Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters











Publication year range
1.
Materials (Basel) ; 17(17)2024 Aug 25.
Article in English | MEDLINE | ID: mdl-39274591

ABSTRACT

This research investigates the effects of various curing regimes, the incorporation of titanium slag, and the utilization of quartz sand on the strength properties and shrinkage behavior of ultra-high-performance concrete (UHPC). By using low-heat silicate cement to prepare UHPC, this study conducted standard curing and steam curing, and comprehensively analyzed the macro and micro performance of UHPC under different curing conditions. The findings indicate that the application of steam curing markedly enhances the mechanical attributes of UHPC while efficiently decreasing its drying shrinkage. In the comparative tests, we found that the compressive strength of concrete that had undergone 2 days of steam curing was 9.15% higher than that of concrete cured for 28 days under standard conditions. In addition, under the same curing conditions, titanium slag sand had higher mechanical properties than quartz sand. Under standard curing conditions, the 28-day compressive strength of UHPC using titaniferous slag aggregate was 12.64% higher than that of UHPC using standard sand. Through the data analysis of XRD, TG, and MIP, we found that the content of Ca(OH)2 in the hydration products after steam curing was reduced compared to the standard curing conditions, and the pore structure had been optimized. The UHPC prepared with titanium slag sand has greater advantages in mechanical properties and drying shrinkage, and has a smaller pore structure than the UHPC prepared with quartz sand. Moreover, the use of titanium slag sand offers ecological and economic benefits, making it a more sustainable and cost-effective option for high-performance construction applications.

2.
Materials (Basel) ; 17(16)2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39203063

ABSTRACT

In this study, common multiwalled and carboxylated carbon nanotubes (CNTs) were added to the cemented lithium tailings backfill (CLTB). The effects of CNTs on the mechanical properties, hydration products, damage process, and microstructure of CLTB specimens were studied by uniaxial compression (UCS), infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM). The experimental results show that the addition of CNTs effectively increased the compressive strength compared with the blank control group. When the concentration was 0.05-0.20%, the compressive strength was proportional to the content, the optimal addition amount was 0.2%, and the enhancement effect was 75% and 95.31%, respectively. The FT-IR results indicate that the addition of CNTs increased the total amount of the hydration product but did not affect its type. The hydration of the three-dimensional reciprocal penetration network formed by moderate amounts of CNTs has a positive effect on the mechanical strength of CLTB specimens.

3.
Materials (Basel) ; 17(16)2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39203263

ABSTRACT

This study aimed to decipher the influence of red mud on the mechanical properties, pore structure, and microstructure of basic magnesium sulfate cements (BMSCs). The results showed that BMSC prepared with an appropriate addition of red mud exhibited improved mechanical properties and yielded the highest compressive strength of 94.54 MPa after curing for 28 days. Adding red mud reduced the total porosity and optimized the pore structure of BMSC. The microstructure and hydration products of the specimens were examined using X-ray diffraction, scanning electron microscopy, and energy-dispersive spectroscopy. The results illustrate that the addition of 50% red mud did not affect the amount of the main strength phase 5-1-7 produced in BMSC. It could also reduce the residual amount of MgO and the generation of Mg(OH)2. The red mud and the M-S-H gel generated by the reaction between active SiO2 and α-MgO in the red mud together filled the pore structure of BMSC, making its microstructure denser and higher-strength. This study aims to improve the comprehensive use of red mud, and the results show that red mud can improve the mechanical properties of BMSCs, protecting the environment and simultaneously reducing BMSC production costs to create good economic benefits.

4.
Waste Manag ; 187: 285-295, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39083851

ABSTRACT

The significant production of municipal solid waste incineration fly ash (MSWI FA) underscores the importance of developing efficient solidification materials. This study employed MgO and CaO for immobilizing MSWI FA (with a 70% fly ash incorporation), and the immobilization effect was compared with that of Portland cement (PC). Experimental findings revealed that MgO exhibited the most effective stabilization for heavy metals (Cd, Cu, Pb, and Zn) compared to CaO and PC. XRD, FTIR, TG, and SEM analysis indicated that the principal hydration products in MSWI FA binders solidified with MgO, CaO, and PC were Mg(OH)2, CaCO3, and C-S-H gel, respectively. Mg(OH)2 efficiently immobilized heavy metals through chemical complexation and surface adsorption mechanisms. The MgO-treated MSWI FA demonstrated the highest residual fractions and the lowest easily leachable fractions. Moreover, the leaching characteristics of heavy metals were significantly influenced by the pH level, so MgO-treated MSWI FA with a leachate pH of 9.18 achieved the precipitation and stabilization of most heavy metals. In summary, this study provided an effective material selection for MSWI FA immobilization and presented a novel strategy for MSWI FA management.


Subject(s)
Calcium Compounds , Coal Ash , Construction Materials , Incineration , Magnesium Oxide , Metals, Heavy , Oxides , Coal Ash/chemistry , Metals, Heavy/analysis , Metals, Heavy/chemistry , Magnesium Oxide/chemistry , Construction Materials/analysis , Calcium Compounds/chemistry , Oxides/chemistry , Incineration/methods , Solid Waste/analysis , Adsorption , Refuse Disposal/methods
5.
Materials (Basel) ; 17(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38730805

ABSTRACT

For solid waste-based cementitious materials, most scholars focus their research on the hydration reaction of cementitious materials, but there is still a lack of solid waste design that comprehensively considers mechanical properties and durability. Therefore, this article focuses on exploring the mix of design and the microscopic and macroscopic properties of multi solid waste cementitious materials (MSWCMs), namely steel slag (SS), slag powder (SP), desulfurization gypsum (DG), fly ash (FA), and ordinary Portland cement (OPC). According to the orthogonal experimental results, the compressive strength of MSWCMs is optimal when the OPC content is 50% and the SS, SP, DG, and FA contents are 10%, 20%, 5%, and 15%, respectively. The MSWCMs group with an OPC content of 50% and SS, SP, DG, and FA contents of 5%, 15%, 5%, and 25% was selected as the control group. The pure OPC group was used as the blank group, and the optimal MSWCMs ratio group had a 28-day compressive strength of 50.7 megapascals, which was 14% and 7.6% higher than the control group and blank group, respectively. The drying shrinkage rate and resistance to chloride ions were also significantly improved, with maximum increases of 22.9%, 22.6%, and 8.9%, 9.8%, respectively. According to XRD, TG-DTG, and NMR testing, the improvement in macroscopic performance can be attributed to the synergistic effect between various solid wastes. This synergistic effect produces more ettringite (AFt) and C-(A)-S-H gel. This study provides a good theoretical basis for improving the comprehensive performance of MSWCMs and is conducive to reducing the use of cement, with significant economic and environmental benefits.

6.
Materials (Basel) ; 17(6)2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38541403

ABSTRACT

The low mechanical strength of a low-calcium fly ash (FA)-red mud (RM) geopolymer severely limits its application. Steel slag (SS) and Ca(OH)2 can provide calcium and alkali for the hydration process of a low-calcium FA-based geopolymer. In this study, SS was used to replace part of the RM, and Ca(OH)2 was introduced. The effects of SS and Ca(OH)2 on the properties of the FA-RM geopolymer were investigated. The experimental results show that SS promoted the matrix to generate more C(N)-A-S-H and C-S-H gels and optimized the pore structure, thereby improving the mechanical properties of the FA-based geopolymer. The addition of 4 wt.% Ca(OH)2 increased the hydration products of the FA-based geopolymer, the microstructure was denser, and the mechanical properties were significantly improved. The 28 d compressive strength of the FA-based ternary composite geopolymer prepared by replacing part of the RM with SS and adding Ca(OH)2 reached 30.6 MPa, which provided an experimental basis for the resource utilization of various bulk solid wastes.

7.
Environ Sci Pollut Res Int ; 31(2): 3105-3122, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38072885

ABSTRACT

If there was abundant fluorine in shotcrete, it might leach out and pollute the soil or migrate to corrode the reinforcement.Therefore, this research mainly investigated the basic properties of high-fluorine alkali free liquid accelerator (HF-AFA) and its occurrence forms in cement hydration products.The macro-test results showed that with the increase of HF-AFA dosage, it appeared excellent coagulation promoting property. However, when the HF-AFA dosage exceeded 7.0%, the 1d compressive strength of mortar was lower than 7.0 MPa. In addition, by measuring the early hydration heat of cement, C3A, C3S, C2S and C4AF pastes with and without HF-AFA, and combining XRD and SEM micro-analysis, the occurrence forms of fluorine in different clinker minerals were obtained.The final analysis results indicated that fluorine mainly existed in the form of CaF2, CaAlF5 and Ca2AlF7 crystals in C3A and C3S minerals, while only little CaF2 crystals appeared in C2S and C4AF minerals.


Subject(s)
Alkalies , Fluorine , Construction Materials , Minerals , Water/chemistry
8.
Nanomaterials (Basel) ; 13(23)2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38063755

ABSTRACT

The failure of the interfacial transition zone has been identified as the primary cause of damage and deterioration in cement-based materials. To further understand the interfacial failure mechanism, interfacial composite structures between the main hydration products of ordinary Portland cement (OPC), calcium silicate hydrate (CSH) and calcium hydroxide (Ca(OH)2), and silica (SiO2) were constructed while considering their anisotropy. Afterwards, uniaxial tensile tests were conducted using molecular dynamics (MD) simulations. Our results showed that the interfacial zones (IZs) of interfacial composite structures tended to have relatively lower densities than those of the bulk, and the anisotropy of the hydration products had almost no effect on the IZ being a low-density zone. Interfacial composite structures with different configurations exhibited diverse nanomechanical behaviors in terms of their ultimate strength, stress-strain relationship and fracture evaluation. A higher strain rate contributed to a higher ultimate strength and a more prolonged decline in the residual strength. In the interfacial composite structures, both CSH and Ca(OH)2 exhibited ruptures of the Ca-O bond as the primary atomic pair during the tensile process. The plastic damage characteristics of the interfacial composite structures during the tensile process were assessed by analyzing the normalized number of broken Ca-O bonds, which also aligned with the atomic chain break characteristics evident in the per-atom stress map.

9.
Materials (Basel) ; 16(15)2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37570013

ABSTRACT

Based on its characteristics of early strength, good toughness, and excellent mechanical and impact resistance, steel fiber-reinforced fast-hardening reactive powder concrete (RPC) is expected to become an alternative material used in the rapid repair of marine concrete structures. However, the steel fibers have also caused corrosion problems in coastal environments. To make doped fiber fast-hardening RPC more adaptable for use in ocean engineering, this study prepares fast-hardening RPC mixed with straw and studied the effects of straw content and curing age on its slump flow, setting time, and mechanical performance (flexural strength, compressive strength, and flexural toughness). The effects of straw addition on the compactness and hydration products of fast-hardening RPC were studied through macro- (ultrasonic analysis) and micro-scopic analysis (electron microscopy scanning and X-ray diffraction patterns). The straw content mentioned in this paper refers to the percentage of straw in relation to RPC volume. The results showed that straw reduced the fluidity of RPC slurry by 10.5-11.5% compared to concrete without straw, and it accelerated the initial setting of RPC slurry. When the straw content accounted for 1% of RPC volume, the setting rate was the fastest, with a increasing rate being 6-18%. Compared to concrete without straw, the flexural and compressive strength of fast-hardening RPC was enhanced by 3.7-30.5%. When the content was either 3% or 4%, the mechanical properties improved. Moreover, when the straw content accounted for 4% of RPC volume, the flexural toughness was the highest, with the increase rate being 21.4% compared to concrete without straw. Straw reduces the compactness of fast-hardening RPC.

10.
Environ Sci Pollut Res Int ; 30(41): 95002-95012, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37561299

ABSTRACT

Solidified sludge can be regarded as a new type of earth cover material for domestic waste landfill. But the acidic environment result from the leachate in landfill is a potential threat to cement-based material. In order to evaluate the deterioration risk of solidified sludge in acidic environment, the leaching process of solidified sludge components under different pH conditions was investigated by taking Ni and Cr as the indexes of semi-dynamic leaching test. Under strongly acid environment (pH = 2), the leaching rate of Cr is significantly higher than that in the weakly acid environment or nearly neutral environment, and the diffusion coefficient increased by an order of magnitudes. The leaching and diffusion coefficients of Ni undergo a small influence from the adding amount of cement and pH value. Both Ni and Cr have relatively low migration ratio.


Subject(s)
Metals, Heavy , Sewage , Sewage/chemistry , Metals, Heavy/chemistry , Waste Disposal Facilities
11.
Environ Sci Pollut Res Int ; 30(38): 89101-89113, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37452240

ABSTRACT

In this study, three groups of municipal solid waste incinerated-bottom ash (MSWI-BA) with different particle sizes (1.18-2.36 mm; 2.36-4.75 mm; 4.75-9.5 mm) were separately treated under natural dry, half-wet, and wet condition, to investigate the possibility of their mechanical performance. The strength of MSWI-BA was periodicity tested by crushing value test. The changes of microstructure and mineral components over curing time were separately analyzed via scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) and X-ray diffraction (XRD). The results show that the MSWI-BA requires long curing time to develop a certain strength, and the highest strength of MSWI-BA is obtained under half-wet curing condition. The strength development of MSWI-BA is attributed to the formation of hydration products of calcium silicate hydrate (C-S-H) and the increase in well-crystallized minerals of CaCO3. In addition, the results of the indoor long-term immersion test show that the heavy metal leached concentrations of MSWI-BA are far below the limited values in China standard GB 5085. In addition, the curing can solidify heavy metals to a certain extent, ensuring the safety of MSWI-BA as a road construction material.


Subject(s)
Metals, Heavy , Refuse Disposal , Solid Waste/analysis , Coal Ash/chemistry , Incineration , Metals, Heavy/analysis , Particle Size , Carbon/chemistry
12.
Materials (Basel) ; 16(13)2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37445170

ABSTRACT

This study explored the potential of granite stone powder (GSP) as a supplementary cementitious material (SCM). The 72 h early hydration process stages of GSP-mixed slurry were analyzed in depth, and the mechanical properties of manufactured sand concrete (MSC) mixed with GSP were investigated. Physical phase types, morphological characteristics, and pore structure evolution were investigated using an X-ray diffractometer, scanning electron microscope, and mercury intrusion approach (MIP). Atomic force microscopy was used to show the interface transition zone between aggregate and slurry in phase images, height images, and 3D images, allowing quantification of ITZ and slurry by calculating the roughness. Gray entropy analysis was used to evaluate the significance of the effect of pore size distribution parameters on mechanical strength, and the GSP-content-mechanical-strength gray model GM (1, 1) was established to predict mechanical strength. The results indicate that, compared with the reference group, the GSP cement slurry system exhibited a delayed hydration process acceleration rate, with a 1.04% increase in cumulative heat of hydration observed in the 5% test group and an 11.05% decrease in the 15% test group. Incorporating GSP in MSC led to decreased mechanical properties at all ages, with significant decay observed when incorporation ranged from 10% to 15%. Although the type of hydration products remained unchanged, there was a decrease in the number of C-S-H gels and gel pores, while large pores increased, resulting in increased porosity and roughness of the interface transition zone and slurry. Large pores (>1000 nm) were found to have the greatest influence on mechanical strength, with gray correlation above 0.86. The GM (1, 1) model yielded accurate predictions, showing good agreement with measured data and thus it can be identified as belonging to a high-precision prediction model category. These findings provide theoretical support and a reference for applying GSP as an SCM, laying the groundwork for data-based specification development.

13.
Materials (Basel) ; 16(7)2023 Apr 02.
Article in English | MEDLINE | ID: mdl-37049121

ABSTRACT

To improve the interfacial compatibility between cement matrix and expanded polystyrene (EPS) in core-shell lightweight aggregates (CSLA), the effects of sodium silicate, polyvinyl acetate (PVA) emulsion, vinyl acetate-ethylene (VAE) emulsion, acrylic acid, and acetic acid on the cement-EPS interface were investigated. The density of the interface was studied by scanning electron microscopy (SEM), and the effect of interfacial agents on the hydration process of cement was studied by the heat of hydration and induction resistivity. The macroscopic properties of the interface of the CSLA were characterized by the "leak-white" rate, drop resistance, and numerical crushing strength. The results show that the sodium silicate densifies the interface by generating hydration products on the EPS surface. At the same time, organic acid enhances the interfacial properties of EPS and cement by increasing the surface roughness, and allowing hydration products to grow in the surface micropores. In terms of the cement hydration process, both interfacial agents delay the cement hydration. Above all, with comprehensive interface properties, "leak-white" rate, and mechanical properties, VAE emulsion and sodium silicate can achieve the best performance with a final crushing resistance of 5.7 MPa, which had a 46% increase compared with the reference group.

14.
Environ Sci Pollut Res Int ; 30(15): 45015-45028, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36701070

ABSTRACT

To promote the widespread use of fly ash (FA) and coal gasification slag (CGS) in mine filling, reducing the amount of cement and promoting the sustainable development of mining enterprises are essential. In this study, decarbonized CGS (DCGS) was prepared from CGS through decarbonization. A new DCGS-FA filling material was prepared using DCGS, FA, cement (3 wt.%), sodium sulfate (SS), and aeolian sand (AS). The effects of different mass ratios (1/9-5/5) of DCGS/FA on the properties of new filling materials were investigated. The results indicate that CGS can be used with FA to prepare filling materials after decarbonization. The flow performance of the DCGS-FA filling material is positively correlated with the mass ratio of DCGS/FA, while the mechanical properties are negatively correlated. The 28-day unconfined uniaxial compressive strength (UCS) of all specimens met the mechanical requirements (UCS ≥ 1.0 MPa). The types of hydration products were determined through X-ray diffraction, scanning electron microscopy, and energy-dispersive spectroscopy. The main hydration products of DCGS-FA filling materials are ettringite (AFt) and C-S-H gel. The results of the TG/DTG test of 28 days revealed that an increase in the DCGS/FA mass ratio would reduce the content of hydration products in filling materials. When the mass ratio increased from 1/9 to 5/5, the content of hydration products in the filling material decreased by 54.5%. This study provides a new concept for the resource utilization of CGS and FA in mine filling, which can significantly reduce the amount of cement in filling materials and promote the sustainable development of mine filling.


Subject(s)
Coal Ash , Coal , Coal Ash/chemistry , X-Ray Diffraction
15.
Materials (Basel) ; 15(24)2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36556702

ABSTRACT

White ultra-high-performance concrete (WUHPC) performed outstanding mechanical, durability, and aesthetical properties, which was preferred in infrastructure to avoid the secondary painting, decrease the maintenance, and prolong the service life. Supplementary cementitious materials (SCMs) were often used in WUHPC to reduce the environment impacts and material costs. In this study, limestone powder (LP), metakaolin (MK), and silica fume (SF) were used as SCMs to largely substitute white Portland cement (WPC) to prepare WUHPC, the effects of substituted ratio on flowability, strength, and whiteness were studied, and the hydration products were also analyzed by quantitative-XRD method and SEM. The whiteness was calculated in chromatic space CIELAB by measuring tristimulus values of L, a*, and b*, and the controlled factor on whiteness was also investigated. As the results, the WUHPC with compressive strength exceeded 150 MPa and whiteness over 90 was prepared with WPC substitution of 35~65%. The SF improved the flowability and strength about 10% due to its filling and ball effect, while the irregular particle sharp and non-uniform size distribution of MK caused the reversed development. The increased dosage of raw materials with higher L value, such as LP and MK, made the WUHPC whiter. The hydration products with varied SCMs ratio were in the same category by different content. It was supposed that CaCO3 and C-S-H gel in hydration products caused higher whiteness, while C3S, CaMg(CO3)2, and SiO2 were against the whiteness. The results proved that with a large fraction of SCMs, the WUHPC with high strength and good appearance were prepared, and the whiteness of WUHPC were both controlled by the raw materials and the content of hydration products.

16.
Materials (Basel) ; 15(22)2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36431570

ABSTRACT

Liquid accelerating agents have the advantages of simple operation and fast construction, and have become indispensable admixtures in shotcrete. However, most liquid accelerating agents in the market at present contain alkali or fluorine, which adversely affect concrete and seriously threaten the physical and mental health of workers. Therefore, in view of the above deficiencies, it is necessary to develop a new type of alkali-free fluorine-free liquid accelerating agent. In this paper, the polyaluminum sulfate early strength alkali-free liquid accelerator is prepared using polymeric aluminum sulfate, diethanolamine, magnesium sulfate heptahydrate and nano-silica. The influence of this agent on the setting time of fresh cement paste and compressive strength of the corresponding cement mortar is determined. Thermogravimetric analysis curves, X-ray diffraction and scanning electron microscopy images are obtained to investigate the mechanism. Findings show that the initial setting time and the final setting time of cement paste are 2 min 30 s and 7 min 25 s. The compressive strengths of cement mortar cured for 1 d, 28 d and 90 d are 2.4 MPa, 52.2 MPa and 54.3 MPa respectively. Additionally, the corresponding flexural strengths are 3.4 MPa, 9.8 MPa, 11.8 MPa. When the mass rate of accelerator is 7%, the mechanical strengths of cement mortar are the highest. The additions of fly ash and blast furnace slag can affect the mechanical of cement mortar mixed with accelerator. When the mass ratio of the fly ash and blast furnace slag is 15%, the mechanical strengths of cement mortar reach the highest. Moreover, the hydration heat release rate of cement is increased by the accelerator and the corresponding time of hydration heat peak is decreased by the accelerator. The accelerator can decrease the amount of needle-like hydration products and improve the compactness. The mechanical strengths are improved by consuming a large amount of Ca(OH)2 and forming more compact hydration products. It is recommended that the optimum dosage range of the polyaluminum sulfate early strength alkali-free liquid accelerator is 7%.

17.
Materials (Basel) ; 15(17)2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36079446

ABSTRACT

The hydration of M-S-H prepared using silica fume (SF) and dead-burned MgO cured at 20 °C, 50 °C, and 80 °C was investigated, and the properties and performance of this M-S-H were measured. The formation of M-S-H was characterized using XRD, FTIR, TGA, and 29Si MAS-NMR. Results show that the compressive strength of paste prepared using MgO calcined at 1450 °C for 2 h reached 25 MPa after 28 d. The shrinkage of mortar made with low reactivity MgO was lower than that made with high reactivity MgO. The pH value of MgO/SF paste mixed with dead-burned MgO did not exceed 10.4 at room temperature. The shrinkage of M-S-H prepared using dead-burned MgO was less than that prepared using more active MgO, and its strength did not decrease over time. No (or only a small amount of) Mg(OH)2 was formed, which is why the strength of M-S-H prepared with dead-burned MgO continually increased, without decreasing. The promotion of curing temperature favor process of MgO hydration and is beneficial for degree of silica polymerization. The sample cured in 50 °C water showed the highest relative degree of reaction.

18.
Heliyon ; 8(9): e10695, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36164537

ABSTRACT

Slag-based cementitious material was synthesized from blast furnace slag, clinker, gypsum, and activator to replace cement in cemented paste backfill (CPB). We researched the influence of slag-based cementitious material dosages and curing times on the properties of CPB, including unconfined compressive strength tests, leachate toxicity and chemical speciation of heavy metal as well as microstructural tests and analyses. The results indicated that the addition of slag-based cementitious material improved the compressive strength of the CPB, which attained the compressive strength requirements (≥1.0 MPa) at 28 days. The leachate concentrations of Pb, Cr, Cu, and Cd in CPB decreased as the slag-based cementitious material dosage and curing period increased, which met the standard (GB 5085.3-2007). The dosage of 10% slag-based cementitious material could effectively immobilize the heavy metals in the tailings, and the immobilization performance was similar to that of 20% cement, which indicated the amount of slag-based cementitious material was only half the quantity of cement in CPB. Microstructural analysis showed the hydration products included calcium silicate hydrate, ettringite, and portlandite, which could enhance the bonding force between the tailing grains.

19.
Materials (Basel) ; 15(13)2022 Jun 21.
Article in English | MEDLINE | ID: mdl-35806500

ABSTRACT

Alkali-activated materials (AAMs) are regarded as an alternative cementitious material for Portland cement with regards to sustainable development in construction. The purpose of this work is to investigate the properties of activated blast-furnace slag (BFS)-steel slag (SS) with sodium carbonate (NC), taking into account BFS fineness and Na2O equivalent. The hydration was investigated by rheological behavior and pH development. The hydrates were characterized by TG-DTG and XRD, and the microstructure was analyzed by SEM and MIP. Results showed that the rheology of activated BFS-SS pastes was well-fitted with the H-B model and affected by BFS fineness and NC mixture ratio. It was found that BFS fineness and NC ratio played a crucial role in the initial alkalinity of SS-BFS-based pastes. As such, lower BFS fineness and higher NC ratio can dramatically accelerate the formation of reaction products to endow higher mechanical strength of BFS-SS pastes. However, the effect of NC ratio on the microstructure development of BFS-SS based AAMs was more obvious than BFS fineness.

20.
Materials (Basel) ; 15(12)2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35744399

ABSTRACT

The high-value utilization of sulfate-rich tailings (SRCTs) can accelerate their mass consumption, so the many problems caused by the massive accumulation of SRCTs can be alleviated, such as environmental pollution, land occupation, security risk, etc. This study proposes using SRCTs to replace fine natural aggregates in MgO-activated slag materials (MASMs) and investigate the influence of the sulfur content in SRCTs on the properties of MASMs. The experimental results showed that the 28 d compressive strength of MASM mortars was increased by up to 83% using SRCT composites. Two major mechanisms were discovered: additional hydration product formation and pore structure refinement. The results of XRD suggested that incorporating SRCT composite into MASMs increased the production of expansive sulfate-containing hydration products, such as ettringite, gypsum, and hydroxyl-Afm. The results of element mapping showed that the oxidation of pyrite in SRCTs could release sulfates into the surrounding area and participate in the hydration of MASM, indicating that SRCTs can work as an auxiliary activator for MASMs. Furthermore, the addition of SRCT significantly refined the pore structure of MASMs, leading to the reduction in porosity by up to 37.77%. These findings confirm a synergistic effect on activating the slag between SRCTs and MgO, promoting the mass utilization of SRCTs. As a result, the additional expansive hydration products contribute to the enhanced compressive strength and refined pore structure.

SELECTION OF CITATIONS
SEARCH DETAIL