Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 421
Filter
1.
J Environ Sci (China) ; 147: 617-629, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003076

ABSTRACT

The manganese-cobalt mixed oxide nanorods were fabricated using a hydrothermal method with different metal precursors (KMnO4 and MnSO4·H2O for MnOx and Co(NO3)2⋅6H2O and CoCl2⋅6H2O for Co3O4). Bamboo-like MnO2⋅Co3O4 (B-MnO2⋅Co3O4 (S)) was derived from repeated hydrothermal treatments with Co3O4@MnO2 and MnSO4⋅H2O, whereas Co3O4@MnO2 nanorods were derived from hydrothermal treatment with Co3O4 nanorods and KMnO4. The study shows that manganese oxide was tetragonal, while the cobalt oxide was found to be cubic in the crystalline arrangement. Mn surface ions were present in multiple oxidation states (e.g., Mn4+ and Mn3+) and surface oxygen deficiencies. The content of adsorbed oxygen species and reducibility at low temperature declined in the sequence of B-MnO2⋅Co3O4 (S) > Co3O4@MnO2 > MnO2 > Co3O4, matching the changing trend in activity. Among all the samples, B-MnO2⋅Co3O4 (S) showed the preeminent catalytic performance for the oxidation of toluene (T10% = 187°C, T50% = 276°C, and T90% = 339°C). In addition, the B-MnO2⋅Co3O4 (S) sample also exhibited good H2O-, CO2-, and SO2-resistant performance. The good catalytic performance of B-MnO2⋅Co3O4 (S) is due to the high concentration of adsorbed oxygen species and good reducibility at low temperature. Toluene oxidation over B-MnO2⋅Co3O4 (S) proceeds through the adsorption of O2 and toluene to form O*, OH*, and H2C(C6H5)* species, which then react to produce benzyl alcohol, benzoic acid, and benzaldehyde, ultimately converting to CO2 and H2O. The findings suggest that B-MnO2⋅Co3O4 (S) has promising potential for use as an effective catalyst in practical applications.


Subject(s)
Cobalt , Manganese Compounds , Oxidation-Reduction , Oxides , Toluene , Oxides/chemistry , Manganese Compounds/chemistry , Catalysis , Cobalt/chemistry , Toluene/chemistry , Air Pollutants/chemistry
2.
Heliyon ; 10(14): e34266, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39108848

ABSTRACT

Widespread ecosystem degradation from noxious substances like industrial waste, toxic dyes, pesticides, and herbicides poses serious environmental risks. For remediation of these hazardous problems, present study introduces an innovative Cu-doped Ce2Zr2O7 nano-photocatalyst, fabricated via a simple, eco-friendly hydrothermal method, designed to degrade toxic textile dye methylene blue. Harnessing Cu doping for pyrochlore Ce2Zr2O7, structure engineering carried out through a hydrothermal synthesis method to achieve superior photocatalytic performance, addressing limitations of rapid charge carrier recombination in existing photocatalysts. Photoluminescence analysis showed that doped pyrochlore slows charge carrier recombination, boosting dye degradation efficiency. UV-Visible analysis demonstrated an impressive 96 % degradation of methylene blue by Cu-doped Ce2Zr2O7 within 50 min, far exceeding the performance of pristine materials. Trapping experiments clarified the charge transfer mechanism, deepening our understanding of the photocatalytic process. These findings highlight the potential for developing innovative, highly efficient photocatalysts for environmental remediation, offering sustainable solutions to combat pollution. This study not only addresses the limitations of existing photocatalysts but also opens new avenues for enhancing photocatalytic performance through strategic material design.

3.
J Colloid Interface Sci ; 677(Pt A): 1045-1051, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39134079

ABSTRACT

Aqueous aluminium ion batteries (AAIBs) have attracted much attention due to their high theoretical capacity, safety, and environmental friendliness. However, the Research and Development (R&D) of cathode materials has limited its development and application. MoO3 has been proven to be a reliable and stable cathode material, nevertheless, it faces the dilemma of poor cycling performance and low specific capacity in AAIBs due to the irreversible phase transition in its structure. In this paper, MoO3 synthesized by a hydrothermal method has a unique nanobelt structure, which significantly enhances the structural stability of MoO3 and reduces its structural damage during charging/discharging. In addition, the nanobelt structure also gives MoO3 a rougher surface, which provides a large number of active sites and spaces for the insertion and extraction of Al3+ and improves the diffusion rate of Al3+ to a large extent. Experimental results demonstrate that this MoO3 nanobelt cathode exhibits significantly improved cycling stability and high specific capacity in AAIBs. This paper provides a practical solution to the existing challenges of AAIBs and further promotes the development and application of molybdenum-based materials in AAIBs.

4.
Chemistry ; : e202402269, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39058363

ABSTRACT

This study aims to enhance the performance of supercapacitors, focusing particularly on optimizing electrode materials. While pure NiMn layered double hydroxides (LDHs) exhibit excellent electrochemical properties, they have limitations in achieving high specific capacitance. Therefore, this paper successfully synthesized composite materials of NiMn LDHs with varying loadings of graphene oxide (GO) using a hydrothermal method. Systematic physicochemical characterization of the synthesized materials, such as powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field-emission scanning electron microscopy (FE-SEM), and Raman spectroscopy, revealed the influence of GO doping on the microstructure and electrochemical performance of NiMn LDHs. Electrochemical tests demonstrated that the NiMn LDHs/GO electrode material exhibited optimal electrochemical performance with a specific capacitance of 2096 F g-1 at 1 A g-1 current density and 1471 F g-1 at 10 A g-1, when GO doping level was 0.45 wt%. Furthermore, after 1000 cycles of stability testing, the material retained 53.3% capacitance at 5 A g-1, indicating good cyclic stability. This study not only provides new directions for research on supercapacitor electrode materials but also offers new strategies for developing low-cost and efficient electrode materials.

5.
Nanotechnology ; 35(43)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39059416

ABSTRACT

Vanadium pentoxide (V2O5) nanoparticles exhibit diverse properties and have been studied for a wide range of applications, including energy storage, catalysis, environmental remediation, and material enhancement. In this work, we have reported the synthesis of vanadium pentaoxide (V2O5) nanoparticles using hydrothermal method. Ammonium metavanadate (NH4VO3) was used as a source of vanadium. These syntheses were carried out at four different concentrations of vanadium source. The hydrothermal reaction was conducted at a temperature of 180 °C for a duration of 24 hours, followed by an additional 24 hours period of natural cooling. Four samples were annealed in air using a muffle furnace at 500 °C for five hours. The x-ray diffraction technique was used to study the structural aspects. A comparative analysis of the microstructure was conducted utilizing the Scherrer method, the Williamson-Hall method and its various models, size-strain analysis, and the Halder-Wagner method. The crystallite size and microstrain were determined using these distinct methods, revealing a systematic correlation between the crystallite size and microstrain obtained through the different techniques.

6.
Environ Res ; 259: 119534, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38960361

ABSTRACT

This study presents a novel blend of synthesis techniques for shape-controlled ZnS nanoparticles. Zinc sulfide (ZnS) nanoparticles with distinct morphologies cauliflower-like microstructures (∼4.5 µm) and uniform nanospheres (200-700 nm) were synthesized through an innovative blend of precipitation and hydrothermal techniques. Capping with polyvinylpyrrolidone (PVP) significantly decreased crystallite size (3.93 nm-2.36 nm), modulated the band gap (3.57 eV-3.71 eV), and dramatically influenced morphology, highlighting the novelty of shape-controlled synthesis and its impact on optoelectronic and functional properties. X-ray diffraction confirmed crystallinity and revealed the size-controlling influence of PVP. UV-vis spectroscopy suggested potential tuning of optical properties due to band gap widening upon PVP capping. Field-emission scanning electron microscopy (FESEM) unveiled distinct morphologies: cauliflower-like microstructures for ZnS and uniform nanospheres (200-700 nm) for PVP-ZnS. Both structures were composed of smaller spherical nanoparticles, demonstrating the role of PVP in promoting controlled growth and preventing agglomeration. High-resolution transmission electron microscope (HRTEM) images depicted that the majority of nanoparticles maintain a spherical shape, though slight deviations from perfect sphericity can be discerned. Fourier-transform infrared (FTIR) spectroscopy confirmed that successful PVP encapsulation is crucial for shaping nanospheres and minimizing aggregation through steric hindrance. Photocatalytic activity evaluation using methylene blue (MB) dye degradation revealed significantly faster degradation by PVP-ZnS under ultraviolet (UV) irradiation (within 60 min as compared to 120 min for ZnS), showcasing its superior performance. This improvement can be attributed to the smaller size, higher surface area, and potentially optimized band gap of PVP-ZnS. Additionally, PVP-ZnS exhibited promising antibacterial activity against S. aureus and P. aeruginosa, with increased activity at higher nanoparticle concentrations.

7.
Materials (Basel) ; 17(13)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38998457

ABSTRACT

The present study investigates the effects of Er3+ doping content on the microstructure and up-conversion emission properties of CaTiO3: Er3+ phosphors as a potential material in biomedical applications. The CaTiO3: x%Er3+ (x = 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0%) films were synthesized on Ti substrates by a hydrothermal reaction at 200 °C for 24 h. The SEM image showed the formation of cubic nanorod CaTiO3: Er3+ films with a mean edge size value of (1-5) µm. When excited with 980 nm light, the CaTiO3: Er3+ films emitted a strong green band and a weak red band of Er3+ ions located at 543, 661, and 740 nm. The CaTiO3: Er3+ film exhibited excellent surface hydrophilicity with a contact angle of ~zero and good biocompatibility against baby hamster kidney (BHK) cells. CaTiO3: Er3+ films emerge as promising materials for different applications in the biomedical field.

8.
Spectrochim Acta A Mol Biomol Spectrosc ; 321: 124743, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-38950478

ABSTRACT

Devising carbon dots with long wavelength emission (red light or near infrared), high selectivity and good bio-compatibility is critical in fluorescence detection and imaging, but achieving this goal remains a great challenge. Herein, near-infrared emissive carbon dots (NIR-CDs) with obvious emission characteristic of 653 nm were synthesized through hydrothermally treatment of toluidine bule and gallic acid. Noticeably, the NIR-CDs exhibited excellent selectivity and sensitivity to hypochlorite (ClO-), and the limit of detection is as low as 42.7 nM. The selective recognition reaction between ClO- and the surface functional groups of NIR-CDs inhibits the fluorescence from NIR-CDs. The quenching mechanism was confirmed by fluorescence lifetime decays, FT-IR spectroscopy and UV-vis absorption spectra. More remarkably, the NIR-CDs have rich hydrophilic groups showed lower cytotoxicity, excellent bio-compatibility and specific cell membrane localization ability. The established spectrofluorometric method based on NIR-CDs has been used to determination of ClO- level in tap water sample, the recoveries were 97.7 %-103.3 %. In addition, the NIR-CDs also has been successfully applied for the imaging of cell membrane. The study provides a novel idea for developing NIR ClO- probe as well as cell membrane localization probe based on CDs, which present bright prospects in real water samples monitoring and cell membrane imaging.


Subject(s)
Carbon , Cell Membrane , Hypochlorous Acid , Quantum Dots , Hypochlorous Acid/analysis , Quantum Dots/chemistry , Carbon/chemistry , Humans , Cell Membrane/chemistry , Spectrometry, Fluorescence , Limit of Detection , Spectroscopy, Fourier Transform Infrared , Spectroscopy, Near-Infrared/methods , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , HeLa Cells
9.
Beilstein J Nanotechnol ; 15: 743-754, 2024.
Article in English | MEDLINE | ID: mdl-38952414

ABSTRACT

This paper presents an investigation into the influence of repeating cycles of hydrothermal growth processes and rapid thermal annealing (HT+RTA) on the properties of CuO thin films. An innovative hydrothermal method ensures homogeneous single-phase films initially. However, their electrical instability and susceptibility to cracking under the influence of temperature have posed a challenge to their utilization in electronic devices. To address this limitation, the HT+RTA procedure has been developed, which effectively eliminated the issue. Comprehensive surface analysis confirmed the procedure's ability to yield continuous films in which the content of organic compounds responsible for the formation of cracks significantly decreases. Structural analysis underscored the achieved improvements in the crystalline quality of the films. The implementation of the HT+RTA procedure significantly enhances the potential of CuO films for electronic applications. Key findings from Kelvin probe force microscopy analysis demonstrate the possibility of modulating the work function of the material. In addition, scanning capacitance microscopy measurements provided information on the changes in the local carrier concentration with each repetition. These studies indicate the increased usefulness of CuO thin films obtained from the HT+RTA procedure, which expands the possibilities of their applications in electronic devices.

10.
Molecules ; 29(11)2024 May 28.
Article in English | MEDLINE | ID: mdl-38893408

ABSTRACT

The hierarchical porous carbon-based materials derived from biomass are beneficial for the enhancement of electrochemical performances in supercapacitors. Herein, we report the fabrication of nitrogen-doped 3D flower-like hierarchical porous carbon (NPC) assembled by nanosheets using a mixture of urea, ZnCl2, and starch via a low-temperature hydrothermal reaction and high-temperature carbonization process. As a consequence, the optimized mass ratio for the mixture is 2:2:2 and the temperature is 700 °C. The NPC structures are capable of electron transport and ion diffusion owing to their high specific surface area (1498.4 m2 g-1) and rich heteroatoms. Thereby, the resultant NPC electrodes display excellent capacitive performance, with a high specific capacitance of 249.7 F g-1 at 1.0 A g-1 and good cycling stability. Remarkably, this implies a superior energy density of 42.98 Wh kg-1 with a power density of 7500 W kg-1 in organic electrolyte for the symmetrical supercapacitor. This result verifies the good performance of as-synthesized carbon materials in capacitive energy storage applications, which is inseparable from the hierarchical porous features of the materials.

11.
Sci Rep ; 14(1): 14638, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918537

ABSTRACT

Since being first published in 2018, the use of two-dimensional MXene in solar cells has attracted significant interest. This study presents, for the first time, the synthesis of an efficient hybrid electrocatalyst in the form of a nanocomposite (MXene/CoS)-SnO2 designed to function as a high-performance electron transfer layer (ETL). The study can be divided into three distinct parts. The first part involves the synthesis of single-layer Ti3C2Tx MXene nanosheets, followed by the preparation of a CoS solution. Subsequently, in the second part, the fabrication of MXene/CoS heterostructure nanocomposites is carried out, and a comprehensive characterization is conducted to evaluate the physical, structural, and optical properties. In the third part, the attention is on the crucial characterizations of the novel nanocomposite-electron transport layer (ETL) solution, significantly contributing to the evolution of perovskite solar cells. Upon optimising the composition, an exceptional power conversion efficiency of more than 17.69% is attained from 13.81% of the control devices with fill factor (FF), short-circuit current density (Jsc), and open-circuit voltage (Voc) were 66.51%, 20.74 mA/cm2, and 1.282 V. Therefore, this PCE is 21.93% higher than the control device. The groundbreaking MXene/CoS (2 mg mL-1) strategy reported in this research represents a promising and innovative avenue for the realization of highly efficient perovskite solar cells.

12.
J Fluoresc ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38856801

ABSTRACT

Bio-imaging is a crucial tool for researchers in the fields of cell biology and developmental biomedical sector. Among the various available imaging techniques, fluorescence based imaging stands out due to its high sensitivity and specificity. However, traditional fluorescent materials used in biological imaging often suffer from issues such as photostability and biocompatibility. Moreover, plant tissues contain compounds that cause autofluorescence and light scattering, which can hinder fluorescence microscopy effectiveness. This study explores the development of fluorescent carbon dots (Cm-CDs) synthesized from Citrus medica fruit extract for the fluorescence imaging of Vigna radiata root cells. The successful synthesis of CDs with an average size of 6.7 nm is confirmed by Transmission Electron Microscopy (TEM). The X-ray diffraction (XRD) analysis and raman spectroscopy indicated that the obtained CDs are amorphous in nature. The presence of various functional groups on the surface of CDs were identified by Fourier transform infrared (FTIR) spectra. The optical characteristics of Cm-CDs were studied by UV-Visible spectroscopy and photoluminescence spectroscopy. Cm-CDs demonstrated strong excitation-dependent fluorescence, good solubility, and effective penetration in to the Vigna radiata root cells with multicolor luminescence, and addressed autofluorescence issues. Additionally, a comparative analysis determined the optimal concentration for high-resolution, multi-color root cell imaging, with Cm-CD2 (2.5 mg/ml) exhibiting the highest photoluminescence (PL) intensity. These findings highlight the potential of Cm-CDs in enhancing direct endocytosis and overcoming autofluorescence in plant cell imaging, offering promising advancements for cell biology research.

13.
Materials (Basel) ; 17(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38730761

ABSTRACT

Utilizing MgO as the precursor and deionized water as the solvent, this study synthesized nanoparticles of Mg(OH)2 via hydrothermal methods, aiming to control its purity, particle size, and morphology by understanding its growth under non-uniform nucleation. Characterization of crystal morphology and structure was conducted through scanning electron microscopy and X-ray diffraction, while laser particle size detection assessed the secondary particle size distribution. The study focused on how MgO's hydrothermal process conditions influence Mg(OH)2 crystal growth, particularly through ion concentration and release rate adjustments to direct crystal growth facets. These adjustments shifted the dominant growth plane, enhancing the peak intensity ratio I001/I101 from 1.03 to 2.14, thereby reducing surface polarity and secondary aggregation of crystals. The study of the physicochemical properties of the same sample at different times revealed the pattern of crystal dissolution and recrystallization. A 2 h hydrothermal reaction notably altered the particle size distribution, with a decrease in particles sized 0.2~0.4 µm and an increase in those sized 0.4~0.6 µm, alongside new particles over 1 µm, indicating a shift toward uniformity through dissolution and recrystallization. Optimal conditions (6% magnesium oxide concentration, 160 °C, 2 h) led to the synthesis of highly dispersed, uniformly sized magnesium hydroxide, showcasing a simple, eco-friendly, and high-yield process.

14.
Front Chem ; 12: 1408961, 2024.
Article in English | MEDLINE | ID: mdl-38752200

ABSTRACT

One-step hydrothermal method has been used to synthesize YMnO3@NiO (YMO@NO) photocatalysts with high photocatalytic activity for the degradation of oil and gas field wastewater under simulated solar irradiation. Through various characterization methods, it has been confirmed that the YMO@NO photocatalyst comprises only YMO and NO, without any other impurities. The microstructure characterization confirmed that the YMO@NO photocatalyst was composed of large squares and fine particles, and heterojunction was formed at the interface of YMO and NO. The optical properties confirm that the YMO@NO photocatalyst has high UV-vis optical absorption coefficient, suggesting that it has high UV-vis photocatalytic activity. Taking oil and gas field wastewater as degradation object, YMO@NO photocatalyst showed the highest photocatalytic activity (98%) when the catalyst content was 1.5 g/L, the mass percentage of NO was 3%, and the irradiation time was 60 min. Capture and stability experiments confirm that the YMO@NO photocatalyst is recyclable and electrons, holes, hydroxyl radicals and superoxide radicals play major roles in the photocatalysis process. Based on experiments and theoretical calculations, a reasonable photocatalytic mechanism of the YMO@NO photocatalyst is proposed.

15.
Nanomaterials (Basel) ; 14(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38786819

ABSTRACT

ZnO nanostructures show great potential in hydrogen sensing at atmospheric conditions for good gas adsorption abilities. However, there is less research on low-pressure hydrogen sensing performance due to its low concentration and in-homogeneous distributions under low-pressure environments. Here, we report the low-pressure hydrogen sensing by the construction of Al-N-co-doped ZnO nanorods based on the adsorption-induced field emission enhancement effect in the pressure range of 10-7 to 10-3 Pa. The investigation indicates that the Al-N-co-doped ZnO sample is the most sensitive to low-pressure hydrogen sensing among all ZnO samples, with the highest sensing current increase of 140% for 5 min emission. In addition, the increased amplitude of sensing current for the Al-N-co-doped ZnO sample could reach 75% at the pressure 7 × 10-3 Pa for 1 min emission. This work not only expands the hydrogen sensing applications to the co-doped ZnO nanomaterials, but also provides a promising approach to develop field emission cathodes with strong low-pressure hydrogen sensing effect.

16.
Environ Sci Pollut Res Int ; 31(23): 33482-33494, 2024 May.
Article in English | MEDLINE | ID: mdl-38683425

ABSTRACT

In the present study, green synthesis of silver nanoparticles (VNE-AgNPs) via Verbascum nudatum extract was carried out for the first time. The synthesized AgNPs were characterized by different spectral methods such as UV-vis, FTIR, XRD, TEM, and EDAX. According to TEM analyses, the average size range of AgNPs was 17-21 nm, and the dominant peaks in the 111°, 200°, 221°, and 311° planes in the XRD pattern indicated the Ag-NPs FCC crystal structure. FTIR data showed that VNE-AgNPs interacted with many reducing, capping, and stabilizing phytochemicals during green synthesis. VNE-AgNPs had higher antibacterial activity against S. aureus and E. coli bacterial strains with a maximum inhibition zone of 21 and 18 mm, respectively, than penicillin 5 IU, used as a positive control in the study. The cytotoxic effect of VNE-AgNPs appeared at a concentration of 50 µg/mL in L929 cells and 5 µg/mL in cancer (A549) cells. When the impact of VNE-AgNPs and C-AgNPs on inflammation was compared, it was found that VNE-AgNPs increased TNF-α levels (333.45 ± 67.20 ng/mg-protein) statistically (p < 0.05) more than TNF-α levels (256.92 ± 27.88 ng/mg-protein) in cells treated with C-AgNPs. VNE-Ag-NPs were found to have a degradation efficiency of 65% against methylene blue (MB) dye within 3 h.


Subject(s)
Metal Nanoparticles , Plant Extracts , Silver , Metal Nanoparticles/chemistry , Silver/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Green Chemistry Technology , Escherichia coli/drug effects , Staphylococcus aureus/drug effects , Humans , Coloring Agents/chemistry
17.
Materials (Basel) ; 17(8)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38673251

ABSTRACT

Novel flake-like Ni1-xSnxO2 particles were successfully prepared by template-free hydrothermal synthesis. The prepared samples were investigated for their properties by different characterization techniques. Scanning micrographs showed that the obtained particles consisted of nanoflakes. The X-ray diffraction results of the Ni1-xSnxO2 revealed the formation of mixed-phase Ni/SnO2 having the typical tetragonal structure of SnO2, and the cubic structure of Ni in a nanocrystalline nature. The doping with Ni had a certain influence on the host's lattice structure of SnO2 at different doping concentrations. Confirmation of the functional groups and the elements in the nanomaterials was accomplished using FTIR and EDS analyses. The electrochemical performance analysis of the prepared nanomaterials were carried out with the help of the CV, GCD, and EIS techniques. The specific capacitance of the synthesized nanomaterials with different concentrations of Ni dopant in SnO2 was analyzed at different scanning rates. Interestingly, a 5% Ni-doped SnO2 nanocomposite exhibited a maximum specific capacitance of 841.85 F g-1 at 5 mV s-1 in a 6 M KOH electrolyte. Further, to boost the electrochemical performance, a redox additive electrolyte was utilized, which exhibited a maximum specific capacitance of 2130.33 at 5 mV s-1 and an excellent capacitance retention of 93.22% after 10,000 GCD cycles. These excellent electrochemical characteristics suggest that the Ni/SnO2 nanocomposite could be utilized as an electrode material for high-performance supercapacitors.

18.
Sci Rep ; 14(1): 7716, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38565595

ABSTRACT

A simple technique was utilized to fabricate pure hexagonal La2O3 nanorods by utilizing lanthanum(III) nitrate hexahydrate (La(NO3)3·6H2O) and ammonia (NH4OH). The La2O3 nanoparticles were analyzed using XRD, TGA, Raman, SEM, FTIR, TEM, PL spectroscopy, and Mott-Schottky techniques. The XRD analysis confirmed the production of La(OH)3 nanorods under appropriate conditions, which were then successfully converted into La2O2CO3 and finally into La2O3 nanorods through annealing. The TGA analysis showed that the total weight loss was due to water evaporation and the dissolution of minimal moisture present in the environment. The FTIR analysis confirmed the presence of functional groups. The SEM analysis revealed changes in morphology. The TEM analysis to determine the particle size. The PL findings showed three emission peaks at 390, 520, and 698 nm due to interband transitions and defects in the samples. The Mott-Schottky analysis demonstrated that the flatband potential and acceptor density varied with annealing temperature, ranging from 1 to 1.2 V and 2 × 1018 to 1.4 × 1019 cm-3, respectively. Annealing at 1000 °C resulted in the lowest resistance to charge transfer (Rct).

19.
ACS Appl Mater Interfaces ; 16(15): 18959-18970, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38569111

ABSTRACT

Fe-based Prussian blue (Fe-PB) analogues have emerged as promising cathode materials for sodium-ion batteries, owing to their cost-effectiveness, high theoretical capacity, and environmental friendliness. However, their practical application is hindered by [Fe(CN)6] defects, negatively impacting capacity and cycle stability. This work reports a hollow layered Fe-PB composite material using 1,3,5-benzenetricarboxylic acid (BTA) as a chelating and etching agent by the hydrothermal method. Compared to benzoic acid, our approach significantly reduces defects and enhances the yield of Fe-PB. Notably, the hollow layered structure shortens the diffusion path of sodium ions, enhances the activity of low-spin Fe in the Fe-PB lattice, and mitigates volume changes during Na-ion insertion/extraction into/from Fe-PB. As a sodium-ion battery cathode, this hollow layered Fe-PB exhibits an impressive initial capacity of 95.9 mAh g-1 at a high current density of 1 A g-1. Even after 500 cycles, it still maintains a considerable discharge capacity of 73.1 mAh g-1, showing a significantly lower capacity decay rate (0.048%) compared to the control sample (0.089%). Moreover, the full cell with BTA-PB-1.6 as the cathode and HC as the anode provides a considerable energy density of 312.2 Wh kg-1 at a power density of 291.0 W kg-1. This research not only enhances the Na storage performance of Fe-PB but also increases the yield of products obtained by hydrothermal methods, providing some technical reference for the production of PB materials using the low-yield hydrothermal method.

20.
Heliyon ; 10(6): e27550, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38510018

ABSTRACT

Heterojunction nanocomposites (ZnO:NiO:CuO) were synthesized via a hydrothermal method and annealed at three different temperatures (400 °C, 600 °C, and 800 °C). The structural, optical, and electrical properties were examined by employing XRD, SEM, UV-Vis, FTIR, and LCR meter techniques to investigate the effects of annealing. Increasing the annealing temperature resulted in the nanocomposites (NCPs) exhibiting enhanced crystallinity, purity, optical properties, and improved electrical and dielectric behavior. The calculated crystalline sizes (Debye-Scherrer method) of the NCPs were determined to be 21, 26 and 34 nm for annealing temperature 400 °C, 600 °C, and 800 °C, respectively. The calculated bandgaps of synthesized samples were found in the range of 2.92-2.55 eV. This temperature-dependent annealing process notably influenced particle size, morphology, band-gap characteristics, and photocatalytic efficiency. EDX analysis affirmed the sample purity, with elemental peaks of Zn, Cu, Ni, and O. These NCPs demonstrated exceptional photocatalytic activity against various dyes solutions (Methyl orange (MO), Methylene Blue (MB), and mixed solution of dyes) under sunlight and also showed good antibacterial properties assessed by the disc diffusion method. Notably, the nanocomposite annealed at 400 °C exhibited a particularly high degradation efficiency by degrading 96% MB and 91% MO in just 90 min under sunlight.

SELECTION OF CITATIONS
SEARCH DETAIL