Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 129
Filter
1.
Magn Reson Med ; 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39188123

ABSTRACT

PURPOSE: To provide a navigator-based run-time motion and first-order field correction for three-dimensional human brain imaging with high precision, minimal calibration and acquisition, and fast processing. METHODS: A complex-valued linear perturbation model with feedback control is extended to estimate and correct for gradient shim fields using orbital navigators (2.3 ms). Two approaches for sensitizing the model to gradient fields are presented, one based on finite differences with three additional navigators, and another projection-based approximation requiring no additional navigators. A mechanism for noise decorrelation of the matrix and the data is proposed and evaluated to reduce unwanted parameter biases. RESULTS: The rigid motion and first-order field control achieves robust motion and gradient shim corrections improving image quality in a series of phantom and in vivo experiments with varying field conditions. In phantom scans, magnet drifts, forced gradient field perturbations and field distortions from shifts of a second bottle phantom are successfully corrected. Field estimates of the magnet drifts are in good agreement with concurrent field probe measurements. For in vivo scans, the proposed method mitigates field variations from torso motions while being robust to head motion. In vivo gradient field precisions were 30 nT / m $$ 30\;\mathrm{nT}/\mathrm{m} $$ along with single-digit micrometer and millidegree rigid precisions. CONCLUSION: The navigator-based method achieves accurate, high-precision run-time motion and field corrections with low sequence impact and calibration requirements.

2.
J Nucl Med ; 65(8): 1313-1319, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38991753

ABSTRACT

Brain PET imaging often faces challenges from head motion (HM), which can introduce artifacts and reduce image resolution, crucial in clinical settings for accurate treatment planning, diagnosis, and monitoring. United Imaging Healthcare has developed NeuroFocus, an HM correction (HMC) algorithm for the uMI Panorama PET/CT system, using a data-driven, statistics-based approach. The HMC algorithm automatically detects HM using a centroid-of-distribution technique, requiring no parameter adjustments. This study aimed to validate NeuroFocus and assess the prevalence of HM in clinical short-duration 18F-FDG scans. Methods: The study involved 317 patients undergoing brain PET scans, divided into 2 groups: 15 for HMC validation and 302 for evaluation. Validation involved patients undergoing 2 consecutive 3-min single-bed-position brain 18F-FDG scans-one with instructions to remain still and another with instructions to move substantially. The evaluation examined 302 clinical single-bed-position brain scans for patients with various neurologic diagnoses. Motion was categorized as small or large on the basis of a 5% SUV change in the frontal lobe after HMC. Percentage differences in SUVmean were reported across 11 brain regions. Results: The validation group displayed a large negative difference (-10.1%), with variation of 5.2% between no-HM and HM scans. After HMC, this difference decreased dramatically (-0.8%), with less variation (3.2%), indicating effective HMC application. In the evaluation group, 38 of 302 patients experienced large HM, showing a 10.9% ± 8.9% SUV increase after HMC, whereas most exhibited minimal uptake changes (0.1% ± 1.3%). The HMC algorithm not only enhanced the image resolution and contrast but also aided in disease identification and reduced the need for repeat scans, potentially optimizing clinical workflows. Conclusion: The study confirmed the effectiveness of NeuroFocus in managing HM in short clinical 18F-FDG studies on the uMI Panorama PET/CT system. It found that approximately 12% of scans required HMC, establishing HMC as a reliable tool for clinical brain 18F-FDG studies.


Subject(s)
Algorithms , Brain , Image Processing, Computer-Assisted , Positron Emission Tomography Computed Tomography , Humans , Male , Female , Middle Aged , Aged , Image Processing, Computer-Assisted/methods , Brain/diagnostic imaging , Adult , Fluorodeoxyglucose F18 , Artifacts , Head/diagnostic imaging , Aged, 80 and over , Young Adult
3.
Neuroimage ; 294: 120646, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38750907

ABSTRACT

Deep learning can be used effectively to predict participants' age from brain magnetic resonance imaging (MRI) data, and a growing body of evidence suggests that the difference between predicted and chronological age-referred to as brain-predicted age difference (brain-PAD)-is related to various neurological and neuropsychiatric disease states. A crucial aspect of the applicability of brain-PAD as a biomarker of individual brain health is whether and how brain-predicted age is affected by MR image artifacts commonly encountered in clinical settings. To investigate this issue, we trained and validated two different 3D convolutional neural network architectures (CNNs) from scratch and tested the models on a separate dataset consisting of motion-free and motion-corrupted T1-weighted MRI scans from the same participants, the quality of which were rated by neuroradiologists from a clinical diagnostic point of view. Our results revealed a systematic increase in brain-PAD with worsening image quality for both models. This effect was also observed for images that were deemed usable from a clinical perspective, with brains appearing older in medium than in good quality images. These findings were also supported by significant associations found between the brain-PAD and standard image quality metrics indicating larger brain-PAD for lower-quality images. Our results demonstrate a spurious effect of advanced brain aging as a result of head motion and underline the importance of controlling for image quality when using brain-predicted age based on structural neuroimaging data as a proxy measure for brain health.


Subject(s)
Brain , Deep Learning , Magnetic Resonance Imaging , Neural Networks, Computer , Humans , Brain/diagnostic imaging , Magnetic Resonance Imaging/methods , Adult , Male , Female , Middle Aged , Young Adult , Aging/physiology , Aged , Head Movements/physiology , Artifacts , Image Processing, Computer-Assisted/methods , Adolescent
4.
BMC Sports Sci Med Rehabil ; 16(1): 29, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38509568

ABSTRACT

BACKGROUND: Asymmetry in involuntary trunk motion during voluntary movements of the lower extremities is a risk factor for musculoskeletal injuries and may be related to core stability. Core stability plays a pivotal role in maintaining postural stability during distal segment movements. Because mediolateral head motion partially represents trunk motion during rhythmic movements, controlling it can help ensure symmetric trunk motion. This study aimed to investigate the relationship between core stability and asymmetric trunk motion during rhythmic movements, and to evaluate the effects of feedback music on mediolateral head motion. METHODS: We developed a system that uses a wireless earbud and a high-resolution inertial measurement unit sensor to measure head angle and provide feedback music. When the head angle exceeds a predefined threshold, the music is muted in the earbud on the side of the head tilt. In our lab-based study, we measured head angles during cycling at 70% of maximum speed using this self-developed system, and compared them between individuals with good (Sahrmann core stability test: 2-5 level) and poor core stability (0-1 level). The amplitude of mediolateral head motion was represented by the difference between the left and right peak angles, and the symmetry in mediolateral head motion was represented by the average of left and right peak angles. RESULTS: Individuals with poor core stability demonstrated significantly greater amplitude of, and less symmetry in, mediolateral head motion than those with good core stability. Additionally, feedback music significantly reduced the amplitude of mediolateral head motion in both the good- and poor-core-stability groups. CONCLUSION: Our findings indicate that core stability is crucial for maintaining symmetric head motion during rhythmic movements like cycling. Feedback music could serve as an effective tool for promoting symmetry in head motion and thus preventing musculoskeletal injuries.

5.
Front Med (Lausanne) ; 11: 1324375, 2024.
Article in English | MEDLINE | ID: mdl-38384408

ABSTRACT

Background: Chronic neck pain (CNP) can lead to altered gait which is worse when combined with head movement. Gait parameters for indicating speed and symmetry have not been thoroughly investigated in older adults with CNP. This study aimed to compare gait performance in term of speed and symmetry in older adults with and without CNP during walking with head movement. Methods: Fifty young older adults, consisting of 36 healthy controls without neck pain (OLDs) and 14 older adults with CNP, participated in the study. Participants completed the Neck Disability Index and Activities-specific Balance Confidence Scale. The 10-Meter Walk Test (10MWT) was used to assess gait performance. Participants were instructed to walk at preferred speed under three different head movement patterns: no head movement (NM), horizontal head movement (HM), and vertical head movement (VM). The Inertial Measurement Unit was used to capture gait performance, and its software was used to analyze gait variables; gait speed, Locomotor Rehabilitation Index (LRI), gait asymmetry index, Phase Coordination Index (PCI). Results: The CNP group reported moderate neck pain with mild disability in activities of daily living, and less balance confidence than the OLD group (p < 0.05). The CNP group showed significantly slower gait speed and lower LRI during walking with both the HM and VM (p < 0.05), which corresponded to lower stride length and cadence. The gait asymmetry index in the CNP group was significantly higher than the OLD group during walking with VM (p < 0.05), whereas the PCI was significantly higher than the OLD group during walking with both HM and VM (p < 0.05). Conclusion: Chronic neck pain affects both speed and symmetry when walking with head movement. Gait parameters in this study could be implemented to identify changes in speed and symmetry of gait in older adults with CNP who have mild disability and high physical functioning.

6.
Res Sq ; 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38405795

ABSTRACT

Oxytocin is a neuropeptide associated with prosocial behaviors, such as parent-child bonding, eye contact, and sexual activity. Intranasally-administered oxytocin has been widely used to study its effects on the brain using functional magnetic resonance imaging. Head motion is a significant confounding variable which was assessed as part of a double blind, placebo-controlled crossover study. Twenty-four mothers with drug addiction problems were initially recruited, along with 22 healthy control mothers, to test whether intranasal oxytocin enhances functional brain responses to images of their own versus unknown infant faces. Significant differences in head motion between oxytocin/placebo conditions and addiction/control groups were discovered. Administration of intranasal oxytocin was associated with more frequent counts of head motion exceeding 3 mm of framewise displacement, independent of group status (z=2.89, p=0.004). This effect was seen more strongly in the control group (z=2.30, p=0.02) than the addiction group (z=1.77, p=0.08). The addiction group was more likely to show increased head motion, independent of oxytocin or placebo condition (z=2.21, p=0.03). When examining the mean head motion across all time points, as opposed to the count of large movements, oxytocin's effect was limited to the addiction group (z=2.58, p=0.01), with a significant group by condition interaction effect observed. Intranasally-administered oxytocin may therefore have a confounding effect on functional MRI scanning results via its independent effect on head motion. These findings should be examined and replicated in other clinical populations.

7.
Hum Brain Mapp ; 45(2): e26570, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38339908

ABSTRACT

Head motion correction is particularly challenging in diffusion-weighted MRI (dMRI) scans due to the dramatic changes in image contrast at different gradient strengths and directions. Head motion correction is typically performed using a Gaussian Process model implemented in FSL's Eddy. Recently, the 3dSHORE-based SHORELine method was introduced that does not require shell-based acquisitions, but it has not been previously benchmarked. Here we perform a comprehensive evaluation of both methods on realistic simulations of a software fiber phantom that provides known ground-truth head motion. We demonstrate that both methods perform remarkably well, but that performance can be impacted by sampling scheme and the extent of head motion and the denoising strategy applied before head motion correction. Furthermore, we find Eddy benefits from denoising the data first with MP-PCA. In sum, we provide the most extensive known benchmarking of dMRI head motion correction, together with extensive simulation data and a reproducible workflow. PRACTITIONER POINTS: Both Eddy and SHORELine head motion correction methods performed quite well on a large variety of simulated data. Denoising with MP-PCA can improve head motion correction performance when Eddy is used. SHORELine effectively corrects motion in non-shelled diffusion spectrum imaging data.


Subject(s)
Artifacts , Magnetic Resonance Imaging , Humans , Diffusion Magnetic Resonance Imaging/methods , Motion , Computer Simulation , Brain/diagnostic imaging , Algorithms , Image Processing, Computer-Assisted/methods
8.
Magn Reson Med ; 91(5): 1876-1892, 2024 May.
Article in English | MEDLINE | ID: mdl-38234052

ABSTRACT

PURPOSE: Navigator-based correction of rigid-body motion reconciling high precision with minimal acquisition, minimal calibration and simple, fast processing. METHODS: A short orbital navigator (2.3 ms) is inserted in a three-dimensional (3D) gradient echo sequence for human head imaging. Head rotation and translation are determined by linear regression based on a complex-valued model built either from three reference navigators or in a reference-less fashion, from the first actual navigator. Optionally, the model is expanded by global phase and field offset. Run-time scan correction on this basis establishes servo control that maintains validity of the linear picture by keeping its expansion point stable in the head frame of reference. The technique is assessed in a phantom and demonstrated by motion-corrected imaging in vivo. RESULTS: The proposed approach is found to establish stable motion control both with and without reference acquisition. In a phantom, it is shown to accurately detect motion mimicked by rotation of scan geometry as well as change in global B0 . It is demonstrated to converge to accurate motion estimates after perturbation well beyond the linear signal range. In vivo, servo navigation achieved motion detection with precision in the single-digit range of micrometers and millidegrees. Involuntary and intentional motion in the range of several millimeters were successfully corrected, achieving excellent image quality. CONCLUSION: The combination of linear regression and feedback control enables prospective motion correction for head imaging with high precision and accuracy, short navigator readouts, fast run-time computation, and minimal demand for reference data.


Subject(s)
Imaging, Three-Dimensional , Magnetic Resonance Imaging , Humans , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging/methods , Linear Models , Feedback , Prospective Studies , Motion , Artifacts
9.
J Magn Reson Imaging ; 59(5): 1630-1642, 2024 May.
Article in English | MEDLINE | ID: mdl-37584329

ABSTRACT

BACKGROUND: Uncontrollable body movements are typical symptoms of Parkinson's disease (PD), which results in inconsistent findings regarding resting-state functional connectivity (rsFC) networks, especially for group difference clusters. Systematically identifying the motion-associated data was highly demanded. PURPOSE: To determine data censoring criteria using a quantitative cross validation-based data censoring (CVDC) method and to improve the detection of rsFC deficits in PD. STUDY TYPE: Prospective. SUBJECTS: Forty-one PD patients (68.63 ± 9.17 years, 44% female) and 20 healthy controls (66.83 ± 12.94 years, 55% female). FIELD STRENGTH/SEQUENCE: 3-T, T1-weighted gradient echo and EPI sequences. ASSESSMENT: Clusters with significant differences between groups were found in three visual networks, default network, and right sensorimotor network. Five-fold cross-validation tests were performed using multiple motion exclusion criteria, and the selected criteria were determined based on cluster sizes, significance values, and Dice coefficients among the cross-validation tests. As a reference method, whole brain rsFC comparisons between groups were analyzed using a FMRIB Software Library (FSL) pipeline with default settings. STATISTICAL TESTS: Group difference clusters were calculated using nonparametric permutation statistics of FSL-randomize. The family-wise error was corrected. Demographic information was evaluated using independent sample t-tests and Pearson's Chi-squared tests. The level of statistical significance was set at P < 0.05. RESULTS: With the FSL processing pipeline, the mean Dice coefficient of the network clusters was 0.411, indicating a low reproducibility. With the proposed CVDC method, motion exclusion criteria were determined as frame-wise displacement >0.55 mm. Group-difference clusters showed a mean P-value of 0.01 and a 72% higher mean Dice coefficient compared to the FSL pipeline. Furthermore, the CVDC method was capable of detecting subtle rsFC deficits in the medial sensorimotor network and auditory network that were unobservable using the conventional pipeline. DATA CONCLUSION: The CVDC method may provide superior sensitivity and improved reproducibility for detecting rsFC deficits in PD. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY: Stage 2.


Subject(s)
Parkinson Disease , Humans , Female , Male , Parkinson Disease/diagnostic imaging , Magnetic Resonance Imaging/methods , Reproducibility of Results , Prospective Studies , Brain/diagnostic imaging , Brain Mapping/methods
10.
Magn Reson Med ; 91(1): 28-38, 2024 01.
Article in English | MEDLINE | ID: mdl-37800387

ABSTRACT

PURPOSE: Functional understanding of the periaqueductal gray (PAG), a clinically relevant brainstem region, can be advanced using 1 H-MRS. However, the PAG's small size and high levels of physiological noise are methodologically challenging. This study aimed to (1) improve 1 H-MRS quality in the PAG using spectral registration for frequency and phase error correction; (2) investigate whether spectral registration is particularly useful in cases of greater head motion; and (3) examine metabolite quantification using literature-based or individual-based water relaxation times. METHODS: Spectra were acquired in 33 healthy volunteers (50.1 years, SD = 17.19, 18 females) on a 3 T Philipps MR system using a point-resolved spectroscopy (PRESS) sequence optimized with very selective saturation pulses (OVERPRESS) and voxel-based flip angle calibration (effective volume of interest size: 8.8 × 10.2 × 12.2 mm3 ). Spectra were fitted using LCModel and SNR, NAA peak linewidths and Cramér-Rao lower bounds (CRLBs) were measured after spectral registration and after minimal frequency alignment. RESULTS: Spectral registration improved SNR by 5% (p = 0.026, median value post-correction: 18.0) and spectral linewidth by 23% (p < 0.001, 4.3 Hz), and reduced the metabolites' CRLBs by 1% to 15% (p < 0.026). Correlational analyses revealed smaller SNR improvements with greater head motion (p = 0.010) recorded using a markerless motion tracking system. Higher metabolite concentrations were detected using individual-based compared to literature-based water relaxation times (p < 0.001). CONCLUSION: This study demonstrates high-quality 1 H-MRS acquisition in the PAG using spectral registration. This shows promise for future 1 H-MRS studies in the PAG and possibly other clinically relevant brain regions with similar methodological challenges.


Subject(s)
Brain , Periaqueductal Gray , Female , Humans , Periaqueductal Gray/diagnostic imaging , Signal-To-Noise Ratio , Magnetic Resonance Spectroscopy/methods , Brain/metabolism , Brain Stem , Water/metabolism
11.
Phys Med Biol ; 68(24)2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37983915

ABSTRACT

Objective.Head motion correction (MC) is an essential process in brain positron emission tomography (PET) imaging. We have used the Polaris Vicra, an optical hardware-based motion tracking (HMT) device, for PET head MC. However, this requires attachment of a marker to the subject's head. Markerless HMT (MLMT) methods are more convenient for clinical translation than HMT with external markers. In this study, we validated the United Imaging Healthcare motion tracking (UMT) MLMT system using phantom and human point source studies, and tested its effectiveness on eight18F-FPEB and four11C-LSN3172176 human studies, with frame-based region of interest (ROI) analysis. We also proposed an evaluation metric, registration quality (RQ), and compared it to a data-driven evaluation method, motion-corrected centroid-of-distribution (MCCOD).Approach.UMT utilized a stereovision camera with infrared structured light to capture the subject's real-time 3D facial surface. Each point cloud, acquired at up to 30 Hz, was registered to the reference cloud using a rigid-body iterative closest point registration algorithm.Main results.In the phantom point source study, UMT exhibited superior reconstruction results than the Vicra with higher spatial resolution (0.35 ± 0.27 mm) and smaller residual displacements (0.12 ± 0.10 mm). In the human point source study, UMT achieved comparable performance as Vicra on spatial resolution with lower noise. Moreover, UMT achieved comparable ROI values as Vicra for all the human studies, with negligible mean standard uptake value differences, while no MC results showed significant negative bias. TheRQevaluation metric demonstrated the effectiveness of UMT and yielded comparable results to MCCOD.Significance.We performed an initial validation of a commercial MLMT system against the Vicra. Generally, UMT achieved comparable motion-tracking results in all studies and the effectiveness of UMT-based MC was demonstrated.


Subject(s)
Image Processing, Computer-Assisted , Positron-Emission Tomography , Humans , Image Processing, Computer-Assisted/methods , Positron-Emission Tomography/methods , Head/diagnostic imaging , Brain/diagnostic imaging , Motion , Phantoms, Imaging , Algorithms , Movement
12.
bioRxiv ; 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37503125

ABSTRACT

Motor-task functional magnetic resonance imaging (fMRI) is crucial in the study of several clinical conditions, including stroke and Parkinson's disease. However, motor-task fMRI is complicated by task-correlated head motion, which can be magnified in clinical populations and confounds motor activation results. One method that may mitigate this issue is multi-echo independent component analysis (ME-ICA), which has been shown to separate the effects of head motion from the desired BOLD signal but has not been tested in motor-task datasets with high amounts of motion. In this study, we collected an fMRI dataset from a healthy population who performed a hand grasp task with and without task-correlated amplified head motion to simulate a motor-impaired population. We analyzed these data using three models: single-echo (SE), multi-echo optimally combined (ME-OC), and ME-ICA. We compared the models' performance in mitigating the effects of head motion on the subject level and group level. On the subject level, ME-ICA better dissociated the effects of head motion from the BOLD signal and reduced noise. Both ME models led to increased t-statistics in brain motor regions. In scans with high levels of motion, ME-ICA additionally mitigated artifacts and increased stability of beta coefficient estimates, compared to SE. On the group level, all three models produced activation clusters in expected motor areas in scans with both low and high motion, indicating that group-level averaging may also sufficiently resolve motion artifacts that vary by subject. These findings demonstrate that ME-ICA is a useful tool for subject-level analysis of motor-task data with high levels of task-correlated head motion. The improvements afforded by ME-ICA are critical to improve reliability of subject-level activation maps for clinical populations in which group-level analysis may not be feasible or appropriate, for example in a chronic stroke cohort with varying stroke location and degree of tissue damage.

13.
Digit Health ; 9: 20552076231186217, 2023.
Article in English | MEDLINE | ID: mdl-37434735

ABSTRACT

Objective: Core stability assessment is paramount for the prevention of low back pain, with core stability being considered as the most critical factor in such pain. The objective of this study was to develop a simple model for the automated assessment of core stability status. Methods: To assess core stability-defined as the ability to control trunk position relative to the pelvic position - we used an inertial measurement unit sensor embedded within a wireless earbud to estimate the mediolateral head angle during rhythmic movements (RMs) such as cycling, walking, and running. The activities of muscles around the trunk were analyzed by an experienced, highly trained individual. Functional movement tests (FMTs) were performed, including single-leg squat, lunge, and side lunge. Data was collected from 77 participants, who were then classified into good and poor core stability groups based on their Sahrmann core stability test scores. Results: From the head angle data, we extrapolated the symmetry index (SI) and amplitude of mediolateral head motion (Amp). Support vector machine and neural network models were trained and validated using these features. In both models, the accuracy was similar across three feature sets for RMs, FMTs, and full, and support vector machine accuracy (∼87%) is greater than neural network (∼75%). Conclusion: The use of this model, trained with head motion-related features obtained during RMs or FMTs, can help to accurately classify core stability status during activities.

14.
Med Image Anal ; 88: 102850, 2023 08.
Article in English | MEDLINE | ID: mdl-37263108

ABSTRACT

Head motion artifacts in magnetic resonance imaging (MRI) are an important confounding factor concerning brain research as well as clinical practice. For this reason, several machine learning-based methods have been developed for the automatic quality control of structural MRI scans. Deep learning offers a promising solution to this problem, however, given its data-hungry nature and the scarcity of expert-annotated datasets, its advantage over traditional machine learning methods in identifying motion-corrupted brain scans is yet to be determined. In the present study, we investigated the relative advantage of the two methods in structural MRI quality control. To this end, we collected publicly available T1-weighted images and scanned subjects in our own lab under conventional and active head motion conditions. The quality of the images was rated by a team of radiologists from the point of view of clinical diagnostic use. We present a relatively simple, lightweight 3D convolutional neural network trained in an end-to-end manner that achieved a test set (N = 411) balanced accuracy of 94.41% in classifying brain scans into clinically usable or unusable categories. A support vector machine trained on image quality metrics achieved a balanced accuracy of 88.44% on the same test set. Statistical comparison of the two models yielded no significant difference in terms of confusion matrices, error rates, or receiver operating characteristic curves. Our results suggest that these machine learning methods are similarly effective in identifying severe motion artifacts in brain MRI scans, and underline the efficacy of end-to-end deep learning-based systems in brain MRI quality control, allowing the rapid evaluation of diagnostic utility without the need for elaborate image pre-processing.


Subject(s)
Deep Learning , Humans , Artifacts , Magnetic Resonance Imaging/methods , Machine Learning , Brain/diagnostic imaging , Image Processing, Computer-Assisted/methods
15.
Magn Reson Med ; 90(4): 1297-1315, 2023 10.
Article in English | MEDLINE | ID: mdl-37183791

ABSTRACT

PURPOSE: This study investigated the artifacts arising from different types of head motion in brain MR images and how well these artifacts can be compensated using retrospective correction based on two different motion-tracking techniques. METHODS: MPRAGE images were acquired using a 3 T MR scanner on a cohort of nine healthy participants. Subjects moved their head to generate circular motion (4 or 6 cycles/min), stepwise motion (small and large) and "simulated realistic" motion (nodding and slow diagonal motion), based on visual instructions. One MPRAGE scan without deliberate motion was always acquired as a "no motion" reference. Three dimensional fat-navigator (FatNavs) and a Tracoline markerless device (TracInnovations) were used to obtain motion estimates and images were separately reconstructed retrospectively from the raw data based on these different motion estimates. RESULTS: Image quality was recovered from both motion tracking techniques in our stepwise and slow diagonal motion scenarios in almost all cases, with the apparent visual image quality comparable to the no-motion case. FatNav-based motion correction was further improved in the case of stepwise motion using a skull masking procedure to exclude non-rigid motion of the neck from the co-registration step. In the case of circular motion, both methods struggled to correct for all motion artifacts. CONCLUSION: High image quality could be recovered in cases of stepwise and slow diagonal motion using both motion estimation techniques. The circular motion scenario led to more severe image artifacts that could not be fully compensated by the retrospective motion correction techniques used.


Subject(s)
Brain , Magnetic Resonance Imaging , Humans , Retrospective Studies , Motion , Brain/diagnostic imaging , Magnetic Resonance Imaging/methods , Head , Artifacts , Image Processing, Computer-Assisted/methods
16.
Front Neurosci ; 17: 1096232, 2023.
Article in English | MEDLINE | ID: mdl-37113158

ABSTRACT

Introduction: The capacity to stay still during scanning, which is necessary to avoid motion confounds while imaging, varies markedly between people. Methods: Here we investigated the effect of head motion on functional connectivity using connectome-based predictive modeling (CPM) and publicly available brain functional magnetic resonance imaging (fMRI) data from 414 individuals with low frame-to-frame motion (Δd < 0.18 mm). Leave-one-out was used for internal cross-validation of head motion prediction in 207 participants, and twofold cross-validation was used in an independent sample (n = 207). Results and Discussion: Parametric testing, as well as CPM-based permutations for null hypothesis testing, revealed strong linear associations between observed and predicted values of head motion. Motion prediction accuracy was higher for task- than for rest-fMRI, and for absolute head motion (d) than for Δd. Denoising attenuated the predictability of head motion, but stricter framewise displacement threshold (FD = 0.2 mm) for motion censoring did not alter the accuracy of the predictions obtained with lenient censoring (FD = 0.5 mm). For rest-fMRI, prediction accuracy was lower for individuals with low motion (mean Δd < 0.02 mm; n = 200) than for those with moderate motion (Δd < 0.04 mm; n = 414). The cerebellum and default-mode network (DMN) regions that forecasted individual differences in d and Δd during six different tasks- and two rest-fMRI sessions were consistently prone to the deleterious effect of head motion. However, these findings generalized to a novel group of 1,422 individuals but not to simulated datasets without neurobiological contributions, suggesting that cerebellar and DMN connectivity could partially reflect functional signals pertaining to inhibitory motor control during fMRI.

17.
Dev Cogn Neurosci ; 61: 101244, 2023 06.
Article in English | MEDLINE | ID: mdl-37062244

ABSTRACT

Pediatric neuroimaging datasets are rapidly increasing in scales. Despite strict protocols in data collection and preprocessing focused on improving data quality, the presence of head motion still impedes our understanding of neurodevelopmental mechanisms. Large head motion can lead to severe noise and artifacts in magnetic resonance imaging (MRI) studies, inflating correlations between adjacent brain areas and decreasing correlations between spatial distant territories, especially in children and adolescents. Here, by leveraging mock-scans of 123 Chinese children and adolescents, we demonstrated the presence of increased head motion in younger participants. Critically, a 5.5-minute training session in an MRI mock scanner was found to effectively suppress the head motion in the children and adolescents. Therefore, we suggest that mock scanner training should be part of the quality assurance routine prior to formal MRI data collection, particularly in large-scale population-level neuroimaging initiatives for pediatrics.


Subject(s)
Brain , Magnetic Resonance Imaging , Adolescent , Child , Humans , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Motion , Neuroimaging , Head Movements , Artifacts
18.
MAGMA ; 36(5): 797-813, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36964797

ABSTRACT

OBJECTIVE: Maps of B0 field inhomogeneities are often used to improve MRI image quality, even in a retrospective fashion. These field inhomogeneities depend on the exact head position within the static field but acquiring field maps (FM) at every position is time consuming. Here we propose a forward simulation strategy to obtain B0 predictions at different head-positions. METHODS: FM were predicted by combining (1) a multi-class tissue model for estimation of tissue-induced fields, (2) a linear k-space model for capturing gradient imperfections, (3) a dipole estimation for quantifying lower-body perturbing fields (4) and a position-dependent tissue mask to model FM alterations caused by large motion effects. The performance of the combined simulation strategy was compared with an approach based on a rigid body transformation of the FM measured in the reference position to the new position. RESULTS: The transformed FM provided inconsistent results for large head movements (> 5° rotation, approximately), while the simulation strategy had a superior prediction accuracy for all positions. The simulated FM was used to optimize B0 shims with up to 22.2% improvement with respect to the transformed FM approach. CONCLUSION: The proposed simulation strategy is able to predict movement-induced B0 field inhomogeneities yielding more precise estimates of the ground truth field homogeneity than the transformed FM.


Subject(s)
Magnetic Fields , Magnetic Resonance Imaging , Humans , Retrospective Studies , Magnetic Resonance Imaging/methods , Motion , Brain/diagnostic imaging , Image Processing, Computer-Assisted/methods
19.
Hum Brain Mapp ; 44(5): 1934-1948, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36576333

ABSTRACT

Reliability and robustness of resting state functional connectivity MRI (rs-fcMRI) relies, in part, on minimizing the influence of head motion on measured brain signals. The confounding effects of head motion on functional connectivity have been extensively studied in adults, but its impact on newborn brain connectivity remains unexplored. Here, using a large newborn data set consisting of 159 rs-fcMRI scans acquired in the Developing Brain Institute at Children's National Hospital and 416 scans from The Developing Human Connectome Project (dHCP), we systematically investigated associations between head motion and rs-fcMRI. Head motion during the scan significantly affected connectivity at sensory-related networks and default mode networks, and at the whole brain scale; the direction of motion effects varied across the whole brain. Comparing high- versus low-head motion groups suggested that head motion can impact connectivity estimates across the whole brain. Censoring of high-motion volumes using frame-wise displacement significantly reduced the confounding effects of head motion on neonatal rs-fcMRI. Lastly, in the dHCP data set, we demonstrated similar persistent associations between head motion and network connectivity despite implementing a standard denoising strategy. Collectively, our results highlight the importance of using rigorous head motion correction in preprocessing neonatal rs-fcMRI to yield reliable estimates of brain activity.


Subject(s)
Brain Mapping , Connectome , Adult , Child , Infant, Newborn , Humans , Brain Mapping/methods , Reproducibility of Results , Artifacts , Brain/diagnostic imaging , Connectome/methods , Motion , Magnetic Resonance Imaging/methods
20.
Front Neurol ; 14: 1296421, 2023.
Article in English | MEDLINE | ID: mdl-38328755

ABSTRACT

Knowing when seizures occur may help patients and can also provide insight into epileptogenesis mechanisms. We recorded seizures over periods of several days in the Genetic Absence Epileptic Rat from Strasbourg (GAERS) model of absence epilepsy, while we monitored behavioral activity with a combined head accelerometer (ACCEL), neck electromyogram (EMG), and electrooculogram (EOG). The three markers consistently discriminated between states of behavioral activity and rest. Both GAERS and control Wistar rats spent more time in rest (55-66%) than in activity (34-45%), yet GAERS showed prolonged continuous episodes of activity (23 vs. 18 min) and rest (34 vs. 30 min). On average, seizures lasted 13 s and were separated by 3.2 min. Isolated seizures were associated with a decrease in the power of the activity markers from steep for ACCEL to moderate for EMG and weak for EOG, with ACCEL and EMG power changes starting before seizure onset. Seizures tended to occur in bursts, with the probability of seizing significantly increasing around a seizure in a window of ±4 min. Furthermore, the seizure rate was strongly increased for several minutes when transitioning from activity to rest. These results point to mechanisms that control behavioral states as determining factors of seizure occurrence.

SELECTION OF CITATIONS
SEARCH DETAIL