Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Sensors (Basel) ; 23(10)2023 May 22.
Article in English | MEDLINE | ID: mdl-37430877

ABSTRACT

This paper presents an analysis of the IEEE 802.11ax networks' coexistence with legacy stations, namely IEEE 802.11ac, IEEE 802.11n, and IEEE 802.11a. The IEEE 802.11ax standard introduces several new features that can enhance network performance and capacity. The legacy devices that do not support these features will continue to coexist with newer devices, creating a mixed network environment. This usually leads to a deterioration in the overall performance of such networks; therefore, in the paper, we want to show how we can reduce the negative impact of legacy devices. In this study, we investigate the performance of mixed networks by applying various parameters to both the MAC and PHY layers. We focus on evaluating the impact of the BSS coloring mechanism introduced to the IEEE 802.11ax standard on network performance. We also examine the impact of A-MPDU and A-MSDU aggregations on network efficiency. Through simulations, we analyze the typical performance metrics such as throughput, mean packet delay, and packet loss of mixed networks with different topologies and configurations. Our findings indicate that implementing the BSS coloring mechanism in dense networks can increase throughput by up to 43%. We also show that the presence of legacy devices in the network disrupts the functioning of this mechanism. To address this, we recommend using an aggregation technique, which can improve throughput by up to 79%. The presented research revealed that it is possible to optimize the performance of mixed IEEE 802.11ax networks.

2.
Sensors (Basel) ; 22(22)2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36433197

ABSTRACT

The widespread use of the Internet of Things makes it relevant to use public IP networks for simultaneous access by both users and wireless sensors. To achieve this, a significant reduction in the subscriber devices' energy consumption is required. This paper analyzes the application features of the collective dynamic routing method both with and without the use of a robust method for estimating the channel data rate for sensors' communication in wireless public networks. Based on the analysis, a novel modification of the collective dynamic routing method has been developed that reduces the sensors' energy consumption while keeping a high data rate and short delivery time for users. An analysis of the network load, the total data transfer rate over the network, and the parameters affecting the sensors' energy consumption was carried out for a segment of a seamless IEEE 802.11ax network. The simulation demonstrated a high efficiency of using a novel modification of the collective dynamic routing method for access to users and wireless sensors.


Subject(s)
Computer Communication Networks , Wireless Technology , Computer Simulation , Communication
3.
Sensors (Basel) ; 22(12)2022 Jun 11.
Article in English | MEDLINE | ID: mdl-35746211

ABSTRACT

In this study, we address the problem of downlink throughput degradation in dense wireless local area networks (WLANs) based on the IEEE 802.11ax standard. We demonstrate that this problem essentially results from the asymmetric characteristic of carrier sense multiple access between downlink and uplink transmissions in infrastructure WLANs, and it is exacerbated by a dynamic sensitivity control algorithm that aims to improve spatial reuse (SR) in IEEE 802.11ax. To solve this problem, we propose the interference-aware two-level differentiation mechanism consisting of the dual channel access (DCA) and supplemental power control (SPC) schemes. The proposed mechanism introduces a new measure called a spatial reusability indicator, which roughly estimates the signal-to-interference ratio from the received signal strength of beacon frames. Based on this measure, stations (STAs) are classified into the following two categories: spatial reusable STAs (SR-STAs) and non-spatial reusable STAs (NSR-STAs). Because SR-STAs are more robust to interference than NSR-STAs, the DCA scheme prioritizes transmissions to SR-STAs over those to NSR-STAs by using differentiated carrier sensing thresholds. Moreover, the SPC scheme selectively increases the transmission power to NSR-STAs to compensate for transmission failure due to interference. By combining the SPC and DCA schemes, the proposed mechanism effectively differentiates the downlink transmissions to SR-STAs and NSR-STAs in terms of channel access and transmission power, and it can boost the possibility of successful SR. The proposed mechanism can be easily implemented in IEEE 802.11ax without any complex calculation or significant signaling overhead. Moreover, we provide a practical guideline to determine appropriate parameter values for use in the proposed mechanism. The extensive simulation results obtained in this study confirm that the proposed mechanism increases the downlink throughput by more than several times without decreasing the overall throughput, compared to the existing mechanisms, and it maintains fairness between SR-STAs and NSR-STAs in terms of the ratio of successful transmission.

4.
Sensors (Basel) ; 21(15)2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34372346

ABSTRACT

IEEE 802.11ax uplink orthogonal frequency division multiple access (OFDMA)-based random access (UORA) is a new feature for random channel access in wireless local area networks (WLANs). Similar to the legacy random access scheme in WLANs, UORA performs the OFDMA backoff (OBO) procedure to access the channel and decides on a random OBO counter within the OFDMA contention window (OCW) value. An access point (AP) can determine the OCW range and inform each station (STA) of it. However, how to determine a reasonable OCW range is beyond the scope of the IEEE 802.11ax standard. The OCW range is crucial to the UORA performance, and it primarily depends on the number of contending STAs, but it is challenging for the AP to accurately and quickly estimate or keep track of the number of contending STAs without the aid of a specific signaling mechanism. In addition, the one for this purpose incurs an additional delay and overhead in the channel access procedure. Therefore, the performance of a UORA scheme can be degraded by an improper OCW range, especially when the number of contending STAs changes dynamically. We first observed the effect of OCW values on channel efficiency and derived its optimal value from an analytical model. Next, we proposed a simple yet effective OBO control scheme where each STA determines its own OBO counter in a distributed manner rather than adjusting the OCW value globally. In the proposed scheme, each STA determines an appropriate OBO counter depending on whether the previous transmission was successful or not so that collisions can be mitigated without leaving OFDMA resource units unnecessarily idle. The results of a simulation study confirm that the throughput of the proposed scheme is comparable to the optimal OCW-based scheme and is improved by up to 15 times compared to the standard UORA scheme.

5.
Sensors (Basel) ; 18(10)2018 Oct 09.
Article in English | MEDLINE | ID: mdl-30304788

ABSTRACT

The increasing use of Internet of Things (IoT) devices in specific areas results in an interference among them and the quality of communications can be severely degraded. To deal with this interference issue, the IEEE 802.11ax standard has been established in hyper-dense wireless networking systems. The 802.11ax adopts a new candidate technology that is called multiple network allocation vector in order to mitigate the interference problem. In this paper, we point out a potential problem in multiple network allocation vector which can cause delays to communication among IoT devices in hyper-dense wireless networks. Furthermore, this paper introduces an adaptive beam alignment algorithm for interference resolution, and analyzes the potential delays of communications among IoT devices under interference conditions. Finally, we simulate our proposed algorithm in densely deployed environments and show that the interference can be mitigated and the IEEE 802.11ax-based IoT devices can utilize air interface more fairly compared to conventional IEEE 802.11 distributed coordination function.

SELECTION OF CITATIONS
SEARCH DETAIL