Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters











Publication year range
1.
BMC Genomics ; 24(1): 793, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38124030

ABSTRACT

BACKGROUND: Heat shock proteins (HSPs) function as molecular chaperones with critical roles in chicken embryogenesis, immune response to infectious diseases, and response to various environmental stresses. However, little is known on HSP genes in chicken. In this study, to understand the roles of chicken HSPs, we performed genome-wide identification, expression, and functional analyses of the HSP family genes in chicken. RESULTS: A total of 76 HSP genes were identified in the chicken genome, which were further classified into eight distinct groups (I-VIII) based on phylogenetic tree analysis. The gene-structure analysis revealed that the members of each clade had the same or similar exon-intron structures. Chromosome mapping suggested that HSP genes were widely dispersed across the chicken genome, except in chromosomes 16, 18, 22, 25, 26, and 28-32, which lacked chicken HSP genes. On the other hand, the interactions among chicken HSPs were limited, indicating that the remaining functions of HSPs could be investigated in chicken. Moreover, KEGG pathway analysis showed that the HSP gene family was involved in the regulation of heat stress, apoptotic, intracellular signaling, and immune response pathways. Finally, RNA sequencing data revealed that, of the 76 chicken HSP genes, 46 were differentially expressed at 21 different growth stages in chicken embryos, and 72 were differentially expressed on post-infection day 3 in two indigenous Ri chicken lines infected with highly pathogenic avian influenza. CONCLUSIONS: This study provides significant insights into the potential functions of HSPs in chicken, including the regulation of apoptosis, heat stress, chaperone activity, intracellular signaling, and immune response to infectious diseases.


Subject(s)
Communicable Diseases , Influenza in Birds , Chick Embryo , Animals , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Chickens/genetics , Chickens/metabolism , Phylogeny , Influenza in Birds/genetics , Genomics
2.
J Trace Elem Med Biol ; 80: 127296, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37659125

ABSTRACT

BACKGROUND: Reactive oxygen species (ROS) are strongly linked with oxidative stress (OS) generated during the process of sperm cryopreservation. Indeed, cellular damage from ROS has been implicated during sperm cryopreservation which causes deterioration in sperm quality and antioxidant nanoparticles (NPs) have been successful in preventing such damage. The interaction of NPs with sperm cells has been less frequently explored in farm animals. OBJECTIVE: The present study explored the effect of NP supplementation on sperm ultrastructure, potential interaction with sperm membrane (plasma and acrosome membrane), heat shock protein (HSP) gene expression levels and sperm quality in cryopreserved buck semen. MATERIALS AND METHODS: Thirty-two (32) ejaculates were collected from four (4) adult male bucks and then diluted in Tris- citric acid- fructose- egg yolk (TCFY) extender containing the Zinc-oxide (ZnO) and Selenium (Se) NP treatments (T0: Control; TZn: 0.1 mg/mL ZnO NPs and TSe: 1 µg/mL Se NPs) after initial evaluation. Diluted semen was packed in 0.25 mL French mini straws and then stored in liquid nitrogen (LN2). Sperm parameters, lipid peroxidation (LPO) profile, sperm head morphology ultrastructural classification under transmission electron microscope (TEM), potential interaction of NPs with sperm membrane and expression of HSP genes were evaluated in the different treatment groups. RESULTS: We found a significant (p < 0.05) increase in the percentage of spermatozoa with intact plasma membrane, and intact acrosome in the ZnO (0.1 mg/mL) and Se (1 µg/mL) NP supplemented groups in comparison to the frozen control group. TEM assessment revealed no internalization of both ZnO and Se NPs into the sperm structure. Few occasional contacts of ZnO NPs with the sperm membrane and a few agglomerates of Se NPs around the area of damaged membranes were visualized. HSP70 and HSP90 mRNA levels were significantly (p < 0.001) higher in the NP supplemented groups in comparison to the control. HSP70 and HSP90 mRNA levels had a strong positive association with sperm motility and a weak to moderate association with other sperm parameters. CONCLUSIONS: Current findings indicated that ZnO NPs are more potent than Se NPs in ameliorating peroxidative damages during sperm cryopreservation, increases semen quality parameters possibly by increasing the expression levels of HSP genes in buck semen. Furthermore, NP supplementation may have a potential role in preserving sperm head ultrastructure by acting as an antioxidant and reducing OS during various degrees of cellular insults, which needs to be further explored.


Subject(s)
Nanoparticles , Selenium , Semen Preservation , Zinc Oxide , Animals , Male , Semen Analysis/veterinary , Zinc Oxide/pharmacology , Selenium/pharmacology , Semen , Antioxidants/pharmacology , Heat-Shock Proteins/pharmacology , Reactive Oxygen Species/pharmacology , Goats , Sperm Motility , Semen Preservation/veterinary , Spermatozoa , Cryopreservation/veterinary , HSP70 Heat-Shock Proteins , RNA, Messenger
3.
J Insect Physiol ; 147: 104520, 2023 06.
Article in English | MEDLINE | ID: mdl-37148996

ABSTRACT

Insects are currently subjected to unprecedented thermal stress due to recent increases in the frequency and amplitude of temperature extremes. Understanding molecular responses to thermal stress is critically important to appreciate how species react to thermal stress. Three co-occurring cosmopolitan species are found within the guild of cereal aphids: Sitobion avenae, Ropalosiphum padi and Metopolophium dirhodum. Earlier reports have shown that increasing frequency of temperature extremes causes a shift in dominant species within guilds of cereal aphids by differently altering the population's growth. We hypothesize that a differential molecular response to stress among species may partially explain these changes. Heat shock proteins (HSPs) are molecular chaperones well known to play an important role in protecting against the adverse effects of thermal stress. However, few studies on molecular chaperones have been conducted in cereal aphids. In this study, we compared the heat and cold tolerance between three aphid species by measuring the median lethal time (Lt50) and examined the expression profiles of seven hsp genes after exposures to comparable thermal injury levels and also after same exposure durations. Results showed that R. padi survived comparatively better at high temperatures than the two other species but was more cold-sensitive. Hsp genes were induced more strongly by heat than cold stress. Hsp70A was the most strongly up-regulated gene in response to both heat and cold stress. R. padi had more heat inducible genes and significantly higher mRNA levels of hsp70A, hsp10, hsp60 and hsp90 than the other two species. Hsps ceased to be expressed at 37 °C in M. dirhodum and S. avenae while expression was maintained in R. padi. In contrast, M. dirhodum was more cold tolerant and had more cold inducible genes than the others. These results confirm species-specific differences in molecular stress responses and suggest that differences in induced expression of hsps may be related to species' thermal tolerance, thus causing the changes in the relative abundance.


Subject(s)
Aphids , Cold-Shock Response , Animals , Aphids/physiology , Edible Grain , Heat-Shock Proteins/genetics , Hot Temperature
4.
Front Genet ; 14: 1085590, 2023.
Article in English | MEDLINE | ID: mdl-37077545

ABSTRACT

Introduction: Chronic heat stress during summer is a major challenge imposed by global warming. Chickens are more sensitive to heat stress than mammals because they lack sweat glands. Thus, chickens are more susceptible to heat stress during summer than other seasons. Induction of heat shock protein (HSP) genes is one of the primary defense mechanisms against heat stress. Tissue-specific responses exhibited by different classes of HSPs upon exposure to heat stress have been reported previously in different tissues including the heart, kidney, intestine, blood, and muscle, but not in the retina. Therefore, this study aimed to investigate the expression levels of HSP27, HSP40, HSP60, HSP70, and HSP90 in the retina under chronic heat stress. Methods: This study was conducted during the summers of 2020 and 2021 in Kuwait. Chickens (Gallus gallus) were divided into control and heat-treated groups and sacrificed at different developmental stages. Retinas were extracted and analyzed by using Real Time quantitative Polymerase Chain Reaction (RT-qPCR). Results: Our results from the summer of 2021 were similar to that from the summer of 2020, regardless of whether GAPDH or RPL5 was used as a gene normalizer. All five HSP genes were upregulated in the retina of 21-day-old heat-treated chickens and stayed upregulated until 35 days of age, with the exception of HSP40, which was downregulated. The addition of two more developmental stages in the summer of 2021 showed that at 14 days, all HSP genes were upregulated in the retina of heat-treated chickens. In contrast, at 28 days, HSP27 and HSP40 were downregulated, whereas HSP60, HSP70, and HSP90 were upregulated. Furthermore, our results showed that under chronic heat stress, the highest upregulation of HSP genes was seen at the earliest developmental stages. Discussion: To the best of our knowledge, this is the first study to report the expression levels of HSP27, HSP40, HSP60, HSP70, and HSP90 in the retina under chronic heat stress. Some of our results match the previously reported expression levels of some HSPs in other tissues under heat stress. These results suggest that HSP gene expression can be used as a biomarker for chronic heat stress in the retina.

5.
J Nematol ; 55(1): 20230009, 2023 Feb.
Article in English | MEDLINE | ID: mdl-37082220

ABSTRACT

Assuming that the seeds of Vicia sativa L. have a stressful effect on J2 stage Meloidogyne hapla, we undertook research on the effect of these seeds on the motility and mortality of J2 and determined the expression levels of selected hsp genes in J2. The assessment of the effect of V. sativa seeds on the motility of M. hapla specimens consisted of observing the movement of J2 immersed in a seed diffusate or in a tomato root filtrate at temperatures of 10, 17, and 21°C. In J2 treated with V. sativa (cv. Ina) seed diffusates, the expression level of hsp genes was determined by qPCR. J2 exposed to V. sativa diffusates were found to lose their motility, while their mortality did not exceed 30%. J2 in the seed diffusate were characterized by an increase in the expression levels of the Mh-hsp90, Mh-hsp1, and Mh-hsp43 genes. It is suggested that the hsp90 gene may be a potential bioindicator of the environmental impact on Meloidogyne nematodes. The impaired ability to move in J2 of M. hapla is attributable to the occurrence of V. sativa seeds in their habitat. These studies may contribute to developing methods of reducing crop damage caused by M. hapla.

6.
Int J Mol Sci ; 23(21)2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36361611

ABSTRACT

Pardosa pseudoannulata (P. pseudoannulata) is an essential natural predatory enemy in rice ecosystems. The fluctuating climate may cause them to experience heat stress, whereas heat shock proteins (HSPs) and antioxidant enzymes help resist heat damage. Herein, we cloned and characterized the full-length genes PpHSP27, PpHSP60, and PpHSC70 from P. pseudoannulata. Changes in gene expression levels and superoxide dismutase (SOD), catalase (CAT), and glutathione transferase (GST) activities in adult male and female P. pseudoannulata were measured at different stress exposure times and temperatures. We found that the abovementioned HSP genes belong to the sHSP, HSP60, and HSP70 families. The expression of the three HSP genes and the activities of SOD, CAT, and GST were significantly upregulated with the increasing stress temperature and time. The knockdown of the three HSP genes via RNA interference significantly decreased the survival rate of male and female P. pseudoannulata during high temperature stress. Thus, PpHSP27, PpHSP60, and PpHSC70 play an important role in the heat tolerance of P. pseudoannulata, and SOD, CAT, and GST enable recovery heat stress-induced oxidative damage. Their changes and regulation during high temperature stress can improve spiders' adaptability in the field and enhance the biological control of environmental pests.


Subject(s)
Antioxidants , Spiders , Female , Male , Animals , Antioxidants/metabolism , Temperature , Heat-Shock Proteins/genetics , Ecosystem , Spiders/genetics , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism
7.
Cell Stress Chaperones ; 25(2): 305-315, 2020 03.
Article in English | MEDLINE | ID: mdl-32040825

ABSTRACT

Here, we monitored the expression of three genes (hsp70, hsp22, and hsf1) involved in heat shock response in Drosophila melanogaster in males and females of different age. Also, we investigated age- and sex-dependent expression of three major genes participating in the production of hydrogen sulfide (H2S) (cse, cbs, and mst), implicated in stress resistance and aging. In addition to the control strain, we monitored the expression of all of these genes in a cbs knockout strain (cbs-/-) generated using the CRISPR technique. The tested strains differ in the induction capacities of the studied genes. Relative to the control strain, under normal conditions, the cbs-/- strain expresses all of the studied genes more abundantly, especially hsp22. In the control strain, aging leads to a dramatic increase in hsp22 synthesis, whereas in the cbs-/- strain, hsp22 induction is not pronounced. Furthermore, in 30-day-old cbs-/- flies, the constitutive expression of hsp70 and mst is decreased. Surprisingly, in the cbs-/- strain, we detected an upregulation of hsf1 transcription in the 30-day-old females. After heat shock in the control strain, hsp70 and hsp22 induction decreased with age in males and hsp22 decreased in females, while in the cbs-/- strain, a pronounced drop in the induction capacity of both hsp genes was seen in 30-day-old males and females. However, in most cases, the expression levels of hsf1 and H2S-producing genes do not exhibit pronounced changes depending on sex, age, or heat shock. Flies of control and cbs-/- strain exhibited strong reduction in basal thermotolerance with age. Our data suggest a cross-talk between the two studied ancient and universal adaptive systems.


Subject(s)
Drosophila Proteins , Drosophila melanogaster , HSP70 Heat-Shock Proteins , Heat Shock Transcription Factors , Heat-Shock Proteins , Heat-Shock Response , Aging , Animals , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Female , Gene Expression , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , Heat Shock Transcription Factors/genetics , Heat Shock Transcription Factors/metabolism , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Male , Sex Factors
8.
F1000Res ; 7: 1504, 2018.
Article in English | MEDLINE | ID: mdl-30542619

ABSTRACT

Background: Heat shock proteins (HSPs) are molecular chaperones known to bind and sequester client proteins under stress. Methods: To identify and better understand some of these proteins, we carried out a computational genome-wide survey of the bovine genome. For this, HSP sequences from each subfamily (sHSP, HSP40, HSP70 and HSP90) were used to search the Pfam (Protein family) database, for identifying exact HSP domain sequences based on the hidden Markov model. ProtParam tool was used to compute potential physico-chemical parameters detectable from a protein sequence. Evolutionary trace (ET) method was used to extract evolutionarily functional residues of a homologous protein family. Results: We computationally identified 67 genes made up of 10, 43, 10 and 4 genes belonging to small HSP, HSP40, HSP70 and HSP90 families respectively. These genes were widely dispersed across the bovine genome, except in chromosomes 24, 26 and 27, which lack bovine HSP genes. We found an uncharacterized outer dense fiber ( ODF1) gene in cattle with an intact alpha crystallin domain, like other small HSPs. Physico-chemical characteristic of aliphatic index was higher in HSP70 and HSP90 gene families, compared to small HSP and HSP40. Grand average hydropathy showed that small HSP (sHSP), HSP40, HSP70 and HSP90 genes had negative values except for DNAJC22, a member of HSP40 gene family. The uniqueness of DNAJA3 and DNAJB13 among HSP40 members, based on multiple sequence alignment, evolutionary trace analysis and sequence identity dendrograms, suggests evolutionary distinct structural and functional features, with unique roles in substrate recognition and chaperone functions. The monophyletic pattern of the sequence identity dendrograms of cattle, human and mouse HSP sequences suggests functional similarities. Conclusions: Our computational results demonstrate the first-pass in-silico identification of heat shock proteins and calls for further investigation to better understand their functional roles and mechanisms in Bovidae.


Subject(s)
Genome-Wide Association Study , Amino Acid Sequence , Animals , Apoptosis Regulatory Proteins , Cattle , HSP40 Heat-Shock Proteins , HSP70 Heat-Shock Proteins , HSP90 Heat-Shock Proteins , Heat-Shock Proteins , Humans , Mice , Molecular Chaperones , Phylogeny
9.
J Therm Biol ; 74: 14-22, 2018 May.
Article in English | MEDLINE | ID: mdl-29801619

ABSTRACT

Heat shock response (HSR), in terms of transcription regulation of two heat shock proteins genes hsp70 and hsp90), was analysed in a widespread tropical copepod Pseudodiaptomus annandalei. The mRNA transcripts of both genes were quantified after copepods at a salinity of 20 underwent an acclimation process involving an initial acclimation temperature of 29 °C, followed by gradual thermal ramping to the target exposure temperature range of 24-36 °C. The respective cellular HSR and organismal metabolism, measured by respiratory activity at exposure temperatures, were compared. The fold change in mRNA expression for both hsp70 and hsp90 (8-9 fold) peaks at 32 °C, which is very close to 32.4 °C, the upper thermal optimum for respiration in the species. Unexpectedly, the modelled HSR curves peak at only 3 °C (hsp90) and 3.5 °C (hsp70) above the mean water temperature (29.32 °C) of the copepod in the field. We propose that copepods in tropical waters adopt a preparative HSR strategy, early at the upper limit of its thermal optimum, due to the narrow thermal range of its habitat thus precluding substantial energy demand at higher temperatures. However, the model suggests that the species could survive to at least 36 °C with short acclimation time. Nevertheless, the significant overlap between its thermal range of hsp synthesis and the narrow temperature range of its habitat also suggests that any unprecedented rise in sea temperature would have a detrimental effect on the species.


Subject(s)
Acclimatization , Copepoda/metabolism , Heat-Shock Response , Stress, Physiological , Temperature , Animals , Estuaries , HSP70 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/metabolism , RNA, Messenger/metabolism , Tropical Climate
10.
Cell Stress Chaperones ; 23(4): 455-466, 2018 07.
Article in English | MEDLINE | ID: mdl-29417383

ABSTRACT

The use of highly inducible HSP promoters for exerting spatial and/or temporal control over the expression of therapeutic transgenes has long been discussed. Localized and time-limited induction of the heat shock response may potentially also be of medical interest. However, such applications would require targeted delivery of heat doses capable of activating HSP promoters in tissues or organs of interest. Accessible areas, including the skin and tissues immediately underneath it, may be most readily targeted. A few applications for heat-directed or heat-controlled therapy in the skin might involve expression of proteins to restore or protect normal skin function, protein antigens for vaccination/immunotherapy, vaccine viruses or even systemically active proteins, e.g., cytokines and chemokines. A review of the literature relating to localized heat activation of HSP promoters and HSP genes in the skin revealed that a multitude of different technologies has been explored in small animal models. In contrast, we uncovered few publications that examine HSP promoter activation in human skin. None of these publications has a therapeutic focus. We present herein two, clinically relevant, developments of heating technologies that effectively activate HSP promoters in targeted regions of human skin. The first development advances a system that is capable of reliably activating HSP promoters in human scalp, in particular in hair follicles. The second development outlines a simple, robust, and inexpensive methodology for locally activating HSP promoters in small, defined skin areas.


Subject(s)
Heat-Shock Proteins/genetics , Heat-Shock Response/genetics , Mammals/genetics , Promoter Regions, Genetic , Skin/metabolism , Animals , Heat-Shock Proteins/metabolism , Humans
11.
Ecotoxicol Environ Saf ; 152: 132-138, 2018 May 15.
Article in English | MEDLINE | ID: mdl-29407779

ABSTRACT

Bisphenol A (BPA), a known endocrine disrupting chemical (EDC) that can mimic the action of oestrogens by interacting with hormone receptors, is potentially able to influence reproductive functions in vertebrates and invertebrates. The freshwater pulmonate Physa acuta is a sensitive organism to xenobiotics appropriate for aquatic toxicity testing in environmental studies. This study was conducted to explore the effects of BPA on the Gastropoda endocrine system. The effects following a range of exposure times (5-96h) to BPA in P. acuta were evaluated at the molecular level by analysing changes in the transcriptional activity of the endocrine-related genes oestrogen receptor (ER), oestrogen-related receptor (ERR), and retinoid X receptor (RXR), as well as in genes involved in the stress response, such as hsp70 and hsp90. Real-time reverse transcriptase-polymerase chain reaction (qRT-PCR) analysis showed that BPA induced a significant increase in the mRNA levels of ER, ERR, and RXR, suggesting that these receptors could be involved in similar pathways or regulation events in the endocrine disruptor activity of this chemical at the molecular level in Gastropoda. Additionally, the hsp70 expression was upregulated after 5 and 72h of BPA exposures, but hsp90 was only upregulated after 5h of BPA exposure. Finally, we assessed the glutathione-S-transferase (GST) activity after BPA treatment and found that it was affected after 48h. In conclusion, these data provide, for the first time, evidences of molecular effects produced by BPA in the endocrine system of Gastropoda, supporting the potential of ER, ERR and RXR as biomarkers to analyse putative EDCs in ecotoxicological studies. Moreover, our results suggest that P. acuta is an appropriate sentinel organism to evaluate the effect of EDCs in the freshwater environment.


Subject(s)
Benzhydryl Compounds/toxicity , Endocrine Disruptors/toxicity , Gene Expression/drug effects , Helix, Snails/drug effects , Phenols/toxicity , Water Pollutants, Chemical/toxicity , Animals , Biomarkers , Dose-Response Relationship, Drug , Fresh Water/chemistry , HSP70 Heat-Shock Proteins/genetics , HSP90 Heat-Shock Proteins/genetics , Helix, Snails/genetics , RNA, Messenger/genetics , Receptors, Estrogen/genetics , Time Factors
12.
Fish Physiol Biochem ; 43(4): 1131-1141, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28315162

ABSTRACT

Heat stress is one of the major environmental concerns in global warming regime and rising temperature has resulted in mass mortalities of animals including fishes. Therefore, strategies for high temperature stress tolerance and ameliorating the effects of heat stress are being looked for. In an earlier study, we reported that Nrf-2 (nuclear factor E2-related factor 2) mediated upregulation of antioxidative enzymes and heat shock proteins (Hsps) provide survivability to fish under heat stress. In this study, we have evaluated the ameliorative potential of dietary curcumin, a potential Nrf-2 inducer in heat stressed cyprinid Puntius sophore. Fishes were fed with diet supplemented with 0.5, 1.0, and 1.5% curcumin at the rate 2% of body weight daily in three separate groups (n = 40 in each group) for 60 days. Fishes fed with basal diet (without curcumin) served as the control (n = 40). Critical thermal maxima (CTmax) was determined for all the groups (n = 10, in duplicates) after the feeding trial. Significant increase in the CTmax was observed in the group fed with 1.5% curcumin- supplemented fishes whereas it remained similar in groups fed with 0.5%, and 1% curcumin-supplemented diet, as compared to control. To understand the molecular mechanism of elevated thermotolerance in the 1.5% curcumin supplemented group, fishes were given a sub-lethal heat shock treatment (36 °C) for 6 h and expression analysis of nrf-2, keap-1, sod, catalase, gpx, and hsp27, hsp60, hsp70, hsp90, and hsp110 was carried out using RT-PCR. In the gill, expression of nrf-2, sod, catalase, gpx, and hsp60, hsp70, hsp90, and hsp110 was found to be elevated in the 1.5% curcumin-fed heat-shocked group compared to control and the basal diet-fed, heat-shocked fishes. Similarly, in the liver, upregulation in expression of nrf-2, sod, catalase, and hsp70 and hsp110 was observed in 1.5% curcumin supplemented and heat shocked group. Thus, this study showed that supplementation of curcumin augments tolerance to high temperature stress in P. sophore that could be attributed to nrf-2-induced upregulation of antioxidative enzymes sod, catalase, gpx, and the hsps.


Subject(s)
Curcumin/pharmacology , Cyprinidae/metabolism , Dietary Supplements , Heat Stress Disorders/veterinary , Heat-Shock Proteins/metabolism , NF-E2-Related Factor 2/metabolism , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Animals , Diet/veterinary , Gene Expression Regulation/drug effects , Heat Stress Disorders/prevention & control , Heat-Shock Proteins/genetics , NF-E2-Related Factor 2/genetics , RNA/genetics , RNA/metabolism , Up-Regulation
13.
Environ Pollut ; 220(Pt B): 1488-1497, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27890585

ABSTRACT

The freshwater snail Physa acuta is a sensitive organism to xenobiotics that is appropriate for toxicity testing. Cadmium (Cd) is a heavy metal with known toxic effects on several organisms, which include endocrine disruption and activation of the cellular stress responses. There is scarce genomic information on P. acuta; hence, in this work, we identify several genes related to the hormonal system, the stress response and the detoxification system to evaluate the effects of Cd. The transcriptional activity of the endocrine-related genes oestrogen receptor (ER), oestrogen-related receptor (ERR), and retinoid X receptor (RXR), the heat shock proteins genes hsp70 and hsp90 and a metallothionein (MT) gene was analysed in P. acuta exposed to Cd. In addition, the hsp70 and hsp90 genes were also evaluated after heat shock treatment. Real-time reverse transcriptase-polymerase chain reaction (qRT-PCR) analysis showed that Cd presence induced a significant increase in the mRNA levels of ER, ERR and RXR, suggesting a putative mode of action that could explain the endocrine disruptor activity of this heavy metal at the molecular level on Gastropoda. Moreover, the hsp70 gene was upregulated after 24-h Cd treatment, but the hsp90 gene expression was not affected. In contrast, the hsp70 and hsp90 genes were strongly upregulated during heat shock response. Finally, the MT gene expression showed a non-significant variability after Cd exposure. In conclusion, this study provides, for the first time, information about the effects of Cd on the endocrine system of Gastropoda at the molecular level and offers new putative biomarker genes that could be useful in ecotoxicological studies, risk assessment and bioremediation.


Subject(s)
Cadmium/toxicity , Snails/drug effects , Stress, Physiological/genetics , Water Pollutants, Chemical/toxicity , Animals , Biomarkers/metabolism , Fresh Water/chemistry , Gene Expression Regulation/drug effects , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/physiology , HSP90 Heat-Shock Proteins/genetics , HSP90 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/physiology , Metallothionein/metabolism , Receptors, Estrogen/genetics , Receptors, Estrogen/metabolism , Receptors, Estrogen/physiology , Retinoid X Receptors/genetics , Retinoid X Receptors/metabolism , Retinoid X Receptors/physiology , Snails/metabolism , Toxicity Tests
14.
Aquat Toxicol ; 157: 1-9, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25306060

ABSTRACT

Pentachlorophenol (PCP) has been extensively used worldwide as a pesticide and biocide and is frequently detected in the aquatic environment. In the present work, the toxicity of PCP was investigated in Chironomus riparius aquatic larvae. The effects following short- and long-term exposures were evaluated at the molecular level by analyzing changes in the transcriptional profile of different endocrine genes, as well as in genes involved in the stress response and detoxification. Interestingly, although no differences were found after 12- and 24-h treatments, at 96-h exposures PCP was able to induce significant increases in transcripts from the ecdysone receptor gene (EcR), the early ecdysone-inducible E74 gene, the estrogen-related receptor gene (ERR), the Hsp70 gene and the CYP4G gene. In contrast, the Hsp27 gene appeared to be downregulated, while the ultraspiracle gene (usp) (insect ortholog of the retinoid X receptor) was not altered in any of the conditions assayed. Moreover, Glutathione-S-Transferase (GST) activity was not affected. The results obtained show the ability of PCP to modulate transcription of different biomarker genes from important cellular metabolic activities, which could be useful in genomic approaches to monitoring. In particular, the significant upregulation of hormonal genes represents the first evidence at the genomic level of the potential endocrine disruptive effects of PCP on aquatic invertebrates.


Subject(s)
Chironomidae/drug effects , Gene Expression Regulation/drug effects , Pentachlorophenol/toxicity , Water Pollutants, Chemical/toxicity , Animals , Endocrine System/drug effects , Gene Expression Profiling , Genome, Insect/genetics , HSP70 Heat-Shock Proteins/genetics , Insect Proteins/genetics , Larva/drug effects , Receptors, Steroid/genetics
15.
Article in English | WPRIM (Western Pacific) | ID: wpr-653821

ABSTRACT

Although the induction of various members of hsp (heat shock protein) gene family has been linked to the resistance to apoptosis by a range of diverse stress stimuli, detail information has not been available yet as to the temporal and spatial expression patterns of various hsp genes after traumatic brain injury. In the present study, using a lateral fluid percussion (FP) injury as a model of traumatic brain injury, expression profiles of stress induced hsp genes were comparatively evaluated in the adult rat brain by in situ hybridization (ISH). We found that the temporal and regional expression patterns between the hsp70 superfamily members, hsp110 and hsp70, and the small hsp member, hsp25 are distinct. While the hsp110 and hsp70 expression was observed as early as 1 hr after injury and maximally induced at 3 hr after injury, the hsp25 expression appeared 6 hr after injury and the expression sustained until 6 days after the injury. Moreover, the expression of hsp110 and hsp70 was localized primarily in the impact site, that of the small hsp25 was observed throughout the ipsilateral cortical area in the distant regions remote from the impact site as well as in the impact site following injury. These results suggest that the sequential and combinatorial manipulation of various hsp genes can be exploited in reducing acute and delayed post-traumatic apoptosis and associated neurological dysfunction.


Subject(s)
Adult , Animals , Humans , Rats , Apoptosis , Brain Injuries , Brain , Heat-Shock Proteins , Hot Temperature , In Situ Hybridization , Percussion , Shock
SELECTION OF CITATIONS
SEARCH DETAIL