Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 295
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 17(15)2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39124353

ABSTRACT

Amorphous/crystalline high-entropy-alloy (HEA) composites show great promise as structural materials due to their exceptional mechanical properties. However, there is still a lack of understanding of the dynamic nanoindentation response of HEA composites at the atomic scale. Here, the mechanical behavior of amorphous/crystalline HEA composites under nanoindentation is investigated through a large-scale molecular dynamics simulation and a dislocation-based strength model, in terms of the indentation force, microstructural evolution, stress distribution, shear strain distribution, and surface topography. The results show that the uneven distribution of elements within the crystal leads to a strong heterogeneity of the surface tension during elastic deformation. The severe mismatch of the amorphous/crystalline interface combined with the rapid accumulation of elastic deformation energy causes a significant number of dislocation-based plastic deformation behaviors. The presence of surrounding dislocations inhibits the free slip of dislocations below the indenter, while the amorphous layer prevents the movement or disappearance of dislocations towards the substrate. A thin amorphous layer leads to great indentation force, and causes inconsistent stacking and movement patterns of surface atoms, resulting in local bulges and depressions at the macroscopic level. The increasing thickness of the amorphous layer hinders the extension of shear bands towards the lower part of the substrate. These findings shed light on the mechanical properties of amorphous/crystalline HEA composites and offer insights for the design of high-performance materials.

2.
Materials (Basel) ; 17(15)2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39124393

ABSTRACT

Laser bending forming, as a flexible and die-less forming approach, facilitates the three-dimensional shaping of sheets through the generation of thermal stress via laser-material interaction. In this study, the bending forming characteristics of CoCrFeMnNi high-entropy alloy sheets induced by nanosecond pulse laser irradiation were systematically investigated. The effects of parameters including laser power, scanning speed, number of scans, scanning interval, and sheet size on the bending angle, cross-sectional morphology, and hardness were studied in detail under both the laser single-line and multi-line scanning modes. The experimental results confirmed the effectiveness of nanosecond pulse laser irradiation for achieving accurate formation of CoCrFeMnNi sheets, with the successful fabrication of J, L, and U-shaped metal components. Apart from the forming ability, the cross-sectional hardness was significantly increased due to the grain refinement effect of nanosecond pulse laser irradiation. Furthermore, employing the laser single-line scanning mode enabled the effective rectification of overbending parts, showcasing complete recovery for small-angle overbending, and a remarkable 91% recovery for larger-angle overbending. This study provides an important basis for the bendability of CoCrFeMnNi sheets by laser forming and elucidates the evolution of the microstructure and mechanical properties in the bending region.

3.
ACS Appl Mater Interfaces ; 16(33): 43526-43534, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39113310

ABSTRACT

NO3RR synthesis of ammonia is a complex eight-electron reaction involving multiple steps and intermediates, in which NO3- adsorption and NH3 desorption are crucial. The Cu-based high entropy quinary alloy catalyst has good surface adsorption and desorption ability for the reduction of nitric acid to ammonia. Here, the catalytic sites were coordinated by constructing CuNiCoZnMn alloys to adjust the electronic structure of the catalytic sites to facilitate the reaction of the substrate and thus optimize the whole reaction path. Based on the ternary alloy CuNiCo, the introduction of the Zn element continues to reduce the desorption energy barrier, and the introduction of the Mn element continues to enhance the initial adsorption energy so that the target product can be quickly held and released to accelerate the production of ammonia. The NH3 yield and Faraday efficiency obtained for the quinary CuNiCoZnMn alloy catalyst reached 723.7 µmol h-1 cm-2 and 96.6%, respectively, at -0.35 V vs RHE potential. The density functional theory calculations showed that the quinary CuNiCoZnMn alloy (NO3- to *NO3-) initial adsorption-free energy change and (*NH3 to NH3) NH3 desorption-free energy change are -2.50, 0.072 eV, respectively, which are significantly better than those of the ternary CuNiC and quaternary CuNiCoZn of -2.02, 0.544 eV and -1.97, 0.217 eV.

4.
Small ; : e2405596, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39148195

ABSTRACT

The complexity of the multielement interaction in high-entropy alloys (HEAs) may provide more active sites to adapt different catalytic reaction steps in oxygen evolution reaction (OER). Investigating the correlation between structure and performance of HEAs electrocatalysts is both essential and challenging. In this work, FeCoNiCrMox HEA nanoparticles are successfully fabricated utilizing a unique nanofabrication method called inert gas condensation. With the increase of high-valence metal component Mo, the atomic structure amorphization and electronic structure reconstruction are unveiled. According to the X-ray photoelectron spectroscopy valence spectra, the d-band center of FeCoNiCrMox is ascending, and thus enhancing the adsorption energy. Synchrotron pair distribution function analysis reflects the degree of structural disorder and reveals a robust correlation with the intrinsic OER activities of the electrocatalysts. FeCoNiCrMo1.0 high-entropy metallic glass nanoparticles exhibit an outstanding OER performance with an ultralow overpotential of 294.5 mV at a high current density of 100 mA cm-2. This work brings fundamental and practical insights into the modulation mechanism of metal components of HEAs catalysts for developing OER.

5.
Heliyon ; 10(12): e32793, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39022035

ABSTRACT

In light of the low dissolved oxygen concentration in the deep sea, the corrosion mechanisms of the high entropy alloy (HEA) AlCoCrFeNi in artificial seawater with varying oxygen concentrations (2.0, 4.0, 7.0 mg/L) were studied. As the oxygen concentration decreases, the alloy's free corrosion potential decreases, and at 2.0 mg/L, the corrosion rate is 421 times higher than that at 7.0 mg/L. The corrosion form transforms from pitting to uniform corrosion. The primary reasons for this are the passivation film is thin under low oxygen concentration conditions, as well as the preferential dissolution of the alloy elements Al and Ni due to their high activity and "local acidizing" properties, respectively. In designing a super corrosion-resistant high entropy alloy for use in the deep sea, it is advisable to avoid the use of element Al and to add Ni with caution.

6.
Materials (Basel) ; 17(14)2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39063884

ABSTRACT

This study examines the effects of different addition levels of tungsten (W) content on the microstructure, corrosion resistance, wear resistance, microhardness, and phase composition of coatings made from FeCoCrNiAl high-entropy alloy (HEA) using the laser cladding technique. Using a preset powder method, FeCoCrNiAlWx (where x represents the molar fraction of W, x = 0.0, 0.2, 0.4, 0.6, 0.8) HEA coatings were cladded onto the surface of 45 steel. The different cladding materials were tested for dry friction by using a reciprocating friction and wear testing machine. Subsequently, the detailed analysis of the microstructure, phase composition, corrosion resistance, wear traces, and hardness characteristics were carried out using a scanning electron microscope (SEM), X-ray diffractometer (XRD), electrochemical workstation, and microhardness tester. The results reveal that as the W content increases, the macro-morphology of the FeCoCrNiAlWx HEA cladding coating deteriorates; the microstructure of the FeCoCrNiAlWx HEA cladding coating, composed of µ phase and face-centered cubic solid solution, undergoes an evolution process from dendritic crystals to cellular crystals. Notably, with the increase in W content, the average microhardness of the cladding coating shows a significant upward trend, with FeCoCrNiAlW0.8 reaching an average hardness of 756.83 HV0.2, which is 2.97 times higher than the 45 steel substrate. At the same time, the friction coefficient of the cladding coating gradually decreases, indicating enhanced wear resistance. Specifically, the friction coefficients of FeCoCrNiAlW0.6 and FeCoCrNiAlW0.8 are similar, approximately 0.527. The friction and wear mechanisms are mainly adhesive and abrasive wear. In a 3.5 wt.% NaCl solution, the increase in W content results in a positive shift in the corrosion potential of the cladding coating. The FeCoCrNiAlW0.8 exhibits a corrosion potential approximately 403 mV higher than that of FeCoCrNiAl. The corrosion current density significantly decreases from 5.43 × 10-6 A/cm2 to 5.26 × 10-9 A/cm2, which suggests a significant enhancement in the corrosion resistance of the cladding coating.

7.
Materials (Basel) ; 17(14)2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39063908

ABSTRACT

This study examines the microstructural evolution and mechanical properties of quaternary AlCoCrNi high-entropy alloys after heat treatment at 873 K for 72 and 192 h. The changes in nanostructure and phase transformation based on the heat treatment duration were as follows: B2 dendrite + BCC interdendrite and sigma phases after 72 h; B2 dendrite and interdendritic sigma phases + BCC after 192 h. After annealing, the morphology of the dendritic region shifted from spherical to needle-like, and the interdendritic region transformed from a spinodal-like to a plate-like morphology. Additionally, a phase transformation was observed in the dendritic regions of the annealed alloys at the nano-scale. The presence of the sigma phase in AlCoCrNi high-entropy alloys significantly improved the yield strength to around 1172 MPa; nevertheless, it decreased the compressive strain rapidly to 0.62%.

8.
ACS Appl Mater Interfaces ; 16(31): 41027-41035, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39048298

ABSTRACT

High-entropy-alloy nanoparticles (HEA-NPs) composed of 3d transition metallic elements have attracted intensive attention in photothermal conversion regions due to their d-d interband transitions (IBTs). However, the effect arising from the unbalanced elemental ratio still needs more focus. In this work, FeCoNiCrMn HEA-NPs with different elemental ratios among Cr and Mn have been employed to clarify the impact of different composed elements on the optical absorption and photothermal conversion performance. It can be recognized that the unbalanced elemental ratio of HEA-NPs can reduce the photothermal performance. Density functional theory calculation demonstrated that d-d IBTs can be changed by the different composed element ratios, resulting in a number of insufficient filling regions around the Fermi level (±4 eV). As a result, the HEA-NPs (FeCoNiCr0.75Mn0.25) with a balanced elemental ratio exhibit the highest surface temperature of 97.6 °C under 1 sun irradiation, and the evaporation rate and energy conversion efficiency could reach 2.13 kg·m-2·h-1 and 93%, respectively, demonstrating effective solar steam generation behavior.

9.
Materials (Basel) ; 17(13)2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38998396

ABSTRACT

The CoCrFeMnNi high-entropy alloy is commonly used for vascular stents due to its excellent mechanical support and ductility. However, as high-entropy alloy stents can cause inflammation in the blood vessels, leading to their re-narrowing, drug-eluting stents have been developed. These stents have nanopores on their surfaces that can carry drug particles to inhibit inflammation and effectively prevent re-narrowing of the blood vessels. To optimize the mechanical properties and drug-carrying capacity of high-entropy alloy stents, a high-entropy alloy system with different wide and deep square-shaped nanopore distributions is created using molecular dynamics. The mechanical characteristics and dislocation evolution mechanism of different nanopore high-entropy alloy systems under tensile stress were studied. The results showed that the CoCrFeMnNi high-entropy alloy with a rational nanopore distribution can effectively maintain the mechanical support required for a vascular stent. This research provides a new direction for the manufacturing process of nanopores on the surfaces of high-entropy alloy stents.

10.
Small ; : e2403371, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39032159

ABSTRACT

The production and application of materials are evolving towards the low-dimensional micro-nano scale. Nevertheless, the fabrication of micron-scale alloy fibers remains a challenge. Herein, a novel Ni-Co-Cr-Fe-Mo high-entropy alloy (HEA) fiber with a cold-drawn reduction rate of 99.9995% and a strain (ɛ) of 12.19 is presented without requiring intermediate annealing. The exceptional deformation strain of 11.62 within the fiber leads to extraordinary tensile strengths of 2.8 GPa at room temperature and 3.6 GPa at 123 K. The in-depth investigation of the microstructure of fibers has revealed the cold drawing deformation mechanisms mediated by the synergistic effects of plane defects. Specifically, various geometrically necessary dislocation interfaces, such as dislocation walls and microbands, along with deformation twins and long-period 9R structures, form in response to external stress when ɛ≤2.7. As the strain increases, the saturated layered structure emerges and progressively evolves into a 3D equiaxed crystal. Moreover, the formation and evolution of the 9R structure (i.e., the migration of incoherent twin boundaries), coupled with the interaction of partial dislocations and the role of deformation twins, are crucial factors determining the fiber's plastic response. This work provides a novel approach to discovering new high-strength metallic fibers with excellent deformability through plane defects engineering.

11.
Ecotoxicol Environ Saf ; 282: 116721, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39047364

ABSTRACT

In this paper, magnetic nanopowders of Fe19.5Ni40Co19.5Cr19.5Y1.5 high-entropy alloy compositions were successfully prepared by the liquid phase reduction method, which represented a breakthrough from the traditional process of preparing high-entropy alloy nanopowders. The powders had a high specific surface area of 136.23 m2/g and exhibited sustained, efficient, and rapid degradation characteristics for high concentrations of CR and ultra-high concentrations of Cr(VI) wastewater. It was demonstrated that the removal rate of CR remained at 100 % after 100 cycles and 81 % of Cr after 8 cycles of the powder without changing the pH and room temperature. The powders also demonstrated good soft magnetic properties, which allowed them to be conveniently separated and recycled using magnetic field treatment, thus addressing the issue of recycling raw materials without causing secondary pollution in wastewater treatment. Furthermore, the analyzed powders also exhibited fast and efficient degradation effects.


Subject(s)
Alloys , Chromium , Wastewater , Water Pollutants, Chemical , Chromium/chemistry , Wastewater/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/analysis , Alloys/chemistry , Powders , Waste Disposal, Fluid/methods , Water Purification/methods , Recycling
12.
ACS Nano ; 18(29): 19137-19149, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38981052

ABSTRACT

High-entropy alloys (HEAs) have aroused extensive attention in the field of catalysis. However, due to the integration of multiple active sites in HEA, it exhibits excessive adsorption behavior resulting in difficult desorption of active species from the catalyst surfaces, which hinders the catalytic efficiency. Therefore, adjusting the adsorption strength of the active site in HEA to enhance the catalytic activity is of great importance. By introducing rare-earth (RE) elements into the high-entropy alloy, the delocalization of 4f electrons can be achieved through the interaction between the multimetal active site and RE, which benefits to regulate the adsorption strength of the HEA surface. Herein, the RE Ce-modified hexagonal-close-packed PtRuFeCoNiZn-Ce/C HEAs are synthesized and showed an excellent electrocatalytic activity for hydrogen evolution reaction and oxygen evolution reaction with ultralow overpotentials of 4, 7 and 156, 132 mV, respectively, to reach 10 mA cm-2 in 0.5 M H2SO4 and 1.0 M KOH solutions, and the assembled water electrolysis cell only requires a voltage of 1.43 V to reach 10 mA cm-2, which is much better than the performance of PtRuFeCoNiZn/C. Combined with the results of in situ attenuated total reflection infrared spectroscopy and density functional theory (DFT), the fundamental reasons for the improvement of catalyst activity come from two aspects: (i) local lattice distortion of HEA caused by the introduction of RE with large atomic radius induces 4f orbital electron delocalization of RE elements and enhances electron exchange between RE and active sites. (ii) The electronegativity difference between the RE element and the active site forms a surface dipole in HEA, which optimizes the adsorption of the active intermediate by the HEA surface site. This study provides an insightful idea for the rational design of high-performance HEA- and RE-based electrocatalysts.

13.
Nanomaterials (Basel) ; 14(12)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38921892

ABSTRACT

The low hardness and poor wear resistance of laser-cladding 316L stainless steel impose significant constraints on its practical applications. In this study, a strategy for strengthening laser-cladding 316L stainless steel with WMoTaNb refractory high-entropy alloy as a reinforcement material is proposed. The results confirm that the coating primarily comprises a body-centered cubic (BCC) Fe-based solid solution, a network-distributed hexagonal Fe2X (X = W, Mo, Ta, and Nb) Laves phase, and a diffusely distributed face-centered cubic (FCC) (Ta, Nb)C phase. The Fe-based solid solution distributes along columnar and fine dendrites, while the Laves phase and (Ta, Nb)C phase are in the inter-dendrites. The presence of a significant number of network Laves phases exhibiting high strength and hardness is the primary factor contributing to the enhancement of coating microhardness. The hardness of the composite coating is increased by nearly twice compared to that of the 316L coating, resulting in an improved wear resistance. The present work can shed light on designing and fabricating 316L stainless steel coating with enhanced hardness and wear resistance.

14.
Nanomaterials (Basel) ; 14(12)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38921934

ABSTRACT

Developing cost-effective and highly active electrocatalysts for the oxygen evolution reaction (OER) is crucial for advancing sustainable energy applications. High-entropy alloys (HEAs) made from earth-abundant transition metals, thanks to their remarkable stability and electrocatalytic performance, provide a promising alternative to expensive electrocatalysts typically derived from noble metals. While pristine HEA surfaces have been theoretically investigated, and the effect of oxygen coverage on conventional metal electrocatalysts has been examined, the impact of surface oxygen coverage on the electrocatalytic performance of HEAs remains poorly understood. To bridge this gap, we employ density functional theory (DFT) calculations to reconstruct the free energy diagram of OER intermediates on CoFeNiCr HEA surfaces with varying oxygen coverages, evaluating their impact on the rate-limiting step and theoretical overpotential. Our findings reveal that increased oxygen coverage weakens the adsorption of HO* and O*, but not HOO*. As a result, the theoretical overpotential for the OER decreases with higher oxygen coverage, and the rate-limiting step shifts from the third oxidation step (HOO* formation) at low coverage to the first oxidation step (HO* formation) at higher coverage.

15.
Nano Lett ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38843402

ABSTRACT

High-entropy alloys (HEAs) have garnered considerable attention as promising nanocatalysts for effectively utilizing Pt in catalysis toward oxygen reduction reactions due to their unique properties. Nonetheless, there is a relative dearth of attention regarding the structural evolution of HEAs in response to electrochemical conditions. In this work, we propose a thermal reduction method to synthesize high entropy nanoparticles by leveraging the confinement effect and abundant nitrogen-anchored sites provided by pyrolyzed metal-organic frameworks (MOFs). Notably, the prepared catalysts exhibit enhanced activity accompanied by structural reconstruction during electrochemical activation, approaching 1 order of magnitude higher mass activity compared to Pt/C in oxygen reduction. Atomic-scale structural characterization reveals that abundant defects and single atoms are formed during the activation process, contributing to a significant boost in the catalytic performance for oxygen reduction reactions. This study provides deep insights into surface reconstruction engineering during electrochemical operations, with practical implications for fuel cell applications.

16.
Materials (Basel) ; 17(11)2024 May 23.
Article in English | MEDLINE | ID: mdl-38893768

ABSTRACT

The composition of grain boundaries (GBs) determines their mechanical behavior, which in turn affects the mechanical properties of nanocrystalline materials. Inspired by GB segregation and the concept of high-entropy alloys (HEAs), we investigated, respectively, the mechanical responses of nanocrystalline Cu samples with and without multi-element GBs, as well as the grain size effects, aiming to explore the effects of GB composition decoration on mechanical properties. Our results show that introducing multi-element segregation GBs can significantly improve the mechanical properties of nanocrystalline Cu by effectively inhibiting GB migration and sliding. Additionally, we proposed an improved a theoretical model that can reasonably describe the strengths of the materials with multi-element or single-element segregation GBs. Notably, the introduction of multi-element segregation GBs inhibits both migration and sliding behavior, with migration being more effectively suppressed than sliding. These results present a novel approach for designing high-performance nanometallic materials and offer valuable insights into the role of GB composition decoration in enhancing mechanical properties.

17.
Materials (Basel) ; 17(11)2024 May 27.
Article in English | MEDLINE | ID: mdl-38893838

ABSTRACT

The WMoTaNbV alloy has shown promise for applications as a solid state hydrogen storage material. It absorbs significant quantities of H directly from the atmosphere, trapping it with high energy. In this work, the dynamics of the absorption of hydrogen isotopes are studied by determining the activation energy for the solubility and the solution enthalpy of H in the WMoTaNbV alloy. The activation energy was studied by heating samples in a H atmosphere at temperatures ranging from 20 °C to 400 °C and comparing the amounts of absorbed H. The solution activation energy EA of H was determined to be EA=0.22±0.02 eV (21.2 ± 1.9 kJ/mol). The performed density functional theory calculations revealed that the neighbouring host atoms strongly influenced the solution enthalpy, leading to a range of theoretical values from -0.40 eV to 0.29 eV (-38.6 kJ/mol to 28.0 kJ/mol).

18.
Adv Sci (Weinh) ; : e2308574, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38943261

ABSTRACT

The vast high entropy alloy (HEA) composition space is promising for discovery of new material phases with unique properties. This study explores the potential to achieve rare-earth-free high magnetic anisotropy materials in single-phase HEA thin films. Thin films of FeCoNiMnCu sputtered on thermally oxidized Si/SiO2 substrates at room temperature are magnetically soft, with a coercivity on the order of 10 Oe. After post-deposition rapid thermal annealing (RTA), the films exhibit a single face-centered-cubic phase, with an almost 40-fold increase in coercivity. Inclusion of 50 at.% Pt in the film leads to ordering of a single L10 high entropy intermetallic phase after RTA, along with high magnetic anisotropy and 3 orders of magnitude coercivity increase. These results demonstrate a promising HEA approach to achieve high magnetic anisotropy materials using RTA.

19.
Adv Mater ; : e2404192, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38925664

ABSTRACT

Rapid development of smart technologies poses a big challenge for magnetostrictive materials, which should not only permit isotropic and hysteresis-free actuation (i.e., nonhysteretic volume change) in magnetic fields, but also have high strength and high ductility. Unfortunately, the magnetostriction from self-assembly of ferromagnetic domains is volume-conserving; the volume magnetostriction from field-induced first-order phase transition has large intrinsic hysteresis; and most prototype magnetostrictive materials are intrinsically brittle. Here, a magnetic high-entropy alloy (HEA) Fe35Co35Al10Cr10Ni10 is reported that can rectify these challenges, exhibiting an unprecedented combination of large nonhysteretic volume magnetostriction, high tensile strength and large elongation strain, over a wide working temperature range from room temperature down to 100 K. Its exceptional properties stem from a dual-phase microstructure, where the face-centered cubic (FCC) matrix phase with nanoscale compositional and structural fluctuations can enable a magnetic-field-induced transition from low-spin small-volume state to high-spin large-volume state, and the ordered body-centered cubic (BCC) B2 phase contributes to mechanical strengthening. The present findings may provide insights into designing unconventional and technologically important magnetostrictive materials.

20.
Angew Chem Int Ed Engl ; : e202407116, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38934207

ABSTRACT

The vast number of element combinations and the explosive growth of composition space pose significant challenges to the development of high-entropy alloys (HEAs). Here, we propose a procedural research method aimed at accelerating the discovery of efficient electrocatalysts for oxygen reduction reaction (ORR) based on Pt-based quinary HEAs. The method begins with an element library provided by a large language model (LLM), combined with microscale precursor printing and pulse high-temperature synthesis techniques to prepare multi-element combination HEA array in one step. Through high-throughput measurement using scanning electrochemical cell microscopy (SECCM), precise identification of highly active HEA element combinations and exploration of composition space for a specific combination are achieved. Advantageous element combinations are further validated in practical electrocatalytic evaluations. The contributions of individual element sites and the synergistic effects among elements of such HEAs in enhancing reaction activity are elucidated via density functional theory (DFT) calculations. This method integrates high-throughput experiments, practical catalyst validation, and DFT calculations, providing a new pathway for accelerating the discovery of efficient multi-element materials in the field of energy catalysis.

SELECTION OF CITATIONS
SEARCH DETAIL