Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.662
Filter
1.
Front Cell Neurosci ; 18: 1444395, 2024.
Article in English | MEDLINE | ID: mdl-39139399

ABSTRACT

Type 1 and type 2 diabetic patients experience alterations in the Central Nervous System, leading to cognitive deficits. Cognitive deficits have been also observed in animal models of diabetes such as impaired sensory perception, as well as deficits in working and spatial memory functions. It has been suggested that a reduction of insulin-like growth factor-I (IGF-I) and/or insulin levels may induce these neurological disorders. We have studied synaptic plasticity in the primary somatosensory cortex of young streptozotocin (STZ)-diabetic mice. We focused on the influence of reduced IGF-I brain levels on cortical synaptic plasticity. Unit recordings were conducted in layer 2/3 neurons of the primary somatosensory (S1) cortex in both control and STZ-diabetic mice under isoflurane anesthesia. Synaptic plasticity was induced by repetitive whisker stimulation. Results showed that repetitive stimulation of whiskers (8 Hz induction train) elicited a long-term potentiation (LTP) in layer 2/3 neurons of the S1 cortex of control mice. In contrast, the same induction train elicited a long-term depression (LTD) in STZ-diabetic mice that was dependent on NMDA and metabotropic glutamatergic receptors. The reduction of IGF-I brain levels in diabetes could be responsible of synaptic plasticity impairment, as evidenced by improved response facilitation in STZ-diabetic mice following the application of IGF-I. This hypothesis was further supported by immunochemical techniques, which revealed a reduction in IGF-I receptors in the layer 2/3 of the S1 cortex in STZ-diabetic animals. The observed synaptic plasticity impairments in STZ-diabetic animals were accompanied by decreased performance in a whisker discrimination task, along with reductions in IGF-I, GluR1, and NMDA receptors observed in immunochemical studies. In conclusion, impaired synaptic plasticity in the S1 cortex may stem from reduced IGF-I signaling, leading to decreased intracellular signal pathways and thus, glutamatergic receptor numbers in the cellular membrane.

2.
Environ Toxicol ; 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39109785

ABSTRACT

Cardiovascular disease is one of the leading causes of death worldwide and has a high prevalence. Insulin-like growth factor-II receptor α (IGF-IIRα) acts as a stress-inducible negative regulator. This study focused on the substantial impact of heightened expression of IGF-IIRα in cardiac myoblasts and its association with the exacerbation of cardiac dysfunction. Using lipopolysaccharide (LPS)-induced H9c2 cardiac myoblasts as a model for sepsis, we aimed to elucidate the molecular interactions between IGF-IIRα and LPS in exacerbating cardiac injury. Our findings demonstrated a synergistic induction of cardiac inflammation and hypertrophy by LPS stimulation and IGF-IIRα overexpression, leading to decreased cell survival. Excessive calcineurin activity, triggered by this combined condition, was identified as a key factor exacerbating the negative effects on cell survival. Cellular changes such as cell enlargement, disrupted actin filaments, and upregulation of hypertrophy-related and inflammation-related proteins contributed to the overall hypertrophic and inflammatory responses. Overexpression of IGF-IIRα also exacerbated apoptosis induced by LPS in H9c2 cardiac myoblasts. Inhibiting calcineurin in LPS-treated H9c2 cardiac myoblasts with IGF-IIRα overexpression effectively reversed the detrimental effects, reducing cell damage and mitigating apoptosis-related cardiac mechanisms. Our study suggests that under sepsis-like conditions in the heart with IGF-IIRα overexpression, hyperactivation of calcineurin worsens cardiac damage. Suppressing IGF-IIRα and calcineurin expression could be a potential intervention to alleviate the impact of the illness and improve cardiac function.

3.
Neurochem Res ; 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39110291

ABSTRACT

BACKGROUND: Circular RNAs (circRNAs) are involved in the neuroblastoma (NB) development. Objectie: The study aimed to determine the biological behaviors of circ_0001361 and explore its underlying mechanism in NB. METHODS: The circ_0001361, miR-490-5p, and IGF2 levels were measured using quantitative real-time polymerase chain reaction. Cellular processes were analyzed using MTT assay or fluorescence-activated cell sorting (FACS). Phosphorylated (p)-PI3K, p-AKT, Bax, and caspase-3 were tested by western blot. Dual-luciferase reporter analysis together with RNA pull-down analysis were utilized to evaluate the correlation of miR-490-5p and circ_0001361 or IGF2. RESULTS: The results in this study illustrated that an elevation of circ_0001361 levels was observed in NB. Depletion of circ_0001361 suppressed the viability but facilitated apoptosis of NB cells. Circ_0001361 sponged miR-490-5p, which targeted to regulate IGF2. Inhibition of miR-490-5p rescued the effect induced by circ_0001361 knockdown, while deletion of IGF2 rescued the effect induced by the miR-490-5p inhibitor. CONCLUSIONS: In summary, a loss of circ_0001361 inhibited NB progression via targeting the miR-490-5p/IGF2 axis, suggesting that circ_0001361 may be a novel therapeutical target of NB.

4.
J Cancer ; 15(15): 4939-4954, 2024.
Article in English | MEDLINE | ID: mdl-39132166

ABSTRACT

Circular RNAs (circRNAs) are involved in the pathogenesis of esophageal squamous cell carcinoma (ESCC). This study aimed to explore the mechanisms of aberrant expression and functions of circ_0006168 in ESCC. In this study, real-time qPCR and fluorescence in situ hybridization (FISH) are adopted to estimate the expression and localization of circ_0006168 in cancer tissues and cells. Methylated RNA immunoprecipitation (MeRIP) was performed to detect the N6-methyladenosine (m6A) modification of circ_0006168. Gain- and loss-of-functions of circ_0006168 were performed to identify its role in ESCC progression. RNA-binding protein immunoprecipitation (RIP) was used to detect the interaction of circ_0006168 with IGF2BP2. Luciferase reporter assay and RIP are used to confirm the circ_0006168/miR-384/STAT3 ceRNA network. Our results showed that the expression of circ_0006168 was upregulated in ESCC tissues and cells. METTL3-mediated m6A modification increased the expression of circ_0006168 via IGF2BP2-dependent way in TE-1 cells. Circ_0006168 promoted cell proliferation, migration, invasion, cell cycle progression and inhibited cell apoptosis, while knockdown of circ_0006168 had the reverse effects. Mechanistically, circ_0006168 acted its functions via miR-384/STAT3/Snail axis in TE-1 cells. In conclusion, circ_0006168 is upregulated in ESCC and m6A methylation increased its expression via IGF2BP2. CircRNA_0006168 promotes cell migration, invasion by regulating EMT via miR-384/STAT3/Snail axis in ESCC.

5.
Thorac Cancer ; 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090761

ABSTRACT

BACKGROUND: Methyltransferase 3 (METTL3) accelerates N6-methyladenosine (m6A) modifications and affects cancer progression, including non-small-cell lung cancer (NSCLC). In this study, we aimed to explore the regulatory mechanisms of METTL3 underling NSCLC. METHODS: Immunohistochemical assay, quantitative real-time polymerase chain reaction (qRT-PCR) assay, and western blot assay were conducted for gene expression. MTT assay and colony formation assay were performed to explore cell proliferation capacity. Cell apoptosis and THP-1 cell polarization were estimated by flow cytometry analysis. Cell migration and invasion capacities were evaluated by transwell assay. Methylated RNA immunoprecipitation assay, dual-luciferase reporter assay, actinomycin D treatment and RIP assay were performed to analyze the relationships of METTL3, insulin-like growth factor 2 mRNA binding protein 1 (IGF2BP1), and transient receptor potential cation channel subfamily V member 1 (TRPV1). The functions of METTL3 and TRPV1 in vivo were investigated through establishing the murine xenograft model. RESULTS: TRPV1 expression was upregulated in NSCLC and related poor prognosis. TRPV1 silencing inhibited NSCLC cell growth and metastasis, induced NSCLC cell apoptosis, and repressed M2 macrophage polarization. The results showed that METTL3 and IGF2BP1 could regulate TRPV1 expression through m6A methylation modification. Moreover, METTL3 deficiency inhibited NSCLC cell growth, metastasis, and M2 macrophage polarization and facilitated NSCLC cell apoptosis, while TRPV1 overexpression restored the impacts. In addition, METTL3 knockdown restrained tumor growth in vivo via regulating TRPV1 expression. CONCLUSION: METTL3 bound to IGF2BP1 and enhanced IGF2BP1's m6A recognition of TRPV1 mRNA, thereby promoting NSCLC cell growth and metastasis, and inhibiting M2 macrophage polarization.

6.
Exp Gerontol ; 195: 112533, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39134215

ABSTRACT

Cognitive impairment is a common feature in neurodegenerative diseases such as multiple sclerosis (MS). This study aims to explore the potential of enhancing the beneficial effects of fluoxetine (FLX), a neuroprotective agent known for its ability to increase neural plasticity by utilizing nanoparticles. The study specifically focuses on the synthesis and evaluation of PEGylated chitosan nanoparticles of FLX and its effect on demyelination and the subsequent cognitive impairment (CI) in the hippocampus of rats induced by local injection of lysophosphatidylcholine (LPC). Chitosan/polyethylene glycol nanoparticles were synthesized, and their properties were analyzed. Demyelination was induced in rats via hippocampal injections of lysolecithin. Behavioral assessments included open field maze, elevated plus maze, and novel object recognition memory (NORM) tests. Hippocampal levels of insulin-like growth factor (IGF-1) and brain-derived neurotrophic factor (BDNF) were measured using enzyme-linked immunoassay (ELISA). The extent of remyelination was quantified using Luxol fast blue staining. Nanoparticle size measured 240.2 nm with 53 % encapsulation efficacy. Drug release exhibited a slow pattern, with 76 % released within 4 h. Nanoparticle-treated rats displayed reduced anxiety-like behavior, improved memory, increased BDNF levels, and a reduced extent of demyelination, with no change in IGF- levels. In addition, FLX -loaded chitosan nanoparticles had better effect on cognitive improvement, BDNF levels in the hippocampus that FLX. Altering pharmacokinetics and possibly pharmacodynamics. These findings highlight the potential of innovative drug delivery systems, encouraging further research in this direction.

7.
Cancers (Basel) ; 16(15)2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39123380

ABSTRACT

Early-stage hepatocellular carcinoma (HCC) is still difficult to cure for its high recurrence rate. This study aimed to examine whether glycemic burden management could be one way to improve outcomes of early-stage HCC. A total of 137 very early or early-stage HCC patients who underwent resection or ablation at Samsung Medical Center and had glycemic burden assessment were analyzed. Glycemic burden was assessed using hemoglobin A1c (HbA1c) level. Outcomes were recurrence and overall survival. Risks of recurrence and overall survival were compared according to glycemic burden using a cut-off point of 6.5% or two cut-off points of 6.0% and 7.5%. Overall, 51 (37.2%) patients experienced HCC recurrence. The adjusted hazard ratio (aHR) for recurrence comparing patients with HbA1c > 6.5% to those with HbA1c ≤ 6.5% was 2.66 (95% CI: 1.26-5.78). The risk of recurrence increased in a dose-dependent manner by glycemic burden; aHR for 6.0 < HbA1c ≤ 7.5%: 2.00 (95% CI: 0.78-5.55); aHR for HbA1c > 7.5%: 6.05 (95% CI: 2.31-17.5). Mortality was observed in 16 (11.7%) patients. The risk of mortality was higher for HbA1c > 6.5% than for HbA1c ≤ 6.5% (aHR: 2.33; 95% CI: 1.10-5.08). There was also a dose-response relationship between overall survival and glycemic burden. Glycemic burden assessed using HbA1c level was significantly associated with outcomes of early-stage HCC patients. Good glycemic control could be a therapeutic goal to improve clinical outcomes in these populations.

8.
Theriogenology ; 228: 75-80, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39098123

ABSTRACT

In humans' and experimental animals' components of the somatotropic axis, such as growth hormone (GH) and insulin-like growth factor 1 (IGF-1) concentrations, decrease with advancing age. Although there is evidence regarding IGF-1, the effect of age on GH in mares, as well as the relationships between both parameters, have not yet been elucidated. On the other hand, although GH and IGF-1 are related to follicular development, it is unknown if they could be correlated with the circulating concentrations of ovarian steroids in mares, as occurs in other species. The hypothesis of this study was that both GH and IGF-1 could experience physiological changes with advancing age also in mares, and that both GH/IGF-1 could be correlated with oestradiol-17ß (E2) and progesterone (P4), as recorded for other species. Hence, the objective of this study was to evaluate the concentrations of GH, IGF-1, E2, and P4 in mares, according to the different ages. Blood samples were drawn from 56 healthy cyclic Spanish Purebred mares belonging to four different age groups: 6-9 years, 10-13 years, 14-16 years and >16 years. Mares aged 6-9 years and 10-13 years showed higher GH concentrations (P < 0.05) than mares of 14-16 and >16 years; and mares aged 14-16 showed higher GH concentrations (P < 0.05) than >16 years (P < 0.05). Mares aged >16 years showed lower IGF-1 concentrations (P < 0.05) than mares of 6-9, 10-13 and 14-16 years (P < 0.05). The concentrations of E2 and P4 showed no significant differences among different age groups. Both GH and IGF-1 were not correlated with each other or with E2 and P4. The concentrations of E2 and P4 did not change with age. Advancing age leads to a decrease in the activity of the somatotropic axis in physiological cyclic mares, represented by a significant GH reduction, which, however, was ascribed for IGF-1 exclusively to mares over 16 years of age, without alterations in steroid hormone patterns.

9.
Hormones (Athens) ; 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39112785

ABSTRACT

BACKGROUND: Chronic kidney disease is linked to a disturbed fibroblast growth factor-23 (FGF23)-Klotho axis and an imbalance between myostatin and insulin-like growth factor-1 (IGF-1) expression. This cross-sectional study investigates the association of the FGF23-Klotho axis and myokine profile with serum interleukin-6 (IL-6) and their interactions in pediatric patients. METHODS: Serum calcium, phosphorus, 25-hydroxyvitamin D, parathormone, c-terminal FGF23, a-Klotho, myostatin, follistatin, IGF-1, and IL-6 were measured in 53 patients with GFR < 60 ml/min/1,73m2. Myostatin to lean mass (LM) and to IGF-1 ratios were calculated. IL-6 level > 3rd quartile was considered as high. RESULTS: Myostatin, IGF-1, and follistatin were correlated to LM (rs = 0.513, p < 0.001, rs = 0.652, p < 0.001, rs=-0.483, p < 0.001). Myostatin and follistatin were correlated to IGF-1 (rs = 0.340, p = 0.014, rs=-0.385, p = 0.005). Myostatin/LM but not myostatin or myostatin/IGF-1 ratio was significantly higher in CKD 5D patients (p = 0.001,p = 0.844, p = 0.111). Among mineral bone parameters, lnFGF23 was correlated to lnIL-6 (rs = 0.397, p = 0.004) and associated with high IL-6 (OR 1.905, 95% CI 1.023-3.548). Among myokines, myostatin/IGF-1 ratio was correlated to lnIL-6 (rs = 0.395, p = 0.004) and associated with high IL-6 (OR 1.113, 95% CI 1.028-1.205). All associations were adjusted to CKD stage. Myostatin was correlated to lnFGF23 (rs = 0.331, p = 0.025) and myostatin/IGF-1 ratio to lnKlotho (rs=-0.363, p = 0.013), after adjustment for CKD stage, lnIL-6 and other mineral bone parameters. CONCLUSIONS: In pediatric CKD, FGF23 and myostatin/IGF-1 ratio are associated with IL-6, indicating a link between systemic inflammation, mineral bone, and myokine disorders. The correlations between myostatin and FGF23 and between myostatin/IGF-1 and Klotho suggest an interaction between mineral bone and muscle metabolism.

10.
Article in English | MEDLINE | ID: mdl-39097140

ABSTRACT

Muscle and bone are cooperatively preserved in Daurian ground squirrels (Spermophilus dauricus) during hibernation. As such, we hypothesized that IGF-1 and myostatin may contribute to musculoskeletal maintenance during this period. Thus, we systematically assessed changes in the protein expression levels of IGF-1 and myostatin, as well as their corresponding downstream targets, in the vastus medialis (VM) muscle and femur in Daurian ground squirrels during different stages. Group differences were determined using one-way analysis of variance (ANOVA). Results indicated that the co-localization levels of IGF-1 and its receptor (IGF-1R) increased by 50% during the pre-hibernation period (PRE) and by 35% during re-entry into torpor (RET) compared to the summer active period (SA). The phosphorylation level of FOXO1 in the VM muscle increased by 50% in the torpor (TOR) group and by 82% in the inter-bout arousal (IBA) group compared to the PRE group. The phosphorylation level of SGK-1 increased by 54% in the IBA group and by 62% in the RET group compared to the SA group. In contrast, the protein expression of IGF-1 and phosphorylation levels of PI3K, Akt, mTOR, and GSK3ß in the VM muscle showed no obvious differences among the different groups. ß-catenin protein expression was up-regulated by 84% in the RET group compared to the SA group, while the content of IGF-1 protein, correlation coefficients of IGF-1 and IGF-1R, and phosphorylation levels of PI3K, Akt, and GSK3ß in the femur showed no significant differences among groups. Regarding myostatin and its downstream targets, myostatin protein expression decreased by 70% in the RET group compared to the SA group, whereas ActRIIB protein expression and Smad2/3 phosphorylation in the VM muscle showed no obvious differences among groups. Furthermore, Smad2/3 phosphorylation decreased by 58% in the TOR group and 53% in the RET group compared to the SA group, whereas ActRIIB protein expression in the femur showed no obvious differences among groups. Overall, the observed changes in IGF-1 and myostatin expression and their downstream targets may be involved in musculoskeletal preservation during hibernation in Daurian ground squirrels.

11.
Cureus ; 16(7): e64165, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39119396

ABSTRACT

Acromegaly is a rare disease caused mainly by pituitary adenoma, which results in elevated growth hormone (GH) levels and its primary mediator, insulin-like growth factor (IGF-1). The condition causes various complications, including cardiovascular, respiratory, neuropsychiatric, metabolic, and gastrointestinal complications, which affect the patient's quality of life. Metabolically, there has been an increased incidence of acromegaly-associated diabetes mellitus (DM), IGF-1 being the primary mediator, affecting the patient's overall morbidity/mortality and associated surge in cardiovascular events. In the current state of medicine, both nonpharmacologic and pharmacologic approaches in managing acromegaly-associated DM are validated, having their own individualistic positive or negative impact on glucose metabolism. This review article has compiled studies to demonstrate a link between acromegaly. It summarises the existing data on acromegaly associated with DM, explicitly understanding the effect of various medical treatments on glucose homeostasis.

12.
Clin Transl Med ; 14(8): e1793, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39113232

ABSTRACT

INTRODUCTION: Liver fibrosis is primarily driven by the activation of hepatic stellate cells (HSCs), which involves various epigenetic modifications. OBJECTIVES: N6-methyladenosine (m6A), the most prevalent RNA modification in eukaryotic cells, influences numerous physiological and pathological processes. Nevertheless, the role of insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3), a reader gene mediating m6A modifications, in liver fibrosis remains unclear. METHODS AND RESULTS: This study demonstrated that IGF2BP3 knockout reduces liver fibrosis by promoting HSC ferroptosis (FPT) and inactivating HSCs. Multi-omics analysis revealed that HSC-specific IGF2BP3 knockout decreased m6A content in Jagged1 (Jag1), a key component of the Notch signalling pathway. Furthermore, IGF2BP3 deficiency significantly reduced the expression of hairy and enhancer of split-1 (Hes1), a transcription factor in the Notch/Jag1 signalling pathway, with mRNA levels declining to 35%-62% and protein levels to 28%-35%. Additionally, it suppressed glutathione peroxidase 4 (GPX4) (decreased to approximately 31%-38%), a negative regulator of FPT, thereby facilitating HSC FPT progression and reducing profibrotic gene expression. CONCLUSION: These findings uncover a novel IGF2BP3/Notch/Jag1 signalling pathway involving HSC FPT, suggesting promising targets for ameliorating liver fibrosis. KEY POINTS/HIGHLIGHTS: IGF2BP3 deficiency inactivates Jag1 signalling. IGF2BP3 deficiency-mediated m6A modifications promote HSC ferroptosis. IGF2BP3 inhibition facilitates ferroptosis in HSCs via the Hes1/GPX4 axis. IGF2BP3 deficiency inactivates Jag1/Notch1/3/Hes1 signalling pathway inactivation, leading to the decrease in GPX4, which contributes to HSC ferroptosis.


Subject(s)
Ferroptosis , Hepatic Stellate Cells , Jagged-1 Protein , Liver Cirrhosis , RNA-Binding Proteins , Receptors, Notch , Signal Transduction , Ferroptosis/genetics , Hepatic Stellate Cells/metabolism , Animals , Liver Cirrhosis/genetics , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Mice , Jagged-1 Protein/genetics , Jagged-1 Protein/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Signal Transduction/genetics , Receptors, Notch/metabolism , Receptors, Notch/genetics , Mice, Knockout , Male , Humans
13.
Cell Mol Life Sci ; 81(1): 357, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39158587

ABSTRACT

SLC30A9 (ZnT9) is a mitochondria-resident zinc transporter. Mutations in SLC30A9 have been reported in human patients with a novel cerebro-renal syndrome. Here, we show that ZnT9 is an evolutionarily highly conserved protein, with many regions extremely preserved among evolutionarily distant organisms. In Drosophila melanogaster (the fly), ZnT9 (ZnT49B) knockdown results in acutely impaired movement and drastic mitochondrial deformation. Severe Drosophila ZnT9 (dZnT9) reduction and ZnT9-null mutant flies are pupal lethal. The phenotype of dZnT9 knockdown can be partially rescued by mouse ZnT9 expression or zinc chelator TPEN, indicating the defect of dZnT9 loss is indeed a result of zinc dyshomeostasis. Interestingly, in the mouse, germline loss of Znt9 produces even more extreme phenotypes: the mutant embryos exhibit midgestational lethality with severe development abnormalities. Targeted mutagenesis of Znt9 in the mouse brain leads to serious dwarfism and physical incapacitation, followed by death shortly. Strikingly, the GH/IGF-1 signals are almost non-existent in these tissue-specific knockout mice, consistent with the medical finding in some human patients with severe mitochondrial deficiecny. ZnT9 mutations cause mitochondrial zinc dyshomeostasis, and we demonstrate mechanistically that mitochondrial zinc elevation quickly and potently inhibits the activities of respiration complexes. These results reveal the critical role of ZnT9 and mitochondrial zinc homeostasis in mammalian development. Based on our functional analyses, we finally discussed the possible nature of the so far identified human SLC30A9 mutations.


Subject(s)
Cation Transport Proteins , Embryonic Development , Mitochondria , Zinc , Animals , Cation Transport Proteins/metabolism , Cation Transport Proteins/genetics , Humans , Zinc/metabolism , Mice , Mitochondria/metabolism , Embryonic Development/genetics , Drosophila melanogaster/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/embryology , Evolution, Molecular , Mice, Knockout , Amino Acid Sequence , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Transcription Factors , Cell Cycle Proteins
14.
Poult Sci ; 103(10): 104075, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-39094501

ABSTRACT

Betaine has been shown to enhance growth performance and increase breast muscle yield in ducks and broilers through various mechanisms, including the modification of DNA methylation. However, the impact of in ovo betaine injection on muscle growth in newly hatched goslings remains unclear. In this study, fifty eggs were injected with saline or betaine at 7.5 mg/egg prior to incubation, and the subsequent effects on breast muscle growth in the newly hatched goslings were investigated. Betaine significantly increased (P < 0.05) the hatch weight, breast muscle weight, and breast muscle index, accompanied by an augmentation in muscle bundle cross-sectional area. Concurrently, betaine significantly upregulated (P < 0.05) the expression levels of myogenic regulatory factors, including myogenin (MyoG) and paired box 7 (Pax7) both mRNA and protein, while downregulating (P < 0.05) the mRNA and protein levels of myostatin (MSTN). Histological analysis revealed a higher abundance of proliferating cell nuclear antigen (PCNA) and Pax7 immune-positive cells in the breast muscle of the betaine group, consistent with elevated PCNA and Pax7 mRNA and protein levels. Additionally, significantly increased (P < 0.05) contents of insulin-like growth factor 1 (IGF-1) and insulin-like growth factor 2 (IGF-2) were observed in the breast muscle of the betaine group, so was mRNA expression of IGF-1, IGF-2, and insulin-like growth factor 1 receptor (IGF-1R). Betaine also significantly in8creased (P < 0.05) global DNA methylation of the breast muscle, accompanied by enhanced mRNA and protein levels of methionine cycle and DNA methylation-related enzymes, Interestingly, the promoter regions of IGF-1, IGF-2, and IGF-1R genes were significantly hypomethylated (P < 0.05). Moreover, in ovo betaine injection significantly upregulated (P < 0.05) the protein level of farnesoid X receptor (FXR) in breast muscle and FXR binding to the promoter of IGF-2 gene. These findings suggest that in ovo betaine injection promotes breast muscle growth during embryonic development in goslings through the FXR-mediated IGF-2 pathway, ultimately improving hatch weight and breast muscle weight.

15.
Fish Physiol Biochem ; 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39096447

ABSTRACT

Mandarin fish (Siniperca chuatsi) is an important cultured fish in East Asia that shows sexual size dimorphism (SSD), with females growing faster than males when reaching marketable size. However, the regulatory mechanism of SSD is not clear. To characterize SSD of mandarin fish and its association with gh/igf1/igfbp-5 expression, gonadal developmental atlas of the females and the males were described, and growth parameters and serum levels of E2 and T, as well as the relative expression levels of gh, igf1, and igfbp-5a/b mRNAs, were determined. The results showed that the logistic growth equation of body mass and total length of female and male were W(♀) = 667.57/(1 + e^(4.19 - 1.24*t)), W(♂) = 582.71/(1 + e^(4.07 - 1.27*t)), L(♀) = 31.47/(1 + e^1.95 - 1.08*t)), L(♂) = 26.20/(1 + e^(2.56 - 1.5*t)). The month of inflection points for body mass for females and males were 3.37 mph and 3.20 mph, respectively, when the body mass were 333.79 g and 291.36 g. The month of inflection points for total length growth were 1.80 mph and 1.70 mph, respectively, when the total length were 18.52 cm and 16.28 cm. At 1.5-2.0 mph, SSD was not clearly demonstrated. At 3.0 mph, the body mass of the females was significantly higher than that of the males (P < 0.05), Serum E2, brain gh, and liver igf1 expression of the females was significantly higher than that of the males (P < 0.05); T content of the males was significantly higher than that of the females (P < 0.05). At 4.0 months of age, the body mass of the females was highly significantly higher than that of the males (P < 0.01), Serum E2, brain gh, and liver igf1 expression of the females was highly significantly higher than that of the males (P < 0.05); T content of the males was significantly higher than that of the females (P < 0.05). With the continuous development of gonads, muscle and liver igfbp-5a and -5b expression generally tend to increase in females and males, while igfbp-5a showed a gradual increasing trend, and igfbp-5b expression showed a trend of decreasing and then increasing. Male igfbp-5a/b expression was significantly higher than female at the age of 3.0-4.0 months (P < 0.05). This work verified that the females had faster growth rate since 3.0 mph compared to the males, which may be related to higher E2 levels in females leading to higher igf1 level, through inhibition of igfbp-5a/b expression.

16.
Physiol Rep ; 12(15): e16154, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39095334

ABSTRACT

Blood flow restriction (BFR) has been incorporated in resistance training for over 20 years. We aimed to investigate the impact of low-intensity suspension training with BFR (LIST+BFR) on GH, IGF-1, and their association with physical fitness in young women. Thirty-six active women participated and were randomly assigned to either the high-intensity suspension training (HIST), LIST+BFR, or control (CON) groups. Training groups exercised three sessions weekly for 8 weeks. The CON only engaged in regular physical activity. Fasting serum hormones and physical fitness were assessed 48 h before and after the training intervention. GH and IGF-1 levels significantly higher in the LIST+BFR compared to the HIST and CON. These hormones were significantly higher by HIST, compared to CON. LIST+BFR led to significant enhancements in muscular strength and endurance compared to HIST and CON. Additionally, HIST significantly higher than compared to CON. Sprinting and agility time lower in both suspension training groups rather than the CON. No significant between-groups differences were found in weight. There was a large or moderate correlation between GH and IGF-1 and muscular strength, endurance, sprint, and agility performance. LIST+BFR could more enhanced GH, IGF-1, and muscular strength and endurance in females than HIST.


Subject(s)
Human Growth Hormone , Insulin-Like Growth Factor I , Muscle Strength , Physical Fitness , Resistance Training , Humans , Female , Insulin-Like Growth Factor I/metabolism , Resistance Training/methods , Physical Fitness/physiology , Human Growth Hormone/blood , Muscle Strength/physiology , Young Adult , Adult
17.
Front Immunol ; 15: 1382538, 2024.
Article in English | MEDLINE | ID: mdl-39165364

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy with an urgent unmet clinical need for new therapies. Using a combination of in vitro assays and in vivo preclinical models we demonstrate that therapeutic inhibition of the IGF signalling axis promotes the accumulation of CD8+ cytotoxic T cells within the tumour microenvironment of PDAC tumours. Mechanistically, we show that IGF blockade promotes macrophage and fibroblast production of the chemokines CXCL9 and CXCL10 to facilitate CD8+ T cell recruitment and trafficking towards the PDAC tumour. Exploring this pathway further, we show that IGF inhibition leads to increased STAT1 transcriptional activity, correlating with a downregulation of the AKT/STAT3 signalling axis, in turn promoting Cxcl9 and Cxcl10 gene transcription. Using patient derived tumour explants, we also demonstrate that our findings translate into the human setting. PDAC tumours are frequently described as "immunologically cold", therefore bolstering CD8+ T cell recruitment to PDAC tumours through IGF inhibition may serve to improve the efficacy of immune checkpoint inhibitors which rely on the presence of CD8+ T cells in tumours.


Subject(s)
Carcinoma, Pancreatic Ductal , Chemokine CXCL10 , Chemokine CXCL9 , Macrophages , Pancreatic Neoplasms , Tumor Microenvironment , Chemokine CXCL9/metabolism , Humans , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Animals , Tumor Microenvironment/immunology , Chemokine CXCL10/metabolism , Macrophages/immunology , Macrophages/metabolism , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/metabolism , Mice , Somatomedins/metabolism , Cell Line, Tumor , T-Lymphocytes, Cytotoxic/immunology , STAT1 Transcription Factor/metabolism , CD8-Positive T-Lymphocytes/immunology , Signal Transduction , Fibroblasts/metabolism , Fibroblasts/immunology , Insulin-Like Peptides
18.
Evol Dev ; : e12490, 2024 Aug 11.
Article in English | MEDLINE | ID: mdl-39129398

ABSTRACT

Ectothermic vertebrates such as reptiles were assumed to be indeterminate growers, which means that there is no terminal point in time or size for growth in their lifetime. In recent years, evidence for the determinate nature of growth in lizards has accumulated, necessitating a re-examination of models of their ontogeny and evolution of sexual size dimorphism (SSD). In the female-larger gecko Paroedura vazimba, we monitored post-embryonic growth over a period of 15 months. After hatching, females grew faster than males but also reached their final body size, that is, closed growth of their vertebrae, earlier than males. The closure of bone growth in females correlates with the onset of reproductive maturation. We compared this pattern with the previously minutely studied, male-larger species Paroedura picta, where we documented determinate growth as well. We propose a model to explain the evolutionary switches in the direction of SSD in lizards based on bipotential effects of ovarian hormones on growth. In this model, male growth is assumed to require no male-specific growth modifier, such as sex-limited hormonal regulators, while growth is feminized by ovarian hormones in females. Low levels of ovarian hormones can promote bone growth, but high levels associated with maturation of the reproductive organs promote senescence of bone growth plates and thus cessation of bone growth. We suggest that models on growth, life-history and evolution of body size in many lizards should acknowledge their determinate nature of growth.

19.
Nutrients ; 16(15)2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39125288

ABSTRACT

Young-onset colorectal cancer is an increasing concern worldwide due to the growing prevalence of Westernized lifestyles in childhood and adolescence. Environmental factors during early life, particularly early-life nutrition, significantly contribute to the increasing incidence. Recently, there have been reports of beneficial effects, including anti-inflammation and anti-cancer, of a unique fungus (Antrodia camphorate, AC) native to Taiwan. The objective of this study is to investigate the impact of AC supplementation in early life on the development of young-onset intestinal tumorigenesis. APC1638N mice were fed with a high-fat diet (HF) at 4-12 weeks of age, which is equivalent to human childhood/adolescence, before switching to a normal maintenance diet for an additional 12 weeks up to 24 weeks of age, which is equivalent to young to middle adulthood in humans. Our results showed that the body weight in the HF groups significantly increased after 8 weeks of feeding (p < 0.05). Following a switch to a normal maintenance diet, the change in body weight persisted. AC supplementation significantly suppressed tumor incidence and multiplicity in females (p < 0.05) and reduced IGF-1 and Wnt/ß-catenin signaling (p < 0.05). Moreover, it altered the gut microbiota, suppressed inflammatory responses, and created a microenvironment towards suppressing tumorigenesis later in life.


Subject(s)
Carcinogenesis , Diet, High-Fat , Dietary Supplements , Gastrointestinal Microbiome , Animals , Gastrointestinal Microbiome/drug effects , Female , Mice , Male , Diet, High-Fat/adverse effects , Carcinogenesis/drug effects , Polyporales , Mice, Inbred C57BL , Wnt Signaling Pathway/drug effects , Insulin-Like Growth Factor I/metabolism , Colorectal Neoplasms/prevention & control , Disease Models, Animal , Adenomatous Polyposis Coli Protein/genetics
20.
Int J Mol Sci ; 25(15)2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39125788

ABSTRACT

Severe aortic valve stenosis (AS) and pulmonary hypertension (PH) are life-threatening cardiovascular conditions, necessitating early detection and intervention. Recent studies have explored the role of Insulin-like Growth Factor-Binding Protein 2 (IGF-BP2) in cardiovascular pathophysiology. Understanding its involvement may offer novel insights into disease mechanisms and therapeutic targets for these conditions. A total of 102 patients (46 female, 56 male) with severe AS undergoing a transcatheter aortic valve replacement (TAVR) in a single-center study were classified using echocardiography tests to determine systolic pulmonary artery pressure (sPAP) and the presence (sPAP ≥ 40 mmHg) or absence (sPAP < 40 mmHg) of PH. Additionally, serial laboratory determinations of IGF-BP2 before, and at 24 h, 96 h, and 3 months after intervention were conducted in all study participants. Considering the entire cohort, patients with PH had significant and continuously higher serum IGF-BP2 concentrations over time than patients without PH. After subdivision by sex, it could be demonstrated that the above-mentioned results were only verifiable in males, but not in females. In the male patients, baseline IGF-BP2 levels before the TAVR was an isolated risk factor for premature death after intervention and at 1, 3, and 5 years post-intervention. The same was valid for the combination of male and echocardiographically established PH patients. The predictive role of IGF-BP2 in severe AS and concurrent PH remains unknown. A more profound comprehension of IGF-BP2 mechanisms, particularly in males, could facilitate the earlier consideration of the TAVR as a more effective and successful treatment strategy.


Subject(s)
Aortic Valve Stenosis , Hypertension, Pulmonary , Insulin-Like Growth Factor Binding Protein 2 , Aged , Aged, 80 and over , Female , Humans , Male , Aortic Valve Stenosis/surgery , Aortic Valve Stenosis/metabolism , Aortic Valve Stenosis/blood , Aortic Valve Stenosis/complications , Biomarkers/blood , Echocardiography , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/blood , Hypertension, Pulmonary/etiology , Insulin-Like Growth Factor Binding Protein 2/blood , Insulin-Like Growth Factor Binding Protein 2/metabolism , Risk Factors , Severity of Illness Index , Sex Factors , Transcatheter Aortic Valve Replacement
SELECTION OF CITATIONS
SEARCH DETAIL