Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 263
Filter
1.
Exp Parasitol ; 265: 108822, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39127397

ABSTRACT

Mansonella perstans infections are widespread in Sub-Saharan Africa and Central and South America and thus can be considered as the most prevalent parasite of man in tropical Africa. In contrast to the high prevalence, knowledge about the biology of this filarial nematode is restricted and no effective treatment regimens of this ivermectin-resistant parasite is lacking. An obstacle for the research is that M. perstans resides in body cavities and thus have been only rarely recovered during surgery or autopsy. Therefore, alternative methods like in vitro culture systems need to be implemented to decipher the nature of mansonellosis and effective drugs. Previously, we have established a monkey kidney epithelial cell-based in vitro culture for the maintenance of M. perstans infective larvae (L3) up to 77 days. However, no alternative for this culture system have been postulated to allow longer survival rates and development of adult worms in vitro. Thus, we aim to establish an alternative in vitro culture system for M. perstans L3. M. perstans L3 were isolated from engorged and laboratory reared Culicoides midges. The larvae were then cultured in Dulbecco's Modified Eagle Medium supplemented with either 10% foetal bovine serum (FBS), 10% newborn calf serum (NCS) or 1% bovine serum albumin (BSA) together with human colon carcinoma cells (HCT-8) as feeder cells. Survival and growth were recorded. We obtained that the 10% NCS culture condition was superior allowing long-term maintenance of M. perstans L3 for up to 100 days and boosted growth of the parasites for up to 5-folds compared to the initial size at culture inception. Although no moulting of the L3 into L4 or adult worms could be overserved, the human colon carcinoma cell-based in vitro culture provides an alternative platform to analyse M. perstans biology and screen for novel drugs against M. perstans.

2.
Exp Mol Pathol ; 139: 104923, 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39154390

ABSTRACT

BACKGROUND & AIMS: Older people experience a greater incidence of lower bowel disorders, including constipation. Causes can include factors associated with growing older, such as use of medications or disease, but compounded by degenerative changes within the bowel wall. It has been suggested that the latter is exacerbated by loss of an effective mucosal barrier to luminal contents. In human colon, little is known about the impact of ageing on key components of this barrier, namely the goblet cells and mucin content. METHODS: Changes in the number of goblet cells and density of mucin content were investigated in macroscopically normal human ascending (AC; n = 13) and descending (DC; n = 14) colon from elderly (≥ 67 years) and younger adults (60 years and below). Samples were serially sectioned and stained for haematoxylin and eosin to assess tissue morphology, and alcian blue periodic acid Schiff (ABPAS) and MUC-2 antibody to identify goblet cells producing mucins. New procedures in visualization and identification of goblet cells and mucin contents were employed to ensure unbiased counting and densitometric analysis. RESULTS: Compared with the younger adults, the numbers of goblet cells per crypt were significantly lower in the elderly AC (72 ± 1.2 vs 51 ± 0.5) and DC (75 ± 2.6 vs. 54 ± 1.9), although this reduction did not reach statistical significance when assessed per mucosal area (AC: P = 0.068; DC: P = 0.096). In both regions from the elderly, numerous empty vesicles (normally containing mucins) were observed, and some areas of epithelium were devoid of goblet cells. Thus, the density of mucin content per unit mucosal area were significantly reduced with age. CONCLUSIONS: Ageing could result in a reduced number of goblet cells and development of degenerative changes in mucin production. Together, these have implications for the mucus barrier function in the colon of elderly individuals.

3.
Cells ; 13(14)2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39056778

ABSTRACT

Colorectal cancer (CRC) is the third most prevalent cancer worldwide. Current studies have demonstrated that tumor-derived extracellular vesicles (EVs) from different cancer cell types modulate the fibroblast microenvironment to contribute to cancer development and progression. Here, we isolated and characterized circulating large EVs (LEVs), small EVs (SEVs) and non-EV entities released in the plasma from wild-type (WT) mice and the APCMin/+ CRC mice model. Our results showed that human colon fibroblasts exposed from APC-EVs, but not from WT-EVs, exhibited the phenotypes of cancer-associated fibroblasts (CAFs) through EV-mediated NF-κB pathway activation. Cytokine array analysis on secreted proteins revealed elevated levels of inflammatory cytokine implicated in cancer growth and metastasis. Finally, non-activated cells co-cultured with supernatant from fibroblasts treated with APC-EVs showed increased mRNA expressions of CAFs markers, the ECM, inflammatory cytokines, as well as the expression of genes controlled by NF-κB. Altogether, our work suggests that EVs and non-EV components from APCMin/+ mice are endowed with pro-tumorigenic activities and promoted inflammation and a CAF-like state by triggering NF-κB signaling in fibroblasts to support CRC growth and progression. These findings provide insight into the interaction between plasma-derived EVs and human cells and can be used to design new CRC diagnosis and prognosis tools.


Subject(s)
Extracellular Vesicles , Fibroblasts , NF-kappa B , Signal Transduction , Animals , Humans , Mice , Adenomatous Polyposis Coli Protein/metabolism , Adenomatous Polyposis Coli Protein/genetics , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Carcinogenesis/pathology , Carcinogenesis/genetics , Carcinogenesis/metabolism , Colon/pathology , Colon/metabolism , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/genetics , Cytokines/metabolism , Extracellular Vesicles/metabolism , Fibroblasts/metabolism , Mice, Inbred C57BL , NF-kappa B/metabolism , Tumor Microenvironment
4.
Neurogastroenterol Motil ; : e14848, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38887160

ABSTRACT

BACKGROUND: The incidence of constipation increases among the elderly (>65 years), while abdominal pain decreases. Causes include changes in lifestyle (e.g., diet and reduced exercise), disease and medications affecting gastrointestinal functions. Degenerative changes may also occur within the colo-rectum. However, most evidence is from rodents, animals with relatively high rates of metabolism and accelerated aging, with considerable variation in time course. In humans, cellular and non-cellular changes in the aging intestine are poorly investigated. PURPOSE: To examine all available studies which reported the effects of aging on cellular and tissue functions of human isolated colon, noting the region studied, sex and age of tissue donors and study size. The focus on human colon reflects the ability to access full-thickness tissue over a wide age range, compared with other gastrointestinal regions. Details are important because of natural human variability. We found age-related changes within the muscle, in the enteric and nociceptor innervation, and in the submucosa. Some involve all regions of colon, but the ascending colon appears more vulnerable. Changes can be cell- and sublayer-dependent. Mechanisms are unclear but may include development of "senescent-like" and associated inflammaging, perhaps associated with increased mucosal permeability to harmful luminal contents. In summary, reduced nociceptor innervation can explain diminished abdominal pain among the elderly. Degenerative changes within the colon wall may have little impact on symptoms and colonic functions, because of high "functional reserve," but are likely to facilitate the development of constipation during age-related challenges (e.g., lifestyle, disease, and medications), now operating against a reduced functional reserve.

5.
AIMS Microbiol ; 10(2): 311-319, 2024.
Article in English | MEDLINE | ID: mdl-38919716

ABSTRACT

The microbial community of the human large intestine mainly ferments dietary fiber to short chain fatty acids (SCFAs), which are efficiently absorbed by the host. The three major SCFAs (acetate, propionate, and butyrate) have different fates within the body and different effects on health. A recent analysis of 10 human volunteer studies established that the proportions of these SCFA in fecal samples significantly shifted towards butyrate as the overall concentration of SCFA increased. Butyrate plays a key role in gut health and is preferentially utilized as an energy source by the colonic epithelium. Here we discuss possible mechanisms that underlie this 'butyrate shift'; these include the selection for butyrate-producing bacteria within the microbiota by certain types of fiber, and the possibility of additional butyrate formation from lactate and acetate by metabolite cross-feeding. However, a crucial factor appears to be the pH in the proximal colon, which decreases as the SCFA concentrations increase. A mildly acidic pH has been shown to have an important impact on microbial competition and on the stoichiometry of butyrate production. Understanding these complex interactions has been greatly aided by the refinement of theoretical models of the colonic microbiota that assume a small number (10) of microbial functional groups (MFGs).

6.
Neurogastroenterol Motil ; 36(8): e14850, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38924329

ABSTRACT

BACKGROUND: The natural history and pathophysiology of diverticular disease (DD) are still uncertain. An ex-vivo human complicated DD (cDD) model has recently shown a predominant transmural oxidative imbalance. The present study aims to evaluate whether the previously described alterations may precede the symptomatic form of the disease. METHODS: Colonic surgical samples obtained from patients with asymptomatic diverticulosis (DIV), complicated DD, and controls were systematically and detailed morphologically and molecularly analyzed. Therefore, histologic, histomorphometric, immunohistochemical evaluation, and gene and protein expression analysis were performed to characterize colonic muscle changes and evaluate chronic inflammation, oxidative imbalance, and hypoxia. Functional muscle activity was tested on strips and isolated cells in response to contractile and relaxant agents. KEY RESULTS: Compared with controls, DD showed a marketed increase in muscle layer thickness, smooth muscle cell syncytium disarray, and increased interstitial fibrosis; moreover, the observed features were more evident in the cDD group. These changes mainly affected longitudinal muscle and were associated with altered contraction-relaxation dynamics and fibrogenic switch of smooth muscle cells. Chronic lymphoplasmacytic inflammation was primarily evident in the mucosa and spared the muscle. A transmural increase in carbonylated and nitrated proteins, with loss of antioxidant molecules, characterized both stages of DD, suggesting early oxidative stress probably triggered by recurrent ischemic events, more pronounced in cDD, where HIF-1 was detected in both muscle and mucosa. CONCLUSION & INFERENCES: The different DD clinical scenarios are part of a progressive process, with oxidative imbalance representing a new target in the management of DD.


Subject(s)
Disease Progression , Muscle, Smooth , Oxidative Stress , Humans , Male , Female , Middle Aged , Aged , Oxidative Stress/physiology , Muscle, Smooth/metabolism , Muscle, Smooth/pathology , Diverticular Diseases/metabolism , Diverticulosis, Colonic/metabolism , Diverticulosis, Colonic/pathology , Colon/pathology , Colon/metabolism , Muscle Contraction/physiology
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124242, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38581725

ABSTRACT

The regular overconsumption of high-energy food (rich in lipids and sugars) results in elevated nutrient absorption in intestine and consequently excessive accumulation of lipids in many organs e.g.: liver, adipose tissue, muscles. In the long term this can lead to obesity and obesity-associated diseases e.g. type 2 diabetes, non-alcoholic fatty liver disease, cardiovascular disease, inflammatory bowel disease (IBD). In the presented paper based on RI data we have proved that Raman maps can be used successfully for subcellular structures visualization and analysis of fatty acids impact on morphology and chemical composition of human colon single cells - normal and cancer. Based on Raman data we have investigated the changes related to endoplasmic reticulum, mitochondria, lipid droplets and nucleus. Analysis of ratios calculated based on Raman bands typical for proteins (1256, 1656 cm-1), lipids (1304, 1444 cm-1) and nucleic acids (750 cm-1) has confirmed for endoplasmic reticulum the increased activity of this organelle in lipoproteins synthesis upon FAs supplementation; for LDs the changes of desaturation of accumulated lipids with the highest unsaturation level for CaCo-2 cells upon EPA supplementation; for mitochondria the stronger effect of FAs supplementation was observed for CaCo-2 cells confirming the increased activity of this organelle responsible for energy production necessary for tumor development; the weakest impact of FAs supplementation was observed for nucleus for both types of cells and both types of acids. Fluorescence imaging was used for the investigations of changes in LDs/ER morphology. Our measurements have shown the increased area of LDs/ER for CaCo-2 cancer cells, and the strongest effect was noticed for CaCo-2 cells upon EPA supplementation. The increased participation of lipid structures for all types of cells upon FAs supplementation has been confirmed also by AFM studies. The lowest YM values have been observed for CaCo-2 cells including samples treated with FAs.


Subject(s)
Colonic Neoplasms , Eicosapentaenoic Acid , Spectrum Analysis, Raman , Humans , Eicosapentaenoic Acid/pharmacology , Eicosapentaenoic Acid/chemistry , Caco-2 Cells , Colonic Neoplasms/pathology , Colonic Neoplasms/metabolism , Colonic Neoplasms/drug therapy , Linoleic Acid/pharmacology , Linoleic Acid/chemistry , Colon/drug effects , Colon/metabolism , Colon/pathology , Microscopy, Fluorescence
8.
Molecules ; 29(5)2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38474695

ABSTRACT

Marine mangrove vegetation has been traditionally employed in folk medicine to address various ailments. Notably, Rhizophora apiculata Blume has exhibited noteworthy properties, demonstrating efficacy against cancer, viruses, and bacteria. The enzyme fatty acid synthase (FAS) plays a pivotal role in de novo fatty acid synthesis, making it a promising target for combating colon cancer. Our study focused on evaluating the FAS inhibitory effects of both the crude extract and three isolated compounds from R. apiculata. The n-butanol fraction of R. apiculata extract (BFR) demonstrated a significant inhibition of FAS, with an IC50 value of 93.0 µg/mL. For inhibition via lyoniresinol-3α-O-ß-rhamnopyranoside (LR), the corresponding IC50 value was 20.1 µg/mL (35.5 µM). LR competitively inhibited the FAS reaction with acetyl-CoA, noncompetitively with malonyl-CoA, and in a mixed manner with NADPH. Our results also suggest that both BFR and LR reversibly bind to the KR domain of FAS, hindering the reduction of saturated acyl groups in fatty acid synthesis. Furthermore, BFR and LR displayed time-dependent inhibition for FAS, with kobs values of 0.0045 min-1 and 0.026 min-1, respectively. LR also exhibited time-dependent inhibition on the KR domain, with a kobs value of 0.019 min-1. In human colon cancer cells, LR demonstrated the ability to reduce viability and inhibit intracellular FAS activity. Notably, the effects of LR on human colon cancer cells could be reversed with the end product of FAS-catalyzed chemical reactions, affirming the specificity of LR on FAS. These findings underscore the potential of BFR and LR as potent FAS inhibitors, presenting novel avenues for the treatment of human colon cancer.


Subject(s)
Colonic Neoplasms , Rhizophoraceae , Humans , Polyphenols , Fatty Acid Synthases/metabolism , Fatty Acids
9.
Food Chem Toxicol ; 186: 114549, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38442786

ABSTRACT

The tight junctions (TJs) and barrier function of the intestinal epithelium are highly sensitive to radiation. However, polyphenols can be used to reverse the effects of radiation. Here, we investigated the effects of hesperidin (hesperetin-7-rhamnoglucoside) on X-ray-induced intestinal barrier dysfunction in human epithelial Caco-2 monolayers. To examine whether hesperidin mitigated the effects of X-ray exposure (2 Gy), cell survival was evaluated and intestinal barrier function was assessed by measuring the transepithelial flux, apparent permeability coefficient (Papp), and barrier integrity. Hesperidin improved the survival of Caco-2 cell monolayers and attenuated X-ray exposure-induced intestinal barrier dysfunction. For fluorescein transport experiments, transepithelial flux and Papp of fluorescein in control group were significantly elevated by X-ray, but were restored to near control by 10 µM hesperidin pretreatment. Further, X-ray exposure decreased the barrier integrity and TJ interruption by reducing TJ-related proteins occludin and claudin-4, whereas cell monolayers pretreated with hesperidin before X-ray exposure were reinstated to control level. It was concluded that hesperidin treatment before X-ray exposure alleviated X-ray-induced intestinal barrier dysfunction through regulation of TJ-related proteins. These results indicate that hesperidin prevents and mitigates X-ray-induced intestinal barrier dysfunction.


Subject(s)
Gastrointestinal Diseases , Hesperidin , Intestinal Diseases , Humans , Caco-2 Cells , Hesperidin/pharmacology , X-Rays , Intestinal Mucosa/metabolism , Occludin/metabolism , Fluoresceins/metabolism , Fluoresceins/pharmacology , Tight Junctions , Permeability
10.
Microorganisms ; 12(2)2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38399640

ABSTRACT

Gastrointestinal simulations in vitro have only limited approaches to analyze the microbial communities inhabiting the mucosal compartment. Understanding and differentiating gut microbial ecosystems is crucial for a more comprehensive and accurate representation of the gut microbiome and its interactions with the host. Herein is suggested, in a short-term and static set-up (named "M-batches"), the analysis of mucosal and luminal populations of inhabitants of the human colon. After varying several parameters, such as the fermentation volume and the fecal inoculum (single or pool), only minor differences in microbial composition and metabolic production were identified. However, the pool created with feces from five donors and cultivated in a smaller volume (300 mL) seemed to provide a more stable luminal ecosystem. The study of commercially available coffee and green tea in the M-batches suggested some positive effects of these worldwide known beverages, including the increase in butyrate-producing bacteria and lactobacilli populations. We hope that this novel strategy can contribute to future advances in the study of intestinal ecosystems and host-microbe relationships and help elucidate roles of the microbiome in health and disease.

11.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1013342

ABSTRACT

ObjectiveTo investigate the effect of curcumin on the cycle arrest of human colon cancer HCT116 cells and decipher the possible molecular mechanism. MethodThe methyl thiazolyl tetrazolium (MTT) method was employed to examine the effects of curcumin (0, 12.5, 25, 50, 75, 100 μmol·L-1) and 5-fluorouracil (5-FU, 600 μmol·L-1) on the proliferation of HCT116 cells at different time points (24, 48, 72 h). Flow cytometry was employed to examine the cycle of HCT116 cells treated with curcumin (0, 25, 50, 75 μmol·L-1) and 5-FU. Western blot was employed to determine the expression of proteins in the Janus kinase 1 (JAK1)/signal transducer and activator of transcription 1 (STAT1) /cyclin-dependent kinase inhibitor 1A (p21) pathway in HCT116 cells. The binding of STAT1 to p21 promoter region was detected by chromatin immunoprecipitation (ChIP). Small interfering RNA (siRNA) was employed to measure the role of STAT1 in regulating the expression of p21 and that of JAK1 in regulating the activation of STAT1 by Western blot and cellular immunofluorescence, respectively. ResultCompared with the blank group, the HCT-116 cells treated with curcumin and 5-FU showed decreased viability (P<0.05), increased proportions of cells in the G0/G1 phase (P<0.05), decreased proportions of cells in the S phase and G2/M phase (P<0.05), down-regulated protein level of phosphorylated p21 (P<0.05), and up-regulated protein level of p21 (P<0.05). Compared with the curcumin group, the p21 siRNA+ curcumin group presented decreased proportion of cells in G0/G1 phase (P<0.05). Compared with the blank group, curcumin elevated the level of phosphorylated STAT1 (p-STAT1) (P<0.05). Compared with the curcumin group, the curcumin + STAT1 siRNA group showcased up-regulated protein level of p21 in HCT116 cells (P<0.05). The mechanism study showed that curcumin treatment enhanced the enrichment of STAT1 in the p21 promoter region (P<0.05) compared with the blank group. Compared with the blank group, curcumin up-regulated the level of phosphorylated JAK1 (p-JAK1) (P <0.05). Compared with the curcumin group, the curcumin + STAT1 siRNA group demonstrated up-regulated protein levels of p-STAT1 and p21 in HCT116 cells (P<0.05). ConclusionCurcumin may induce the cycle arrest of human colon cancer HCT116 cells by activating the JAK1/STAT1/p21 signaling pathway.

12.
Int J Mol Sci ; 24(23)2023 Nov 21.
Article in English | MEDLINE | ID: mdl-38068880

ABSTRACT

Luteolin derivates are plant compounds with multiple benefits for human health. Stability to heat and acid hydrolysis and high resistance to (auto)oxidation are other arguments for the laden interest in luteolin derivates today. The present study was designed to compare the in silico and in vitro anti-proliferative potential of two luteolin derivates, luteolin-7-O-glucoside/cynaroside (7-Lut) and luteolin-8-C-glucoside/orientin (8-Lut). In silico investigations were carried out on the molecular target, namely, the human dual specificity tyrosine phosphorylation-regulated kinase 2 (DYRK2) in association with its natural ligand, curcumin (PDB ID: 5ZTN), by CLC Drug Discovery Workbench v. 1.5.1. software and Molegro Virtual Docker (MVD) v. MVD 2019.7.0. software. In vitro studies were performed on two human tumor cell lines, glioblastoma (U87) and colon carcinoma (Caco-2), respectively. Altogether, docking studies have revealed 7-Lut and 8-Lut as effective inhibitors of DYRK2, even stronger than the native ligand curcumin; in vitro studies indicated the ability of both luteolin glucosides to inhibit the viability of both human tumor cell lines, up to 85% at 50 and 100 µg/mL, respectively; the most augmented cytotoxic and anti-proliferative effects were obtained for U87 exposed to 7-Lut (IC50 = 26.34 µg/mL). The results support further studies on cynaroside and orientin to create drug formulas targeting glioblastoma and colon carcinoma in humans.


Subject(s)
Antineoplastic Agents , Carcinoma , Curcumin , Glioblastoma , Humans , Caco-2 Cells , Glioblastoma/pathology , Glucosides/pharmacology , Ligands , Luteolin/pharmacology , Antineoplastic Agents/pharmacology
13.
Adv Biol (Weinh) ; : e2300452, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37794608

ABSTRACT

Triptolide (TPL), a natural product extracted from Tripterygium wilfordii Hook F, exerts potential anti-cancer activity. Studies have shown that TPL is involved in multiple cellular processes and signal pathways; however, its pharmaceutical activity in human colorectal cancer (CRC) as well as the underlying molecular mechanism remain elusive. In this study, the effects of TPL on HCT116 human colon cancer cells and CCD841 human colon epithelial cells are first evaluated. Next, the protein targets of TPL in HCT116 cells are identified through an activity-based protein profiling approach. With subsequent in vitro experiments, the mode of action of TPL in HCT116 cells is elucidated. As a result, TPL is found to selectively inhibit HCT116 cell viability and migration. A total of 54 proteins are identified as the targets of TPL in HCT116 cells, among which, Annexin A1 (ANXA1) and Peroxiredoxin I/II (Prdx I/II) are picked out for further investigation due to their important role in CRC. The interaction between TPL and ANXA1 or Prdx I is confirmed, and it is discovered that TPL exerts inhibitory effect against HCT116 cells through binding to ANXA1 and Prdx I. The study reinforces the potential of TPL in the CRC therapy, and provides novel therapeutic targets for the treatment of CRC.

14.
Int J Mol Sci ; 24(18)2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37762516

ABSTRACT

Studies in human colonic cell lines and murine intestine suggest the presence of a Ca2+-activated anion channel, presumably TMEM16a. Is there a potential for fluid secretion in patients with severe cystic fibrosis transmembrane conductance regulator (CFTR) mutations by activating this alternative pathway? Two-dimensional nondifferentiated colonoid-myofibroblast cocultures resembling transit amplifying/progenitor (TA/PE) cells, as well as differentiated monolayer (DM) cultures resembling near-surface cells, were established from both healthy controls (HLs) and patients with severe functional defects in the CFTR gene (PwCF). F508del mutant and CFTR knockout (null) mice ileal and colonic mucosa was also studied. HL TA/PE monolayers displayed a robust short-circuit current response (ΔIeq) to UTP (100 µM), forskolin (Fsk, 10 µM) and carbachol (CCH, 100 µM), while ΔIeq was much smaller in differentiated monolayers. The selective TMEM16a inhibitor Ani9 (up to 30 µM) did not alter the response to luminal UTP, significantly decreased Fsk-induced ΔIeq, and significantly increased CCH-induced ΔIeq in HL TA/PE colonoid monolayers. The PwCF TA/PE and the PwCF differentiated monolayers displayed negligible agonist-induced ΔIeq, without a significant effect of Ani9. When TMEM16a was localized in intracellular structures, a staining in the apical membrane was not detected. TMEM16a is highly expressed in human colonoid monolayers resembling transit amplifying cells of the colonic cryptal neck zone, from both HL and PwCF. While it may play a role in modulating agonist-induced CFTR-mediated anion currents, it is not localized in the apical membrane, and it has no function as an apical anion channel in cystic fibrosis (CF) and healthy human colonic epithelium.


Subject(s)
Cystic Fibrosis , Animals , Humans , Mice , Anions , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Epithelium , Uridine Triphosphate
15.
Gut Microbes ; 15(2): 2256767, 2023 12.
Article in English | MEDLINE | ID: mdl-37741806

ABSTRACT

The enteric pathogens have evolved to utilize elements from their surroundings to optimize their infection strategies. A common mechanism to achieve this is to employ intestinal compounds as signals to control the activity of a master regulator of virulence. Shigella flexneri (S. flexneri) is a highly infectious entero-invasive pathogen which requires very few organisms to cause invasion of the colonic mucosa. The invasion program is controlled by the virulence master regulator VirF. Here, we show that the fatty acids commonly found in the colon can be exploited by S. flexneri to repress its virulence, allowing it to energetically finance its proliferation, thus increasing its pathogenicity. Colonic fatty acids such as oleic, palmitoleic and cis-2-hexadecenoic acid were shown to directly bind to VirF and mediate its prompt degradation. These fatty acids also disrupted the ability of VirF to bind to its target DNA, suppressing the transcription of the downstream virulence genes and significantly reducing the invasion of S. flexneri to colonic epithelial cells. Treatment with colonic fatty acids significantly increased the growth rate of the pathogen only under invasion-inducing conditions, showing that the reduction in the burden of virulence promotes a growth advantage. These results demonstrate the process by which S. flexneri can employ intestinal compounds as signals to increase its numbers at its preferred site of invasion, highlighting the mechanism by which the full spectrum of shigellosis is achieved despite a miniscule infectious dose. This highlights an elegant model of environmental adaption by S. flexneri to maximize the pathogenic benefit.


Subject(s)
Gastrointestinal Microbiome , Shigella flexneri , Shigella flexneri/genetics , Virulence , Intestines , Fatty Acids
16.
Antioxidants (Basel) ; 12(8)2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37627532

ABSTRACT

Diverticular disease (DD) management is impaired by its pathogenesis, which is still not completely defined, with an unmet clinical need for improved therapies. Ex vivo DD human models demonstrated the presence of a transmural oxidative imbalance that supports an ischemic pathogenesis. This study aimed to assess, with the use of circulating biomarkers, insights into DD pathogenesis and possible therapeutic targets. Nox2-derived peptide, H2O2, antioxidant capacity, isoprostanes, thromboxanes, TNF-α, LPS and zonulin were evaluated by ELISA in healthy subjects (HS) and asymptomatic and symptomatic DD patients. Compared to HS, DD patients presented low antioxidant capacity and increase in sNox2-dp, H2O2 and isoprostanes paralleled to a TNFα increase, lower than that of oxidative markers. TxB2 production correlated to Nox2 and isoprostanes, suggesting platelet activation. An increase in zonulin and LPS highlighted the role of gut permeability and LPS translocation in DD pathogenesis. The increase of all the markers statistically correlated with DD severity. The present study confirmed the presence of a main oxidative imbalance in DD and provides evidence of platelet activation driven by LPS translocation. The use of circulating biomarkers could represent a new clinical tool for monitoring disease progression and validate therapeutic strategies never tested in DD as antioxidant supplementation.

17.
Spectrochim Acta A Mol Biomol Spectrosc ; 299: 122852, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37216817

ABSTRACT

Human colorectal tissues obtained by ten cancer patients have been examined by multiple micro-Raman spectroscopic measurements in the 500-3200 cm-1 range under 785 nm excitation. Distinct spectral profiles are recorded from different spots on the samples: a predominant 'typical' profile of colorectal tissue, as well as those from tissue topologies with high lipid, blood or collagen content. Principal component analysis identified several Raman bands of amino acids, proteins and lipids which allow the efficient discrimination of normal from cancer tissues, the first presenting plurality of Raman spectral profiles while the last showing off quite uniform spectroscopic characteristics. Tree-based machine learning experiment was further applied on all data as well as on filtered data keeping only those spectra which characterize the largely inseparable data clusters of 'typical' and 'collagen-rich' spectra. This purposive sampling evidences statistically the most significant spectroscopic features regarding the correct identification of cancer tissues and allows matching spectroscopic results with the biochemical changes induced in the malignant tissues.


Subject(s)
Colorectal Neoplasms , Spectrum Analysis, Raman , Humans , Spectrum Analysis, Raman/methods , Collagen , Amino Acids , Colorectal Neoplasms/diagnosis , Principal Component Analysis
18.
Genes Genomics ; 45(7): 901-909, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37231294

ABSTRACT

BACKGROUND: In this study, we observed that in human colon carcinoma HCT116 cells mRNA level of the human ß-galactoside α2,6-sialyltransferase (hST6Gal I) was decreased by curcumin. FACS analysis using the α2,6-sialyl-specific lectin (SNA) also showed a noticeable decrease in binding to SNA by curcumin. OBJECTIVE: To investigate the mechanism for curcumin-triggered downregulation of hST6Gal I transcription. METHODS: The mRNA levels of nine kinds of hST genes were assessed by RT-PCR after curcumin was treated in HCT116 cells. The level of hST6Gal I product on cell surface was examined by flow cytometry analysis. Luciferase reporter plasmids with 5'-deleted constructs and mutants of the hST6Gal I promoter were transiently transfected into HCT116 cells, and the luciferase activity was measured after treatment with curcumin. RESULTS: Curcumin led to significant transcriptional repression of the hST6Gal I promoter. Promoter analysis using deletion mutants proved that the - 303 to - 189 region of the hST6Gal I promoter is required for transcriptional repression in response to curcumin. Among putative binding sites for transcription factors IK2, GATA1, TCF12, TAL1/E2A, SPT, and SL1 in this region, by site-directed mutagenesis analysis the TAL/E2A binding site (nucleotides - 266/- 246) was proved to be crucial for curcumin-triggered downregulation of hST6Gal I transcription in HCT116 cells. The transcription activity of hST6Gal I gene in HCT116 cells was markedly suppressed by compound C, an AMP-activated protein kinase (AMPK) inhibitor. CONCLUSION: These indicate that gene expression of hST6Gal I in HCT116 cells is controlled through AMPK/TAL/E2A signal pathway.


Subject(s)
Carcinoma , Colonic Neoplasms , Curcumin , Humans , Curcumin/pharmacology , AMP-Activated Protein Kinases , beta-D-Galactoside alpha 2-6-Sialyltransferase , HCT116 Cells , Colonic Neoplasms/drug therapy , Colonic Neoplasms/genetics , Colonic Neoplasms/pathology , RNA, Messenger/genetics , Luciferases
19.
Molecules ; 28(7)2023 Mar 23.
Article in English | MEDLINE | ID: mdl-37049670

ABSTRACT

Standard therapies for colorectal cancer cannot eliminate or sufficiently reduce the metastasis process. Photodynamic therapy (PDT) may be an alternative to minimizing this problem. Here, we examined the cellular localization of selected porphyrins and determined whether free-base and manganese (III) metallated porphyrins may limit colon cancer cells' (HT29) or normal colon epithelial cells' (CCD 841 CoTr) motility in vitro. White light irradiation was used to initiate the photodynamic effect. Porphyrin uptake by the cells was determined by porphyrin fluorescence measurements through the use of confocal microscopy. Free-base porphyrin was found in cells, where it initially localized at the edge of the cytoplasm and later in the perinuclear area. The concentrations of porphyrins had no effect on cancer cell migration but had a significant effect on normal cell motility. Due to the low concentrations of porphyrins used, no changes in F-actin filaments of the cellular cytoskeleton were detected. Signal transmission via connexons between neighbouring cells was limited to a maximum of 40 µm for HT29 and 30 µm for CCD 841 CoTr cells. The tested porphyrins differed in their activity against the tumor and normal cells' migration capacity. Depending on the porphyrin used and the type of cells, their migration changed in relation to the control sample. The use of white light may change the activity of the porphyrins relative to the migratory capacity of the cells. The aim of the present study was to analyse the intracellular localization of tested porphyrins and their influence on the mobility of cells after irradiation with harmless white light.


Subject(s)
Colonic Neoplasms , Photochemotherapy , Porphyrins , Humans , Porphyrins/pharmacology , Porphyrins/metabolism , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Light , Colonic Neoplasms/drug therapy
20.
Comput Struct Biotechnol J ; 21: 1606-1620, 2023.
Article in English | MEDLINE | ID: mdl-36874158

ABSTRACT

Short-chain fatty acids (SCFAs) exhibit anticancer activity in cellular and animal models of colon cancer. Acetate, propionate, and butyrate are the three major SCFAs produced from dietary fiber by gut microbiota fermentation and have beneficial effects on human health. Most previous studies on the antitumor mechanisms of SCFAs have focused on specific metabolites or genes involved in antitumor pathways, such as reactive oxygen species (ROS) biosynthesis. In this study, we performed a systematic and unbiased analysis of the effects of acetate, propionate, and butyrate on ROS levels and metabolic and transcriptomic signatures at physiological concentrations in human colorectal adenocarcinoma cells. We observed significantly elevated levels of ROS in the treated cells. Furthermore, significantly regulated signatures were involved in overlapping pathways at metabolic and transcriptomic levels, including ROS response and metabolism, fatty acid transport and metabolism, glucose response and metabolism, mitochondrial transport and respiratory chain complex, one-carbon metabolism, amino acid transport and metabolism, and glutaminolysis, which are directly or indirectly linked to ROS production. Additionally, metabolic and transcriptomic regulation occurred in a SCFAs types-dependent manner, with an increasing degree from acetate to propionate and then to butyrate. This study provides a comprehensive analysis of how SCFAs induce ROS production and modulate metabolic and transcriptomic levels in colon cancer cells, which is vital for understanding the mechanisms of the effects of SCFAs on antitumor activity in colon cancer.

SELECTION OF CITATIONS
SEARCH DETAIL