Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
Ann Biomed Eng ; 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39294466

ABSTRACT

Bicycle helmets are designed to protect against skull fractures and associated focal brain injuries, driven by helmet standards. Another type of head injury seen in injured cyclists is diffuse brain injuries, but little is known about the protection provided by bicycle helmets against these injuries. Here, we examine the performance of modern bicycle helmets in preventing diffuse injuries and skull fractures under impact conditions that represent a range of real-world incidents. We also investigate the effects of helmet technology, price, and mass on protection against these pathologies. 30 most popular helmets among UK cyclists were purchased within 9.99-135.00 GBP price range. Helmets were tested under oblique impacts onto a 45° anvil at 6.5 m/s impact speed and four locations, front, rear, side, and front-side. A new headform, which better represents the average human head's mass, moments of inertia and coefficient of friction than any other available headforms, was used. We determined peak linear acceleration (PLA), peak rotational acceleration (PRA), peak rotational velocity (PRV), and BrIC. We also determined the risk of skull fractures based on PLA (linear risk), risk of diffuse brain injuries based on BrIC (rotational risk), and their mean (overall risk). Our results show large variation in head kinematics: PLA (80-213 g), PRV (8.5-29.9 rad/s), PRA (1.6-9.7 krad/s2), and BrIC (0.17-0.65). The overall risk varied considerably with a 2.25 ratio between the least and most protective helmet. This ratio was 1.76 for the linear and 4.21 for the rotational risk. Nine best performing helmets were equipped with the rotation management technology MIPS, but not all helmets equipped with MIPS were among the best performing helmets. Our comparison of three tested helmets which have MIPS and no-MIPS versions showed that MIPS reduced rotational kinematics, but not linear kinematics. We found no significant effect of helmet price on exposure-adjusted injury risks. We found that larger helmet mass was associated with higher linear risk. This study highlights the need for a holistic approach, including both rotational and linear head injury metrics and risks, in helmet design and testing. It also highlights the need for providing information about helmet safety to consumers to help them make an informed choice.

2.
Polymers (Basel) ; 16(12)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38932102

ABSTRACT

Head impacts are a major concern in contact sports and sports with high-speed mobility due to the prevalence of head trauma events and their dire consequences. Surrogates of human heads are required in laboratory testing to safely explore the efficacy of impact-mitigating mechanisms. This work proposes using polymer additive manufacturing technologies to obtain a substitute for the human skull to be filled with a silicone-based brain surrogate. This assembly was instrumentalized with an Inertial Measurement Unit. Its performance was compared to a standard Hybrid III head form in validation tests using commercial headgear. The tests involved impact velocities in a range centered around 5 m/s. The results show a reasonable homology between the head substitutes, with a disparity in the impact response within 20% between the proposed surrogate and the standard head form. The head surrogate herein developed can be easily adapted to other morphologies and will significantly decrease the cost of the laboratory testing of head protection equipment, all while ensuring the safety of the testing process.

3.
J Mech Behav Biomed Mater ; 147: 106140, 2023 11.
Article in English | MEDLINE | ID: mdl-37778168

ABSTRACT

Despite the broad use of helmets, incidence of concussion remains high. Current methods for helmet evaluation focus on the measurement of head kinematics as the primary tool for quantifying risk of brain injury. Though the primary cause of mild Traumatic Brain Injury (mTBI) is thought to be intracranial strain, helmet testing methodologies are not able to directly resolve these parameters. Computational injury models and impact severity measures are currently used to approximate intracranial strains from head kinematics and predict injury outcomes. Advancing new methodologies that enable experimental intracranial strain measurements in a physical model would be useful in the evaluation of helmet performance. This study presents a proof-of-concept head surrogate and novel helmet evaluation platform that allows for the measurement of intracranial strain using high-speed X-ray digital image correlation (XDIC). In the present work, the head surrogate was subjected to a series of bare and helmeted impacts using a pneumatically-driven linear impactor. Impacts were captured at 5,000 fps using a high-speed X-ray cineradiography system, and strain fields were computed using digital image correlation. This test platform, once validated, will open the door to using brain tissue-level measurements to evaluate helmet performance, providing a tool that can be translated to represent mTBI injury mechanisms, benefiting the helmet design processes.


Subject(s)
Brain Concussion , Brain Injuries , Craniocerebral Trauma , Humans , Head Protective Devices/adverse effects , Acceleration , Brain Concussion/diagnostic imaging , Brain Concussion/prevention & control , Biomechanical Phenomena
4.
Ann Biomed Eng ; 51(8): 1802-1815, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37059885

ABSTRACT

Millions of people worldwide suffer from spinal cord injuries (SCIs) and traumatic brain injuries (TBIs) annually. Safety devices meant to protect against SCIs and TBIs, such as helmets, airbags, seat belts, and compliant floors are often evaluated with the use of anthropometric test devices (ATD s); however, there are currently no neck surrogates appropriate for the multiplane loading that often occurs in real-world scenarios leading to injury. As such, our objective in this study was to design and create an anatomically correct functional spinal unit (FSU) that produces a repeatable and biofidelic response to lateral bending, axial rotation, and quasistatic flexion-extension motion. This is a critical step in developing a biofidelic omnidirectional surrogate that can be used in future evaluations of safety devices in transportation, occupational, and sports settings. To create a biofidelic C4-C5 FSU, anatomically accurate C4 and C5 vertebrae were designed and manufactured using a 3D printer using geometry derived from the CT scans of a healthy 31-year-old male. Potential intervertebral disc and ligament surrogate materials were tested in compression and tension, respectively, to select representative materials for the surrogate intervertebral disc and cervical ligaments. The C4-C5 FSU was assembled and tested repeatedly in quasistatic flexion-extension, axial rotation, and lateral bending. Kinematic results were captured and compared to previously published cadaver data. The surrogate disc showed excellent Biofidelity (ISO/TR 9790) in compression, and the surrogate ligaments were within 25 N/mm of linear cadaveric stiffness ranges. The assembled FSU named UBC Neck C4-C5 showed good biofidelity under quasistatic axial rotation, lateral bending, flexion-extension, and coupled motion (ISO/TR 9790). However, the instantaneous centre of rotation was not similar to ex vivo or in vivo published studies. The UBC Neck C4-C5 FSU resulted in good biofidelity ratings and will inform future construction of a full surrogate neck to be used in the testing of head and neck safety equipment.


Subject(s)
Cervical Vertebrae , Intervertebral Disc , Male , Humans , Adult , Cervical Vertebrae/physiology , Neck , Biomechanical Phenomena/physiology , Tomography, X-Ray Computed , Range of Motion, Articular/physiology
5.
Clin Biomech (Bristol, Avon) ; 94: 105628, 2022 04.
Article in English | MEDLINE | ID: mdl-35358794

ABSTRACT

BACKGROUND: Cycling helmets often incorporate elements aimed to dissipate rotational energies, which is widely acknowledged to play a key role in concussion mechanics. In this study, we investigated the mechanics of an oblique helmet test protocol that induced helmet rotation while using it to evaluate the effectiveness of three helmet models: two standard expanded polystyrene helmets and a commercially-available helmet equipped with a liner designed to mitigate linear and rotational energies. METHODS: Helmets equipped with WaveCel were tested against two expanded polystyrene helmet models through guided drops using a Hybrid III (HIII) head-and-neck surrogate. The three helmet models were tested across four impact conditions (n = 5) of different speeds and impact surface angles. FINDINGS: Across all tests, a similar sequence of head motion was observed - first a flexion phase followed by an extension phase. The extension phase lacked evidence of biofidelity and was likely attributable to the energy stored in the neckform during the flexion phase; it was therefore neglected from analysis. Results showed WaveCel reduced the probability of AIS2 head injury across all tests (3 to 27% reductions in 4.8 m/s impacts; 36 to 37% reductions in 6.2 m/s impacts). INTERPRETATION: The two-phased response of the HIII suggests that boundary condition selection can influence results and should thus be reported in studies using similar methods. While this protocol involved both axial and tangential impact components and were thus representative of real-world collisions, the efficacy of WaveCel should be further investigated through additional laboratory studies and tracking real-world cycling injury statistics.


Subject(s)
Craniocerebral Trauma , Head Protective Devices , Acceleration , Biomechanical Phenomena , Craniocerebral Trauma/prevention & control , Humans , Polystyrenes
6.
Int Biomech ; 8(1): 85-100, 2021 12.
Article in English | MEDLINE | ID: mdl-34915815

ABSTRACT

Any helmet involved in an accident should be replaced, regardless of appearance after impact. However, consumer compliance and interpretation of this recommendation is unclear, for which there is additional ambiguity for lesser impacts. This study aims to investigate the relation between helmet damage visibility and lesser impacts in line with concussion. As a preliminary model, a commercially available road-style helmet was chosen. Twelve helmets underwent impact attenuation testing; four were dropped from the standard testing height of 2 m, and eight from lower drop heights (0.34 and 0.42 m) associated with the production of linear accelerations (90 and 100 g, respectively) consistent with the production of concussion. Expanded polystyrene damage was assessed via flat punch penetration testing. American adults were then polled on helmet damage visibility based upon before and after photos. All helmets demonstrated damage to the expanded polystyrene liner in the form of altered material properties. Helmets dropped from 2 m displayed significant changes in elastic buckling (p < .01) and densification behavior (p < .01) as compared with lower drop height results. Adverse change in elastic buckling behavior was found to increase linearly with drop height (p < .001). Damage visibility was significant for helmets dropped from a 2-meter height, however, such a relation among the helmets impacted at the threshold for concussion was lacking. These findings suggest that for the chosen helmet model, consumers may be unable to distinguish between new helmets and helmets with diminished protective abilities.


Subject(s)
Brain Concussion , Head Protective Devices , Acceleration , Bicycling , Brain Concussion/prevention & control , Humans , Polystyrenes
7.
Brain Sci ; 11(3)2021 Feb 25.
Article in English | MEDLINE | ID: mdl-33669105

ABSTRACT

Brain damage is a serious economic and social burden. Contact sports such as American football, are one of the most common sources of concussions. The biomechanical response of the head-helmet system caused by dynamic loading plays a major role. The literature has focused on measuring the resultant kinematics that act on the head and helmet during tackles. However, few studies have focused on helmet validation tests, supported by recent findings and emerging numerical approaches. The future of helmet standards could benefit from insights at the level of injury mechanisms, using numerical tools to assess the helmets. Therefore, in this work, a numerical approach is employed to investigate the influence of intracranial pressure (ICP) on brain pathophysiology during and after helmeted impacts, which are common in American football. The helmeted impacts were performed at several impact locations according to the NOCSAE standard (configurations A, AP, B, C, D, F, R, UT). In order to evaluate the ICP levels, the αHEAD finite element head and brain model was combined with a Hybrid III-neck structure and then coupled with an American football helmet to simulate the NOCSAE impacts. In addition, the ICP level was analyzed together with the resulting HIC value, since the latter is commonly used, in this application and others, as the injury criterion. The obtained results indicate that ICP values exceed the common threshold of head injury criteria and do not correlate with HIC values. Thus, this work raises concern about applying the HIC to predict brain injury in American football direct head impacts, since it does not correlate with ICP predicted with the FE head model.

8.
J Appl Biomech ; 37(3): 288-295, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33690168

ABSTRACT

Understanding the relationship between head mass and neck stiffness during direct head impacts is especially concerning in youth sports where athletes have higher proportional head mass to neck strength. This study compared 2 neck stiffness conditions for peak linear and rotational acceleration and brain tissue deformations across 3 impact velocities, 3 impact locations, and 2 striking masses. A pendulum fitted with a nylon cap was used to impact a fifth percentile hybrid III headform equipped with 9 accelerometers and fitted with a youth American football helmet. The 2 neck stiffness conditions consisted of a neckform with and without resistance in 3 planes, representing the upper trapezius, the splenius capitis, and the sternocleidomastoid muscles. Increased neck stiffness resulted in significant changes in head kinematics and maximum principal strain specific to impact velocity, impact location, and striking mass.


Subject(s)
Football , Acceleration , Adolescent , Biomechanical Phenomena , Head , Head Protective Devices , Humans , Neck , United States
SELECTION OF CITATIONS
SEARCH DETAIL