduced cancer cells to mEHT and reduced tumor growth. HSF1 mRNA expression was significantly reduced in the KO group when compared to the empty vector group, and consequently mEHT-induced Hsp70 mRNA upregulation diminished in the KO group. Immunohistochemistry (IHC) confirmed the inhibition of Hsp70 upregulation in mEHT HSF1-KO group. Demonstrating the translational potential of HSF1 inhibition, combined therapy of mEHT with KRIBB11 significantly reduced tumor mass compared to either monotherapy. Inhibition of Hsp70 upregulation by mEHT was also supported by qPCR and IHC. In conclusion, we suggest that mEHT-therapy combined with HSF1 inhibition can be a possible new strategy of TNBC treatment with great translational potential.


Subject(s)
Aminopyridines , Hyperthermia, Induced , Indazoles , Triple Negative Breast Neoplasms , Animals , Humans , Mice , Female , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/therapy , Cell Line, Tumor , Disease Models, Animal , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , Heat-Shock Response , RNA, Messenger , Heat Shock Transcription Factors/genetics
11.
Cell Stress Chaperones ; 29(3): 437-439, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38641046

ABSTRACT

The heat shock transcription factors heat shock transcription factor 1 and Hsf2 have been studied for many years, mainly in the context of stress response and in malignant cells. Their physiological function in nonmalignant human cells under nonstress conditions is still largely unknown. To approach this important issue, Joutsen et al. present immunohistochemical staining data on Hsf1 and Hsf2 in 80 nonpathological human tissue samples. The wealth of these data elicits many interesting questions that will spur many future research projects.


Subject(s)
Heat Shock Transcription Factors , Immunohistochemistry , Humans , Heat Shock Transcription Factors/metabolism , Heat Shock Transcription Factors/genetics , Immunohistochemistry/methods , Transcription Factors/metabolism , DNA-Binding Proteins/metabolism , Heat-Shock Proteins/metabolism
12.
Biochem Biophys Res Commun ; 709: 149824, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38537598

ABSTRACT

Heat shock factor 1 (HSF1) primarily regulates various cellular stress responses. Previous studies have shown that low pH within the physiological range directly activates HSF1 function in vitro. However, the detailed molecular mechanisms remain unclear. This study proposes a molecular mechanism based on the trimerization behavior of HSF1 at different pH values. Extensive mutagenesis of human and goldfish HSF1 revealed that the optimal pH for trimerization depended on the identity of residue 103. In particular, when residue 103 was occupied by tyrosine, a significant increase in the optimal pH was observed, regardless of the rest of the sequence. This behavior can be explained by the protonation state of the neighboring histidine residues, His101 and His110. Residue 103 plays a key role in trimerization by forming disulfide or non-covalent bonds with Cys36. If tyrosine resides at residue 103 in an acidic environment, its electrostatic interactions with positively charged histidine residues prevent effective trimerization. His101 and His110 are neutralized at a higher pH, which releases Tyr103 to interact with Cys36 and drives the effective trimerization of HSF1. This study showed that the protonation state of a histidine residue can regulate the intramolecular interactions, which consequently leads to a drastic change in the oligomerization behavior of the entire protein.


Subject(s)
DNA-Binding Proteins , Transcription Factors , Humans , DNA-Binding Proteins/metabolism , Heat Shock Transcription Factors/genetics , Histidine/genetics , Histidine/metabolism , Hydrogen-Ion Concentration , Transcription Factors/metabolism , Tyrosine
13.
Gene ; 893: 147945, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38381511

ABSTRACT

To investigate the regulatory role of heat shock transcription factor 1 of sea slug Onchidium reevesii (OrHSF1) on Hsp70 expression in the sea slug under stress , the OrHSF1 gene was cloned and bioinformatics analysis was performed, then the gene and protein expressions by RNA interference (RNAi) mediated knockdown of OrHSF1 expression were measured to clarify the regulatory relationship between OrHSF1 and Hsp70 under low-frequency noise (LFN) stress. Our study was the first to clone a 1572 bp sequence of the OrHSF1 gene, with the sequence coding for amino acids (CDS) being 729 bp, encoding 243 amino acids. O. reevesii shared a close evolutionary relationship with mollusks such as the Aplysia californica. OrHSF1 gene is widely expressed in different tissues of sea slugs, with the highest expression in the intestine and the lowest in the reproductive glands. Furthermore, we used RNA interference (RNAi) as a tool to silence the OrHSF1 gene in the central nervous system (CNS) and the results indicated that gene silencing was occurring systematically in the CNS and the suppression of OrHSF1 expression by RNAi-mediated gene silencing altered the expression of Hsp70; besides, the expression trends of OrHSF1 gene and Hsp70 were consistent in the 3 and 5-day RNAi experiment. Moreover, in sea slugs injected with siHSF1 and exposed to LFN, the mRNA expression and protein expression of Hsp70 in the CNS were significantly decreased compared to the low-frequency noise group (P < 0.05). This study demonstrated that OrHSF1 regulates Hsp70 expression in marine mollusks under low-frequency noise, and HSF1-Hsp70 axis plays a key role in stress response.


Subject(s)
Aplysia , Gastropoda , Animals , Heat Shock Transcription Factors/genetics , Gastropoda/genetics , Amino Acids , HSP70 Heat-Shock Proteins/genetics , Cloning, Molecular
14.
Arch Biochem Biophys ; 754: 109947, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38417690

ABSTRACT

The Human Immunodeficiency Virus-1 (HIV-1) tends to activate cellular promoters driving expression of pro-viral genes by complex host-virus interactions for productive infection. We have previously demonstrated that expression of such a positive host factor HSF1 (heat shock factor 1) is elevated during HIV-1 infection; however, the mechanism remains to be elucidated. In the present study, we therefore examined whether HSF1 promoter is induced during HIV-1 infection leading to up-regulation of hsf1 gene expression. We mapped the putative transcription start site (TSS) predicted by Eukaryotic promoter database and deletion constructs of the predicted promoter region were tested through luciferase assay to identify the active promoter. The 347 bp upstream to 153 bp downstream region around the putative TSS displayed the highest activity and both Sp1 (stimulating protein 1) and HSF1 itself were identified to be important for its basal activation. Activity of HSF1 promoter was further stimulated during HIV-1 infection in CD4+ T cells, where interestingly the HSF1-site itself seems to play a major role. In addition, HIV-1 protein Nef (negative factor) was also observed to be responsible for the virus-mediated induction of hsf1 gene expression. Chromatin-immunoprecipitation assays further demonstrate that Nef and HSF1 are co-recruited to the HSF1-binding site and cooperatively act on this promoter. The interplay between host HSF1 and viral Nef on HSF1 promoter eventually leads to increase in HSF1 expression during HIV-1 infection. Understanding the mechanism of HSF1 up-regulation during HIV-1 infection might contribute to future antiviral strategies as HSF1 is a positive regulator of virus replication.


Subject(s)
HIV Infections , HIV-1 , Heat Shock Transcription Factors , nef Gene Products, Human Immunodeficiency Virus , Humans , HIV-1/physiology , Promoter Regions, Genetic , Transcriptional Activation , Viral Proteins/genetics , Heat Shock Transcription Factors/genetics , Heat Shock Transcription Factors/metabolism , HIV Infections/metabolism , Up-Regulation
15.
FEBS Lett ; 598(6): 635-657, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38366111

ABSTRACT

The response to proteotoxic stresses such as heat shock allows organisms to maintain protein homeostasis under changing environmental conditions. We asked what happens if an organism can no longer react to cytosolic proteotoxic stress. To test this, we deleted or depleted, either individually or in combination, the stress-responsive transcription factors Msn2, Msn4, and Hsf1 in Saccharomyces cerevisiae. Our study reveals a combination of survival strategies, which together protect essential proteins. Msn2 and 4 broadly reprogram transcription, triggering the response to oxidative stress, as well as biosynthesis of the protective sugar trehalose and glycolytic enzymes, while Hsf1 mainly induces the synthesis of molecular chaperones and reverses the transcriptional response upon prolonged mild heat stress (adaptation).


Subject(s)
Saccharomyces cerevisiae Proteins , Transcription Factors , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Heat Shock Transcription Factors/genetics , Heat Shock Transcription Factors/metabolism , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Heat-Shock Response/genetics , Proteotoxic Stress , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Transcription Factors/metabolism
16.
Front Pharmacol ; 15: 1320040, 2024.
Article in English | MEDLINE | ID: mdl-38333010

ABSTRACT

Background and aims: Obesity is one of the most prevalent diseases worldwide with less ideal approved agents in clinic. Activating the HSF1/PGC-1α axis in adipose tissues has been reported to induce thermogenesis in mice, which presents a promising therapeutic avenue for obesity treatment. The present study aimed to identified novel natural HSF1 activator and evaluated the therapeutic effects of the newly discovered compound on obesity-associated metabolic disorders and the molecular mechanisms of these effects. Methods: Our previous reported HSF1/PGC-1α activator screening system was used to identify novel natural HSF1 activator. The PGC-1α luciferase activity, immunoblot, protein nuclear-translocation, immunofluorescence, chromatin immunoprecipitation assays were used to evaluate the activity of compound HN-001 in activating HSF1. The experiments of mitochondrial number measurement, TG assay and imaging, cellular metabolic assay, gene assays, and CRISPR/Cas 9 were applied for investigating the metabolic effect of HN-001 in C3H10-T1/2 adipocytes. The in vivo anti-obesity efficacies and beneficial metabolic effects of HN-001 were evaluated by performing body and fat mass quantification, plasma chemical analysis, GTT, ITT, cold tolerance test, thermogenesis analysis. Results: HN-001 dose- and time-dependently activated HSF1 and induced HSF1 nuclear translocation, resulting in an enhancement in binding with the gene Pgc-1α. This improvement induced activation of adipose thermogenesis and enhancement of mitochondrial oxidation capacity, thus inhibiting adipocyte maturation. Deletion of HSF1 in adipocytes impaired mitochondrial oxidation and abolished the above beneficial metabolic effects of HN-001, including adipocyte browning induction, improvements in mitogenesis and oxidation capacity, and lipid-lowering ability. In mice, HN-001 treatment efficiently alleviated diet-induced obesity and metabolic disorders. These changes were associated with increased body temperature in mice and activation of the HSF1/PGC-1α axis in adipose tissues. UCP1 expression and mitochondrial biogenesis were increased in both white and brown adipose tissues of HN-001-treated mice. Conclusion: These data indicate that HN-001 may have therapeutic potential for obesity-related metabolic diseases by increasing the capacity of energy expenditure in adipose tissues through a mechanism involving the HSF1/PGC-1α axis, which shed new light on the development of novel anti-obesity agents derived from marine sources.

17.
Cartilage ; : 19476035241229211, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38366389

ABSTRACT

OBJECTIVE: Osteoarthritis (OA) is the most common arthritic disease in humans. Nevertheless, the pathogenic mechanism of OA remains unclear. This study aimed to explore that heat-shock transcription factor 1 (HSF1) facilitated interleukin-1 beta (IL-1ß) chondrocyte injury by increasing Notch1 O-linked N-acetylglucosamine (O-GlcNAc) modification level. DESIGN: Human chondrocytes were incubated with 5 ng/ml interleukin-1 beta (IL-1ß) for 24 h to establish OA cell model. The messenger RNA (mRNA) or protein expressions were assessed using reverse transcription-quantitative polymerase chain reaction, western blot, or immunofluorescence. Chondrocyte viability was examined by Cell Counting Kit-8 assay. Enzyme-linked immunosorbent assay was employed to detect the secretion levels of interleukin-6 (IL-6) and interleukin-8 (IL-8). Immunoprecipitation was adopted to detect Notch1 O-GlcNAc modification level. The interaction between HSF1 and epidermal growth factor-like (EGF) domain-specific O-GlcNAc transferase (EOGT) promoter was analyzed by dual-luciferase reporter gene and chromatin immunoprecipitation assays. RESULTS: Herein, our results demonstrated that HSF1, EOGT, Notch1, and Notch1 intracellular domain (NICD1) expressions in chondrocytes were markedly increased by IL-1ß stimulation. EOGT elevated Notch1 expression in IL-1ß-treated chondrocytes by increasing Notch1 O-GlcNAc modification level. EOGT silencing reduced IL-1ß-induced chondrocyte inflammatory injury. In addition, HSF1 knockdown relieved IL-1ß-induced chondrocyte inflammatory injury. Molecular interaction experiment proved that HSF1 transcriptionally activated EOGT expression in IL-1ß-treated chondrocytes. CONCLUSIONS: HSF1 promoted IL-1ß-induced inflammatory injury in chondrocytes by increasing EOGT-mediated glycosylation of Notch1.

18.
Autophagy ; 20(3): 659-674, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38290972

ABSTRACT

Triple-negative breast cancer (TNBC) is associated with a poor prognosis and metastatic growth. TNBC cells frequently undergo macroautophagy/autophagy, contributing to tumor progression and chemotherapeutic resistance. ANXA2 (annexin A2), a potential therapeutic target for TNBC, has been reported to stimulate autophagy. In this study, we investigated the role of ANXA2 in autophagic processes in TNBC cells. TNBC patients exhibited high levels of ANXA2, which correlated with poor outcomes. ANXA2 increased LC3B-II levels following bafilomycin A1 treatment and enhanced autophagic flux in TNBC cells. Notably, ANXA2 upregulated the phosphorylation of HSF1 (heat shock transcription factor 1), resulting in the transcriptional activation of ATG7 (autophagy related 7). The mechanistic target of rapamycin kinase complex 2 (MTORC2) played an important role in ANXA2-mediated ATG7 transcription by HSF1. MTORC2 did not affect the mRNA level of ANXA2, but it was involved in the protein stability of ANXA2. HSPA (heat shock protein family A (Hsp70)) was a potential interacting protein with ANXA2, which may protect ANXA2 from lysosomal proteolysis. ANXA2 knockdown significantly increased sensitivity to doxorubicin, the first-line chemotherapeutic regimen for TNBC treatment, suggesting that the inhibition of autophagy by ANXA2 knockdown may overcome doxorubicin resistance. In a TNBC xenograft mouse model, we demonstrated that ANXA2 knockdown combined with doxorubicin administration significantly inhibited tumor growth compared to doxorubicin treatment alone, offering a promising avenue to enhance the effectiveness of chemotherapy. In summary, our study elucidated the molecular mechanism by which ANXA2 modulates autophagy, suggesting a potential therapeutic approach for TNBC treatment.Abbreviation: ATG: autophagy related; ChIP: chromatin-immunoprecipitation; HBSS: Hanks' balanced salt solution; HSF1: heat shock transcription factor 1; MTOR: mechanistic target of rapamycin kinase; TNBC: triple-negative breast cancer; TFEB: transcription factor EB; TFE3: transcription factor binding to IGHM enhancer 3.


Subject(s)
Annexin A2 , Triple Negative Breast Neoplasms , Humans , Animals , Mice , Autophagy/genetics , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Heat Shock Transcription Factors/genetics , Annexin A2/genetics , Cell Line, Tumor , Mechanistic Target of Rapamycin Complex 2/metabolism , Doxorubicin , Sirolimus
19.
Biochim Biophys Acta Rev Cancer ; 1879(2): 189069, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38176599

ABSTRACT

The Heat Shock Response (HSR) is a cellular stress reaction crucial for cell survival against stressors, including heat, in both healthy and cancer cells. Modulated electro-hyperthermia (mEHT) is an emerging non-invasive cancer therapy utilizing electromagnetic fields to selectively target cancer cells via temperature-dependent and independent mechanisms. However, mEHT triggers HSR in treated cells. Despite demonstrated efficacy in cancer treatment, understanding the underlying molecular mechanisms for improved therapeutic outcomes remains a focus. This review examines the HSR induced by mEHT in cancer cells, discussing potential strategies to modulate it for enhanced tumor-killing effects. Approaches such as HSF1 gene-knockdown and small molecule inhibitors like KRIBB11 are explored to downregulate the HSR and augment tumor destruction. We emphasize the impact of HSR inhibition on cancer cell viability, mEHT sensitivity, and potential synergistic effects, addressing challenges and future directions. This understanding offers opportunities for optimizing treatment strategies and advancing precision medicine in cancer therapy.


Subject(s)
Hyperthermia, Induced , Neoplasms , Humans , Cell Line, Tumor , Apoptosis , Neoplasms/therapy
20.
J Cancer ; 15(1): 79-89, 2024.
Article in English | MEDLINE | ID: mdl-38164275

ABSTRACT

Hsp70 (heat shock protein 70) plays critical roles in cancer cell proliferation and apoptosis. Recently, accumulating evidences have demonstrated the cancer promoting effects of Hsp70 in bladder cancer. The development of novel therapeutic approaches targeting Hsp70 thus received great attention from researchers. In this study, we demonstrated that silibinin, a natural polyphenolic flavonoid isolated from the milk thistle, targeted Hsp70 by inhibiting its transcription in bladder cancer cells. We also demonstrated that knockdown of endogenous Hsp70 enhanced silibinin-induced apoptosis, while overexpression of exogenous Hsp70 could partially reverse the effects of silibinin-induced cell apoptosis. Furthermore, we found that silibinin could activate HSF1/Hsp70-regulated mitochondrial apoptotic pathway. Mechanically, silibinin inhibited the interaction between Apaf-1 and Hsp70, thus increasing the recruitment of pro caspase-9. Results from in vivo study demonstrated that silibinin suppressed the growth of bladder cancer xenografts, which was accompanied with the activation of caspase-3 and downregulation of HSF1 and Hsp70. Taken together, our data indicates that silibinin induces mitochondrial apoptosis via inhibiting HSF1/Hsp70 pathway and also suggests the therapeutic potential of silibinin in the treatment of bladder cancer.

SELECTION OF CITATIONS
SEARCH DETAIL