Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
Mol Inform ; : e202300160, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38973776

ABSTRACT

The insulin superfamily proteins (ISPs), in particular, insulin, IGFs and relaxin proteins are key modulators of animal physiology. They are known to have evolved from the same ancestral gene and have diverged into proteins with varied sequences and distinct functions, but maintain a similar structural architecture stabilized by highly conserved disulphide bridges. The recent surge of sequence data and the structures of these proteins prompted a need for a comprehensive analysis, which connects the evolution of these sequences (427 sequences) in the light of available functional and structural information including representative complex structures of ISPs with their cognate receptors. This study reveals (a) unusually high sequence conservation of IGFs (>90 % conservation in 184 sequences) and provides a possible structure-based rationale for such high sequence conservation; (b) provides an updated definition of the receptor-binding signature motif of the functionally diverse relaxin family members (c) provides a probable non-canonical C-peptide cleavage site in a few insulin sequences. The high conservation of IGFs appears to represent a classic case of resistance to sequence diversity exerted by physiologically important interactions with multiple partners. We also propose a probable mechanism for C-peptide cleavage in a few distinct insulin sequences and redefine the receptor-binding signature motif of the relaxin family. Lastly, we provide a basis for minimally modified insulin mutants with potential therapeutic application, inspired by concomitant changes observed in other insulin superfamily protein members supported by molecular dynamics simulation.

2.
Int J Mol Sci ; 25(7)2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38612776

ABSTRACT

This study examines the impact of insulin-like growth factor 1 (IGF-1) and insulin-like growth factor 2 (IGF-2) on various aspects of children's health-from the realms of growth and puberty to the nuanced characteristics of metabolic syndrome, diabetes, liver pathology, carcinogenic potential, and cardiovascular disorders. A comprehensive literature review was conducted using PubMed, with a Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) method employing specific keywords related to child health, obesity, and insulin-like growth factors. This study reveals associations between insulin-like growth factor 1 and birth weight, early growth, and adiposity. Moreover, insulin-like growth factors play a pivotal role in regulating bone development and height during childhood, with potential implications for puberty onset. This research uncovers insulin-like growth factor 1 and insulin-like growth factor 2 as potential biomarkers and therapeutic targets for metabolic dysfunction-associated liver disease and hepatocellular carcinoma, and it also highlights the association between insulin-like growth factors (IGFs) and cancer. Additionally, this research explores the impact of insulin-like growth factors on cardiovascular health, noting their role in cardiomyocyte hypertrophy. Insulin-like growth factors play vital roles in human physiology, influencing growth and development from fetal stages to adulthood. The impact of maternal obesity on children's IGF levels is complex, influencing growth and carrying potential metabolic consequences. Imbalances in IGF levels are linked to a range of health conditions (e.g., insulin resistance, glucose intolerance, metabolic syndrome, and diabetes), prompting researchers to seek novel therapies and preventive strategies, offering challenges and opportunities in healthcare.


Subject(s)
Diabetes Mellitus , Metabolic Syndrome , Pregnancy , Child , Female , Humans , Insulin-Like Growth Factor I , Insulin-Like Growth Factor II , Metabolic Syndrome/etiology , Obesity/etiology , Insulin-Like Peptides
3.
Chemosphere ; 357: 141984, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38614392

ABSTRACT

Benzisothiazolinone (BIT) and propyl paraben (PP) are preservatives in cleaning products; however, their toxicities are not well understood. In this study, zebrafish embryos were exposed to BIT, PP, and mixtures of both for 96 h to investigate the effects on growth hormone (GH), insulin-like growth factor-1 (IGF-1), and the transcription of 19 genes related to the GH/IGFs axis. Concentrations of BIT and PP were measured in the whole body of larvae. Zebrafish pairs were also exposed to BIT, PP, and mixtures for 21 d to evaluate the effects on sex hormones, histology in gonad, and transcription of 22 genes related to the hypothalamus-pituitary-gonad axis and vitellogenin. The mixtures had potentiation effects on development, reproduction, hormones, and gene transcripts than individual exposure. Larvae exposed to 229 µg L-1 BIT, 64.5 µg L-1 PP, and mixtures showed reduced growth. Decreased GH and IGF-1 levels were supported by gene regulation associated with the GH/IGFs axis. In larvae, reactive oxygen species, superoxide dismutase, catalase, and glutathione peroxidase levels were increased under all exposures. The gonadosomatic index in males and number of eggs decreased after mixture exposure. In females exposed to mixtures, the percentage of atretic follicle in ovary was significantly increased. The significant decrease in testosterone in males and significant decrease in 17ß-estradiol in females exposed to mixtures suggest anti-estrogenic and anti-androgenic potential. Thus, preservative mixtures in consumer products may be more toxic than the individual substances, which is important for managing the risks of mixing preservatives.


Subject(s)
Parabens , Preservatives, Pharmaceutical , Zebrafish , Animals , Female , Parabens/toxicity , Preservatives, Pharmaceutical/toxicity , Male , Insulin-Like Growth Factor I/metabolism , Larva/drug effects , Growth Hormone , Reproduction/drug effects , Embryo, Nonmammalian/drug effects , Water Pollutants, Chemical/toxicity , Reactive Oxygen Species/metabolism
4.
Int J Mol Sci ; 25(5)2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38473747

ABSTRACT

Insulin-like growth factors (IGFs) are hormones that primarily stimulate and regulate animal physiological processes. In this study, we cloned and identified the open reading frame (ORF) cDNA sequences of IGF family genes: the insulin-like growth factor 1 (IGF1), insulin-like growth factor 2 (IGF2), and insulin-like growth factor 3 (IGF3). We found that IGF1, IGF2, and IGF3 have a total length of 558, 648, and 585 base pairs (bp), which encoded a predicted protein with 185, 215, and 194 amino acids (aa), respectively. Multiple sequences and phylogenetic tree analysis showed that the mature golden pompano IGFs had been conserved and showed high similarities with other teleosts. The tissue distribution experiment showed that IGF1 and IGF2 mRNA levels were highly expressed in the liver of female and male fish. In contrast, IGF3 was highly expressed in the gonads and livers of male and female fish, suggesting a high influence on fish reproduction. The effect of fasting showed that IGF1 and mRNA expression had no significant difference in the liver but significantly decreased after long-term (7 days) fasting in the muscles and started to recover after refeeding. IGF2 mRNA expression showed no significant difference in the liver but had a significant difference in muscles for short-term (2 days) and long-term fasting, which started to recover after refeeding, suggesting muscles are more susceptible to both short-term and long-term fasting. In vitro incubation of 17ß-estradiol (E2) was observed to decrease the IGF1 and IGF3 mRNA expression level in a dose- (0.1, 1, and 10 µM) and time- (3, 6, and 12 h) dependent manner. In addition, E2 had no effect on IGF2 mRNA expression levels in a time- and dose-dependent manner. The effect of 17α-methyltestosterone (MT) in vitro incubation was observed to significantly increase the IGF3 mRNA expression level in a time- and dose-dependent manner. MT had no effect on IGF2 mRNA but was observed to decrease the IGF1 mRNA expression in the liver. Taken together, these data indicate that E2 and MT may either increase or decrease IGF expression in fish; this study provides basic knowledge and understanding of the expression and regulation of IGF family genes in relation to the nutritional status, somatic growth, and reproductive endocrinology of golden pompano for aquaculture development.


Subject(s)
Fishes , Insulin-Like Peptides , Animals , Phylogeny , Amino Acid Sequence , Fishes/genetics , RNA, Messenger/genetics , Gene Expression , Cloning, Molecular
5.
Article in English | MEDLINE | ID: mdl-38430547

ABSTRACT

There is converging evidence that young blood conveys cells, vesicles, and molecules able to revitalize function and restore organ integrity in old individuals. We assessed the effects of young plasma on the lifespan, epigenetic age, and healthspan of old female rats. Beginning at 25.6 months of age, a group of 9 rats (group T) was intraperitoneally injected with plasma from young rats until their natural death. A group of 8 control rats of the same age received no treatment (group C). Blood samples were collected every other week. Survival curves showed that from age 26 to 30 months, none of the group T animals died, whereas the survival curve of group C rats began to decline at age 26 months. Blood DNAm age versus chronological age showed that DNAm age in young animals increased faster than chronological age, then slowed down, entering a plateau after 27 months. The DNAm age of the treated rats fell below the DNAm age of controls and, in numerical terms, remained consistently lower until natural death. When rats were grouped according to the similarities in their differential blood DNA methylation profile, samples from the treated and control rats clustered in separate groups. Analysis of promoter differential methylation in genes involved in systemic regulatory activities revealed specific GO term enrichment related to the insulin-like factors pathways as well as to cytokines and chemokines associated with immune and homeostatic functions. We conclude that young plasma therapy may constitute a natural, noninvasive intervention for epigenetic rejuvenation and health enhancement.


Subject(s)
Longevity , Physical Appearance, Body , Female , Rats , Animals , Longevity/genetics , DNA Methylation , Aging/genetics , Epigenesis, Genetic
6.
Adv Exp Med Biol ; 1428: 31-70, 2023.
Article in English | MEDLINE | ID: mdl-37466768

ABSTRACT

Accumulating evidence suggests that an altered maternal milieu and environmental insults during the intrauterine and perinatal periods of life affect the developing organism, leading to detrimental long-term outcomes and often to adult pathologies through programming effects. Hormones, together with growth factors, play critical roles in the regulation of maternal-fetal and maternal-neonate interfaces, and alterations in any of them may lead to programming effects on the developing organism. In this chapter, we will review the role of sex steroids, thyroid hormones, and insulin-like growth factors, as crucial factors involved in physiological processes during pregnancy and lactation, and their role in developmental programming effects during fetal and early neonatal life. Also, we will consider epidemiological evidence and data from animal models of altered maternal hormonal environments and focus on the role of different tissues in the establishment of maternal and fetus/infant interaction. Finally, we will identify unresolved questions and discuss potential future research directions.


Subject(s)
Fetal Development , Thyroid Hormones , Pregnancy , Animals , Female , Fetal Development/physiology , Fetus
8.
Front Endocrinol (Lausanne) ; 14: 1155202, 2023.
Article in English | MEDLINE | ID: mdl-36998471

ABSTRACT

Control of tissue metabolism and growth involves interactions between organs, tissues, and cell types, mediated by cytokines or direct communication through cellular exchanges. Indeed, over the past decades, many peptides produced by adipose tissue, skeletal muscle and bone named adipokines, myokines and osteokines respectively, have been identified in mammals playing key roles in organ/tissue development and function. Some of them are released into the circulation acting as classical hormones, but they can also act locally showing autocrine/paracrine effects. In recent years, some of these cytokines have been identified in fish models of biomedical or agronomic interest. In this review, we will present their state of the art focusing on local actions and inter-tissue effects. Adipokines reported in fish adipocytes include adiponectin and leptin among others. We will focus on their structure characteristics, gene expression, receptors, and effects, in the adipose tissue itself, mainly regulating cell differentiation and metabolism, but in muscle and bone as target tissues too. Moreover, lipid metabolites, named lipokines, can also act as signaling molecules regulating metabolic homeostasis. Regarding myokines, the best documented in fish are myostatin and the insulin-like growth factors. This review summarizes their characteristics at a molecular level, and describes both, autocrine effects and interactions with adipose tissue and bone. Nonetheless, our understanding of the functions and mechanisms of action of many of these cytokines is still largely incomplete in fish, especially concerning osteokines (i.e., osteocalcin), whose potential cross talking roles remain to be elucidated. Furthermore, by using selective breeding or genetic tools, the formation of a specific tissue can be altered, highlighting the consequences on other tissues, and allowing the identification of communication signals. The specific effects of identified cytokines validated through in vitro models or in vivo trials will be described. Moreover, future scientific fronts (i.e., exosomes) and tools (i.e., co-cultures, organoids) for a better understanding of inter-organ crosstalk in fish will also be presented. As a final consideration, further identification of molecules involved in inter-tissue communication will open new avenues of knowledge in the control of fish homeostasis, as well as possible strategies to be applied in aquaculture or biomedicine.


Subject(s)
Adipose Tissue , Obesity , Animals , Adipose Tissue/metabolism , Obesity/metabolism , Cytokines/metabolism , Adipokines/metabolism , Muscle, Skeletal/metabolism , Bone and Bones/metabolism , Mammals/metabolism
9.
Front Endocrinol (Lausanne) ; 14: 1101356, 2023.
Article in English | MEDLINE | ID: mdl-36755925

ABSTRACT

Fish muscle regeneration is still a poorly known process. In the present study, an injury was done into the left anterior epaxial skeletal muscle of seventy 15 g gilthead sea bream (Sparus aurata) juveniles to evaluate at days 0, 1, 2, 4, 8, 16 and 30 post-wound, the expression of several muscle genes. Moreover, transcripts' expression in the bone (uninjured tissue) was also analyzed. Histology of the muscle showed the presence of dead tissue the first day after injury and how the damaged fibers were removed and replaced by new muscle fibers by day 16 that kept growing up to day 30. Gene expression results showed in muscle an early upregulation of igf-2 and a downregulation of ghr-1 and igf-1. Proteolytic systems expression increased with capn2 and ctsl peaking at 1 and 2 days post-injury, respectively and mafbx at day 8. A pattern of expression that fitted well with active myogenesis progression 16 days after the injury was then observed, with the recovery of igf-1, pax7, cmet, and cav1 expression; and later on, that of cav3 as well. Furthermore, the first days post-injury, the cytokines il-6 and il-15 were also upregulated confirming the tissue inflammation, while tnfα was only upregulated at days 16 and 30 to induce satellite cells recruitment; overall suggesting a possible role for these molecules as myokines. The results of the bone transcripts showed an upregulation first, of bmp2 and ctsk at days 1 and 2, respectively; then, ogn1 and ocn peaked at day 4 in parallel to mstn2 downregulation, and runx2 and ogn2 increased after 8 days of muscle injury, suggesting a possible tissue crosstalk during the regenerative process. Overall, the present model allows studying the sequential involvement of different regulatory molecules during muscle regeneration, as well as the potential relationship between muscle and other tissues such as bone to control musculoskeletal development and growth, pointing out an interesting new line of research in this group of vertebrates.


Subject(s)
Insulin-Like Growth Factor I , Sea Bream , Animals , Insulin-Like Growth Factor I/metabolism , Sea Bream/genetics , Sea Bream/metabolism , Muscles/metabolism , Proteolysis
10.
Animals (Basel) ; 12(19)2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36230343

ABSTRACT

In vitro maturation (IVM) of mammalian oocytes, which influences subsequent in vitro development of embryos, is affected by the macromolecule content in culture media for the success of oocyte maturation competence, in which the cytoplasmic and nuclear reprogramming events occur. The insulin-like growth factor family (IGFs) promotes the maturation of bovine oocytes and the expansion of cumulus cells and also inhibits apoptosis. This study was, therefore, designed to examine the effects of macromolecules (bovine serum albumin, BSA; fetal calf serum, FCS; and polyvinyl alcohol, PVA) on in vitro nuclear maturation, total cellular protein, glutathione peroxidase (GPx) enzyme activity, and the gene expression level of IGF1, IGF2, and their receptor in bovine oocytes. Oocytes obtained from bovine ovaries were cultured in bicarbonate-buffered medium 199 supplemented with 4 mg/mL BSA, 10% FCS, 1 mg/mL PVA, and without macromolecule supplement (control) during 22 h in the air with a humidified atmosphere and 5% CO2 at 38.5 °C temperature. Supplementation of BSA and FCS increased (χ2 = 9.84; p < 0.05) the percentages of oocytes that reached metaphase II compared to the control and PVA. The amount of protein per ml of cell extracts of oocytes matured in FCS supplemented culture media was higher (p < 0.05) than the oocytes in the PVA and control. The levels of GPx enzyme activity in cell extracts isolated from oocytes in each experimental group did not change over time, but the GPx enzyme activity in oocytes matured in PVA-supplemented culture media was lower (p < 0.05) than in oocytes in the other experimental groups. Transcript for the IGF1 gene was not detected in all experimental groups, but the supplementation of BSA and FCS significantly elevated the transcript level of the IGF2 gene. In addition, the maturation of oocytes with BSA-supplemented media increased the transcript level of the IGF1R gene, whereas the transcript level of the IGF2R gene was similar among macromolecule supplementation groups. The current study concluded that BSA and FCS could improve in vitro bovine oocyte development due to supporting nuclear maturation and increasing the total cellular protein content, GPx enzyme, and transcript activity.

11.
Growth Horm IGF Res ; 63: 101456, 2022 04.
Article in English | MEDLINE | ID: mdl-35305530

ABSTRACT

OBJECTIVE: Phoenixin-20 (Pnx-20) is a bioactive peptide with endocrine-like actions in vertebrates. Recent studies suggest Pnx-20 promotes growth hormone/insulin-like growth factors (Gh/Igf) axis, an important endocrine regulator of growth in mammals and fish. DESIGN: In this research, we determined whether Pnx-20 affects the different members of the Igf family, its binding proteins and receptors (Igf-system) in zebrafish liver and muscle. RESULTS: In vivo administration of Pnx-20 downregulated igfs, igf receptors (igfrs) and igf binding protein (igfbp) 5 mRNA expression in the liver of male and female zebrafish at both 1 and 6 h post-intraperitoneal (IP) injection. Interestingly, this effect occurred at a relatively earlier timepoint in female zebrafish suggesting sex-specific differences in Pnx-20 action. Besides, either 6 or 24 h in vitro incubations with Pnx-20 downregulated the expression of all igfs, igfrs and igfbp5 mRNAs (except igf2a) analyzed in a zebrafish liver cell (ZFL) line. Moreover, siRNA-mediated knockdown of Pnx-20 upregulated all Igf-system mRNAs analyzed in ZFL cells. Together, these results (both in vivo and in vitro) revealed a general suppressive action for both endogenous and exogenous Pnx-20 on the hepatic Igf-system of zebrafish. In contrast, a general sex-specific upregulation of the Igf-system mRNAs analyzed was found in the muscle of Pnx-20 injected fish. Future research should explore the sex- and time-differences observed in the present study. CONCLUSIONS: Collectively, this research shows that Pnx-20 is a tissue-specific regulator of the liver (suppressor) and muscle (stimulant) Igf signaling in both male and female zebrafish.


Subject(s)
Somatomedins , Zebrafish , Animals , Female , Insulin-Like Growth Factor Binding Proteins/metabolism , Insulin-Like Growth Factor I/genetics , Insulin-Like Growth Factor I/metabolism , Liver/metabolism , Male , Mammals/genetics , Mammals/metabolism , Muscles/metabolism , Peptide Hormones , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Somatomedin/metabolism , Somatomedins/genetics , Somatomedins/metabolism , Zebrafish/genetics , Zebrafish/metabolism
12.
Free Radic Biol Med ; 172: 675-687, 2021 08 20.
Article in English | MEDLINE | ID: mdl-34289395

ABSTRACT

Steroids and insulin-like growth factors (Igfs) are indispensable for folliculogenesis and reproductive fitness in the vertebrate ovary. The intrafollicular redox balance is also of immense importance for ovarian follicles wherein low levels of ROS are being utilized for cell signalling and regulation of gene expression; its excess may interfere with normal physiological processes leading to ovotoxicity. However, the functional relevance of ovarian steroidogenesis in maintaining the follicular microenvironment with coordinated redox homeostasis and intra-ovarian growth factors axis is relatively less understood. Using zebrafish full-grown (FG) ovarian follicles in vitro, our study shows that blocking steroid biosynthesis with anti-steroidal drugs, DL-aminoglutethimide (AG) or Trilostane (Trilo), prevents hCG (LH analogue)-induced StAR expression concomitant with a robust increase in intrafollicular ROS levels. Congruent with heightened intracellular levels of superoxide anions (O2•-) and hydrogen peroxide (H2O2), priming with AG or Trilo abrogates the transcript abundance of major antioxidant enzyme genes (SOD1, SOD2, and CAT) in hCG-stimulated follicles. Significantly, blocking steroidogenesis attenuates transcript abundance of HSP70 but elevates NOX4 expression potentially through ERα-mediated pathway. Importantly, disrupted redox balance in AG/Trilo pre-incubated FG follicles negatively impacts hCG-mediated activation of PKA/CREB signaling and transcriptional activation of igf ligands. Elevated ROS attenuation of antioxidant defense parameters and impaired endocrine and autocrine/paracrine homeostasis converge upon reduced p34cdc2 (Thr-161) phosphorylation, a reliable marker for MPF activation, and resumption of meiotic G2-M1 transition in hCG-treated follicles. Collectively, altered redox homeostasis in steroid-depleted follicles has a significant negative influence on GTH (LH) regulation of follicular events, specifically Igf synthesis, meiotic maturational competence and ovarian fitness.


Subject(s)
Somatomedins , Zebrafish , Animals , Female , Homeostasis , Hydrogen Peroxide/metabolism , Oocytes/metabolism , Oxidation-Reduction , Somatomedins/metabolism , Steroids , Zebrafish/metabolism
13.
Biomolecules ; 11(3)2021 03 10.
Article in English | MEDLINE | ID: mdl-33801830

ABSTRACT

The insulin-like growth factors (IGFs)/insulin resistance (IR) axis is the major metabolic hormonal pathway mediating the biologic mechanism of several complex human diseases, including type 2 diabetes (T2DM) and cancers. The genomewide association study (GWAS)-based approach has neither fully characterized the phenotype variation nor provided a comprehensive understanding of the regulatory biologic mechanisms. We applied systematic genomics to integrate our previous GWAS data for IGF-I and IR with multi-omics datasets, e.g., whole-blood expression quantitative loci, molecular pathways, and gene network, to capture the full range of genetic functionalities associated with IGF-I/IR and key drivers (KDs) in gene-regulatory networks. We identified both shared (e.g., T2DM, lipid metabolism, and estimated glomerular filtration signaling) and IR-specific (e.g., mechanistic target of rapamycin, phosphoinositide 3-kinases, and erb-b2 receptor tyrosine kinase 4 signaling) molecular biologic processes of IGF-I/IR axis regulation. Next, by using tissue-specific gene-gene interaction networks, we identified both well-established (e.g., IRS1 and IGF1R) and novel (e.g., AKT1, HRAS, and JAK1) KDs in the IGF-I/IR-associated subnetworks. Our results, if validated in additional genomic studies, may provide robust, comprehensive insights into the mechanisms of IGF-I/IR regulation and highlight potential novel genetic targets as preventive and therapeutic strategies for the associated diseases, e.g., T2DM and cancers.


Subject(s)
Biomarkers/metabolism , Data Analysis , Gene Regulatory Networks , Genomics , Aged , Humans , Insulin Resistance/genetics , Insulin-Like Growth Factor I/metabolism , Middle Aged , Organ Specificity/genetics , Phenotype , Protein Interaction Maps/genetics , Quantitative Trait Loci/genetics
14.
Int J Mol Sci ; 22(4)2021 Feb 16.
Article in English | MEDLINE | ID: mdl-33669204

ABSTRACT

Insulin-like Growth Factor (IGF)/IGF-1 Receptor (IGF-1R) signaling is known to regulate stem cell pluripotency and differentiation to trigger cell proliferation, organ development, and tissue regeneration during embryonic development. Unbalanced IGF/IGF-1R signaling can promote cancer cell proliferation and activate cancer reprogramming in tumor tissues, especially in the liver. Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death, with a high incidence and mortality rate in Asia. Most patients with advanced HCC develop tyrosine kinase inhibitor (TKI)-refractoriness after receiving TKI treatment. Dysregulation of IGF/IGF-1R signaling in HCC may activate expression of cancer stemness that leads to TKI refractoriness and tumor recurrence. In this review, we summarize the evidence for dysregulated IGF/IGF-1R signaling especially in hepatitis B virus (HBV)-associated HCC. The regulation of cancer stemness expression and drug resistance will be highlighted. Current clinical treatments and potential therapies targeting IGF/IGF-1R signaling for the treatment of HCC will be discussed.


Subject(s)
Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/metabolism , Receptor, IGF Type 1/metabolism , Signal Transduction , Somatomedins/metabolism , Carcinoma, Hepatocellular/complications , Carcinoma, Hepatocellular/drug therapy , Cytokines/metabolism , Drug Resistance, Neoplasm/drug effects , Hepatitis B/complications , Hepatitis B/metabolism , Hepatitis B/virology , Hepatitis B virus/physiology , Humans , Liver Neoplasms/complications , Liver Neoplasms/drug therapy , Molecular Targeted Therapy/methods , Neoplasm Recurrence, Local , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Receptor, IGF Type 1/antagonists & inhibitors , Virus Replication
15.
Animals (Basel) ; 11(1)2021 Jan 06.
Article in English | MEDLINE | ID: mdl-33419050

ABSTRACT

The present study aimed to investigate the acute response of gilthead seabream (Sparus aurata) juveniles exposed to temperature, salinity and ammonia stress. Radioimmunoassay was used to evaluate cortisol levels, whereas insulin-like growth factors (igf1 and igf2), myostatin (mstn), heat-shock protein 70 (hsp70) and glucocorticoid receptor (gr) gene expression was assessed trough Real-Time PCR. The presence and localization of IGF-I and HSP70 were investigated by immunohistochemistry. In all the stress conditions, a significant increase in cortisol levels was observed reaching higher values in the thermic and chemical stress groups. Regarding fish growth markers, igf1 gene expression was significantly higher only in fish subjected to heat shock stress while, at 60 min, igf2 gene expression was significantly lower in all the stressed groups. Temperature and ammonia changes resulted in a higher mstn gene expression. Molecular analyses on stress response evidenced a time dependent increase in hsp70 gene expression, that was significantly higher at 60 min in fish exposed to heat shock and chemical stress. Furthermore, the same experimental groups were characterized by a significantly higher gr gene expression respect to the control one. Immunostaining for IGF-I and HSP70 antibodies was observed in skin, gills, liver, and digestive system of gilthead seabream juveniles.

16.
Animals (Basel) ; 11(2)2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33494202

ABSTRACT

The upward trend of seawater temperature has encouraged improving the knowledge of its consequences on fish, considering also the development of diets including vegetable ingredients as an approach to achieve a more sustainable aquaculture. This study aims to determine the effects on musculoskeletal growth of: (1) a high-water temperature of 28 °C (versus 21 °C) in gilthead sea bream juveniles (Sparus aurata) fed with a diet rich in palm oil and, (2) feeding the fish reared at 28 °C with two other diets containing rapeseed oil or an equilibrated combination of both vegetable oils. Somatic parameters and mRNA levels of growth hormone-insulin-like growth factors (GH-IGFs) axis-, osteogenic-, myogenic-, lipid metabolism- and oxidative stress-related genes in vertebra bone and/or white muscle are analyzed. Overall, the data indicate that high-water rearing temperature in this species leads to different adjustments through modulating the gene expression of members of the GH-IGFs axis (down-regulating igf-1, its receptors, and binding proteins) and also, to bone turnover (reducing the resorption-activity genes cathepsin K (ctsk) and matrix metalloproteinase-9 (mmp9)) to achieve harmonic musculoskeletal growth. Moreover, the combination of palm and rapeseed oils seems to be the most beneficial at high-water rearing temperature for both balanced somatic growth and muscular fatty acid uptake and oxidation.

17.
Article in English | MEDLINE | ID: mdl-32849298

ABSTRACT

Insulin-like growth factor (IGF) 1 exerts a wide range of functions in mammalians participating not only in the control of growth and metabolism, but also in other actions such as neuroprotection. Nutritional status modifies the IGF system, although little is known regarding how diet affects the newest members of this system including pregnancy-associated plasma protein-A (PAPP-A) and PAPP-A2, proteases that liberate IGF from the IGF-binding proteins (IGFBPs), and stanniocalcins (STCs) that inhibit PAPP-A and PAPP-A2 activity. Here we explored if a 1-week dietary change to either a high-fat diet (HFD) or a low-fat diet (LFD) modifies the central and peripheral IGF systems in both male and female Wistar rats. The circulating IGF system showed sex differences in most of its members at baseline. Males had higher levels of both free (p < 0.001) and total IGF1 (p < 0.001), as well as IGFBP3 (p < 0.001), IGFBP5 (p < 0.001), and insulin (p < 0.01). In contrast, females had higher serum levels of PAPP-A2 (p < 0.05) and IGFBP2 (p < 0.001). The responses to a short-term dietary change were both diet and sex specific. Circulating levels of IGF2 increased in response to LFD intake in females (p < 0.001) and decreased in response to HFD intake in males (p < 0.001). In females, LFD intake also decreased circulating IGFBP2 levels (p < 0.001). In the hypothalamus LFD intake increased IGF2 (p < 0.01) and IGFBP2 mRNA (p < 0.001) levels, as well as the expression of NPY (p < 0.001) and AgRP (p < 0.01), but only in males. In conclusion, short-term LFD intake induced more changes in the peripheral and central IGF system than did short-term HFD intake. Moreover, these changes were sex-specific, with IGF2 and IGFBP2 being more highly affected than the other members of the IGF system. One of the main differences between the commercial LFD employed and the HFD or normal rodent chow is that the LFD has a significantly higher sucrose content, suggesting that this nutrient could be involved in the observed responses.


Subject(s)
Diet, Fat-Restricted/statistics & numerical data , Diet, High-Fat/statistics & numerical data , Gene Expression Regulation , Receptors, Somatomedin/metabolism , Somatomedins/metabolism , Animals , Diet, Fat-Restricted/methods , Diet, High-Fat/methods , Female , Male , Rats , Rats, Wistar , Receptors, Somatomedin/genetics , Sex Factors , Somatomedins/genetics
18.
Animals (Basel) ; 10(7)2020 Jul 18.
Article in English | MEDLINE | ID: mdl-32708457

ABSTRACT

In the present study European sea bass (Dicentrarchus labrax) subjected to two different diets (organic vs. conventional) were evaluated in terms of growing performances, oxidative stress, and contaminant markers. Growing performances were evaluated using biometric measures and condition factor (K), whereas insulin-like growth factor (IGF-I and IGF-II) levels were assessed trough Real-Time PCR analysis. For oxidative stress, immunohistochemical staining for 8-hydroxy-2'-deoxyguanosine (8-OHdG) and 4-hydroxy-2-nonenal (HNE) was performed, whereas total glutathione (GSH) in blood serum was determined by an enzymatic method adapted. Cytochrome P4501A (CYP1A) and melanomacrophage centers (MMCs) were evaluated as contaminant markers trough immunohistochemical and histochemical approaches, respectively. The growing performances showed a positive trend in both groups but a greater productivity in conventional fed fish compared to the organic ones. A significant higher expression of MMCs was observed in organic vs. conventional diet fed fish. Fillet analysis showed a higher MUFA content and a lower PUFAs n-6 content in organically fed sea bass indicating that diets with a content in fatty acids closer to that of wild fish will definitely affect the fatty acid profile of the fish flesh. On the other hand, the diet composition did not seem to affect neither the oxidative stress parameters (GSH, 8-OHdG, HNE) nor the CYP1A expression.

19.
Cell Signal ; 73: 109698, 2020 09.
Article in English | MEDLINE | ID: mdl-32569826

ABSTRACT

Autosomal dominant polycystic kidney disease (ADPKD) is one of the most common genetic diseases implicated in the development of end stage renal disease (ESRD). Although FDA has recently approved a drug against ADPKD, there is still a great need for development of alternative management strategies for ADPKD. Understanding the different mechanisms that lead to cystogenesis and cyst expansion in ADPKD is imperative to develop new therapies against ADPKD. Recently, we demonstrated that caloric restriction can prevent the development of cystic disease in animal models of ADPKD and through these studies identified a new role for pregnancy associated plasma protein-A (PAPP-A), a component of the insulin-like growth factors (IGF) pathway, in the pathogenesis of this disease. The PAPP-A-IGF pathway plays an important role in regulation of cell growth, differentiation, and transformation and dysregulation of this pathway has been implicated in many diseases. Several indirect studies support the involvement of IGF-1 in the pathogenesis of ADPKD. However, it was only recently that we described a direct role for a component of this pathway in pathogenesis of ADPKD, opening a new avenue for the therapeutic approaches for this cystic disease. The present literature review will critically discuss the evidence that supports the role of components of IGF pathway in the pathogenesis of ADPKD and discuss the pharmacological implications of PAPP-A-IGF axis in this disease.


Subject(s)
Insulin-Like Growth Factor Binding Proteins/metabolism , Insulin-Like Growth Factor I/metabolism , Polycystic Kidney, Autosomal Dominant , Pregnancy-Associated Plasma Protein-A/physiology , Animals , Cell Differentiation , Cell Proliferation , Humans , Polycystic Kidney, Autosomal Dominant/metabolism , Polycystic Kidney, Autosomal Dominant/pathology
20.
Birth Defects Res ; 112(17): 1308-1325, 2020 10.
Article in English | MEDLINE | ID: mdl-32476245

ABSTRACT

Despite the fact that the estrogenic effects of bisphenols were first described 80 years ago, recent data about its potential negative impact on birth outcome parameters raises a strong rationale to investigate further. The adverse health effects of plastics recommend to measure the impacts of endocrine-disrupting compounds (EDCs) such as bisphenols (BPA, BPS, BPF), bis(2-ethylhexyl) phthalate, and dibutyl phthalate (DBP) in human health. Exposure to these compounds in utero may program the diseases of the testis, prostate, kidney and abnormalities in the immune system, and cause tumors, uterine hemorrhage during pregnancy and polycystic ovary. These compounds also control the processes of epigenetic transgenerational inheritance of adult-onset diseases by modulating DNA methylation and epimutations in reproductive cells. The early developmental stage is the most susceptible window for developmental and genomic programming. The critical stages of the events for a normal human birth lie between the many transitions occurring between spermatogenesis, egg fertilization and the fully formed fetus. As the cells begin to grow and differentiate, there are critical balances of hormones, and protein synthesis. Data are emerging on how these plastic-derived compounds affect embryogenesis, placentation and feto-placental development since pregnant women and unborn fetuses are often exposed to these factors during preconception and throughout gestation. Impaired early development that ultimately influences fetal outcomes is at the center of many developmental disorders and contributes an independent risk factor for adult chronic diseases. This review will summarize the current status on the impact of exposure to plastic derived EDCs on the growth, gene expression, epigenetic and angiogenic activities of the early fetal development process and their possible effects on birth outcomes.


Subject(s)
Endocrine Disruptors , Plastics , DNA Methylation , Endocrine Disruptors/toxicity , Female , Humans , Male , Placenta/metabolism , Placentation , Plastics/metabolism , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL