Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 248
Filter
1.
Asia Pac Allergy ; 14(3): 97-102, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39220569

ABSTRACT

Background: The importance of IL-37 and downstream signal in the pathogenesis of chronic rhinosinusitis with nasal polyps (CRSwNP) demanding further investigation. Objective: We sought to address the potential importance of the IL-37-IL-1R8 axis in regulating inflammatory response in patients with CRSwNP. Methods: Nasal polyp (NP) tissues and control sinonasal tissues were obtained from adult CRSwNP, chronic rhinosinusitis without nasal polyps patients and healthy control subjects. The mRNA and protein levels of IL-37 and IL-1R8 in nasal tissues were examined by using quantitative PCR, immunohistochemical staining, and immunoblotting. In addition, the regulation of IL-1R8 expression was evaluated in human nasal epithelial cells (HNECs) in the presence of different stimuli. Results: The mRNA and protein levels of IL-37 and IL-1R8 were significantly elevated in nasal polyps compared with that in control tissues. IL-37 and IL-1R8 were mainly distributed in the epithelial layer and lamina propria of tissues. IL-1R8 mRNA level in nasal polys was negatively associated with eosinophil and neutrophil infiltration, as well as endoscopic score and computed tomography score. Moreover, the mRNA expression of IL-1R8 in HNECs was significantly increased by toll-like receptor agonists, but significantly inhibited by proinflammatory cytokines, which can be rescued by using steroid (DEX). Conclusion: Our findings showed that enhanced IL-37-IL-1R8 axis in NP tissues was negatively associated with inflammatory and clinical severity of CRSwNP patients, which could be considered as a future therapeutic target in CRSwNP patients.

2.
Exp Dermatol ; 33(9): e15179, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39278731

ABSTRACT

Hidradenitis suppurativa (HS) is a chronic skin disease, characterized by clinical inflammation of the hair follicle with the recurrence of abscesses, nodules, and tunnels. Recently, several studies suggested a role of IL-1 family (IL-1F) cytokines in eliciting and sustaining the disease. The aim of this work is to perform a comprehensive analysis of IL-1F cytokines, soluble inhibitors and receptors in a cohort of HS patients not treated with biological agents. Sixteen patients affected by HS and 16 healthy controls were recruited; clinical data were collected and disease severity evaluated by means of the International HS Severity Score System (IHS4). Serum levels of IL-1F cytokines, inhibitors and receptors were measured using a Multiplex Assays. IL-18 and free IL-18 levels were significantly higher in patients vs controls. Among soluble inhibitors, IL-1Ra, IL-1R2 and ST2/IL-1R4 were significantly increased. IL-18, free IL-18 and IL-33 levels are strongly correlated with IHS4. Also the inhibitors IL-1Ra and IL-18BP show a correlation with IHS4. The data obtained in this study confirm the involvement of IL-1F cytokines in mediating the disease and determining its severity and suggest a possible role for IL-18 as novel serum biomarker of active disease.


Subject(s)
Hidradenitis Suppurativa , Interleukin 1 Receptor Antagonist Protein , Interleukin-18 , Receptors, Interleukin-1 Type II , Severity of Illness Index , Hidradenitis Suppurativa/blood , Humans , Interleukin-18/blood , Male , Adult , Female , Interleukin 1 Receptor Antagonist Protein/blood , Middle Aged , Receptors, Interleukin-1 Type II/blood , Interleukin-1/blood , Interleukin-1 Receptor-Like 1 Protein/blood , Interleukin-33/blood , Case-Control Studies , Young Adult
3.
Cureus ; 16(7): e65721, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39211643

ABSTRACT

BACKGROUND AND OBJECTIVES: In ancient China, bee venom was widely used to treat various diseases. Although using bee venom is not currently a mainstream medical method, some have applied it to treat certain conditions, including idiopathic facial paralysis (IFP). Recently, melittin (Mel), the main active component of bee venom, has been shown strong anti-inflammatory and analgesic effects. However, how bee venom improves neurological dysfunction in facial paralysis remains unknown. This study aimed to investigate the anti-neurotraumatic effect of Mel on Schwann cells (SCs), the main cells of the neuron sheath, injured by oxidative stress. METHODS: A model of hypoxic SCs was established, and CCK-8 assay, siRNA transfection, enzyme-linked immunosorbent assay, quantitative reverse transcription-polymerase chain reaction, western blot, immunofluorescence, and cell ultrastructure analyses were conducted to investigate the mitigation of hypoxia-induced damage to SCs in vitro, revealing the effects of Mel on oxidative stress injury in SCs. RESULTS: The overexpression of HIF-1α in CoCl2-induced SCs (p < 0.05) indicated the establishment of an SCs hypoxia model. The proliferation and regeneration process of the hypoxic SCs enhanced in the Mel-treated group compared to the CoCl2 group has been proven through the CCK-8 experiment (p < 0.0001) and S-100 mRNA expression detection (p < 0.0001). The increased level of reactive oxygen species (ROS) (p < 0.001) and decreased superoxide dismutase (SOD) levels (p < 0.05) in the CoCl2-induced SCs indicated that Mel can alleviate the oxidative stress damage to SCs induced by CoCl2. Mel alleviated oxidative stress and inflammation in hypoxic SCs by reducing pro-inflammatory cytokines IL-1ß (p < 0.0001) and TNF-α (p < 0.0001). In addition, Mel augmented cellular vitality and regulated indicators related to oxygen metabolism, cell repair, neurometabolism, and vascular endothelial formation after hypoxia, such as C-JUN (p < 0.05), glial cell line-derived neurotrophic factor (GDNF; p < 0.001), vascular endothelial growth factor (VEGF; p < 0.05), hypoxia-inducible factor 1-alpha (HIF-1α; p < 0.05), interleukin-1 receptor type 1 (IL-1R1; p < 0.05), enolase1 (ENO1; p < 0.05), aldose reductase (AR; p < 0.01), SOD (p < 0.05), nerve growth factor (NGF; p < 0.05), and inducible nitric oxide synthase (iNOS; p < 0.05). In terms of its mechanism, Mel inhibited the expression of proteins associated with the NF-κB pathway such as IKK (p < 0.01), p65 (p < 0.05), p60 (p < 0.001), IRAK1 (p < 0.05), and increased IKB-α (p < 0.0001). Moreover, knocking out of IL-1R1 in the si-IL-1R1 group enhanced the therapeutic effect of Mel compared to the Mel-treated group (all of which p < 0.05). CONCLUSION: This research provided evidence of the substantial involvement of IL-1R1 in oxidative stress damage caused by hypoxia in SCs and proved that Mel alleviated oxidative stress injury in SCs by targeting IL-1R1 to downregulate the NF-κB-mediated inflammatory response. Mel could potentially serve as an innovative therapeutic approach for the treatment of IFP.

4.
Microorganisms ; 12(8)2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39203559

ABSTRACT

Intestinal permeability and bacterial translocation are increased in obesity and metabolic syndrome (MS). ILC3 cells contribute to the integrity of intestinal epithelium by producing IL-22 via IL-1ß and IL-23. This study investigates the role of IL-1R1 in inducing ILC3 cells and conferring protection during obesity and MS. For this purpose, C57BL/6 wild-type (WT) and IL-1R1-deficient mice were fed a standard diet (SD) or high-fat diet (HFD) for 16 weeks. Weight and blood glucose levels were monitored, and adipose tissue and blood samples were collected to evaluate obesity and metabolic parameters. The small intestine was collected to assess immunological and junction protein parameters through flow cytometry and RT-PCR, respectively. The intestinal permeability was analyzed using the FITC-dextran assay. The composition of the gut microbiota was also analyzed by qPCR. We found that IL-1R1 deficiency exacerbates MS in HFD-fed mice, increasing body fat and promoting glucose intolerance. A worsening of MS in IL-1R1-deficient mice was associated with a reduction in the ILC3 population in the small intestine. In addition, we found decreased IL-22 expression, increased intestinal permeability and bacterial translocation to the visceral adipose tissue of these mice compared to WT mice. Thus, the IL-1R1 receptor plays a critical role in controlling intestinal homeostasis and obesity-induced MS, possibly through the differentiation or activation of IL-22-secreting ILC3s.

5.
Vaccines (Basel) ; 12(8)2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39203963

ABSTRACT

Herpes simplex virus-1 (HSV-1) is common and can cause significant disease in humans. Unfortunately, efforts to develop effective vaccines against HSV-1 have so far failed. A detailed understanding of how the virus infects its host and how the host mounts potent immune responses against the virus may inform new vaccine approaches. Here, using a zosteriform mouse model, we examined how the HSV-1 gene UL56 affects the ability of the virus to cause morbidity and generate protective immunity. A UL56 deletion mutant, ΔUL56, was derived from the wild-type HSV-1 strain SC16, alongside a revertant strain in which UL56 was reintroduced in ΔUL56. In vitro, the three virus strains replicated in a similar manner; however, in vivo, only the wild type and the revertant strains caused shingles-like skin lesions and death. Mice previously infected with ΔUL56 became resistant to a lethal challenge with the wild-type SC16. The protective immunity induced by ΔUL56 was independent of IL-1, IL-33, and IL-36 signaling through IL-1RAP. Both skin and intramuscular ΔUL56 inoculation generated protective immunity against a lethal SC16 challenge. After 6 months, female mice remained resistant to infection, while male mice exhibited signs of declining protection. Our data demonstrate that UL56 is important for the ability of HSV-1 to spread within the infected host and that a ∆UL56 strain elicits an effective immune response against HSV-1 despite this loss of virulence. These findings may guide further HSV-1 vaccine development.

6.
Front Immunol ; 15: 1401957, 2024.
Article in English | MEDLINE | ID: mdl-39050860

ABSTRACT

Background: Intervertebral Disc Degeneration (IDD) is a major cause of lower back pain and a significant global health issue. However, the specific mechanisms of IDD remain unclear. This study aims to identify key genes and pathways associated with IDD using bioinformatics and machine learning algorithms. Methods: Gene expression profiles, including those from 35 LDH patients and 43 healthy volunteers, were downloaded from the GEO database (GSE124272, GSE150408, GSE23130, GSE153761). After merging four microarray datasets, differentially expressed genes (DEGs) were selected for GO and KEGG pathway enrichment analysis. Weighted Gene Co-expression Network Analysis (WGCNA) was then applied to the merged dataset to identify relevant modules and intersect with DEGs to discover candidate genes with diagnostic value. A LASSO model was established to select appropriate genes, and ROC curves were drawn to elucidate the diagnostic value of genetic markers. A Protein-Protein Interaction (PPI) network was constructed and visualized to determine central genes, followed by external validation using qRT-PCR. Results: Differential analysis of the preprocessed dataset identified 244 genes, including 183 upregulated and 61 downregulated genes. WGCNA analysis revealed the most relevant module intersecting with DEGs, yielding 9 candidate genes. The lasso-cox method was used for regression analysis, ultimately identifying 6 genes: ASPH, CDC42EP3, FOSL2, IL1R1, NFKBIZ, TCF7L2. A Protein-Protein Interaction (PPI) network created with GENEMANIA identified IL1R1 and TCF7L2 as central genes. Conclusion: Our study shows that IL1R1 and TCF7L2 are the core genes of IDD, offering new insights into the pathogenesis and therapeutic development of IDD.


Subject(s)
Computational Biology , Gene Expression Profiling , Gene Regulatory Networks , Intervertebral Disc Degeneration , Machine Learning , Protein Interaction Maps , Humans , Intervertebral Disc Degeneration/genetics , Computational Biology/methods , Protein Interaction Maps/genetics , Transcriptome , Databases, Genetic , Algorithms , Female , Male , Gene Expression Regulation
7.
Article in English | MEDLINE | ID: mdl-39005010

ABSTRACT

BACKGROUND AND AIM: Primary liver cancer, particularly hepatocellular carcinoma (HCC), represents a substantial global health challenge. Although immune checkpoint inhibitors are effective in HCC treatment, several patients still experience disease progression. Interleukin-1 (IL-1) regulates immunity and inflammation. We investigate the role of IL-1 in HCC development and progression and determine the potential therapeutic impact of gemcitabine in treating HCC. METHODS: Hydrodynamics-based transfection, employing the sleeping beauty transposase system, delivered surrogate tumor antigens, NRAS (NRAS proto-oncogene, GTPase), ShP53, and SB100 to C57BL/6 mice. A basic HCC mouse model was established. Pathogen-free animals were tested for serum and hepatotoxicity. The HCC prognosis was monitored using alanine aminotransferase and aspartate aminotransferase levels. Liver histology immunohistochemistry and mouse splenocyte/intra-hepatic immune cell flow cytometry were conducted. IL-1ß levels in human and mouse serum were assessed. RESULTS: Interleukin-1ß levels were elevated in patients with HCC compared with those in non-HCC controls. Hepatic IL-1ß levels were higher in HCC mouse models than those in non-HCC mice, suggesting localized hepatic inflammation. IL-1 receptor type 1 (IL-1R1) knockout (IL-1R1-/-) mice exhibited less severe HCC progression than that in wild-type mice, despite the high intra-hepatic IL-1ß concentration. IL-1R1-/- mice exhibited increased hepatic levels of myeloid-derived suppressor cells and regulatory T cells, which may exacerbate HCC. Gemcitabine significantly reduced the HCC tumor burden, improved liver conditions, and increased survival rates in HCC mouse models. Gemcitabine reduced the hepatic levels of myeloid-derived suppressor cells and regulatory T cells, potentially alleviating immune suppression in the liver. CONCLUSIONS: Targeting IL-1 or combining gemcitabine with immunotherapy is a promising approach for treating advanced-stage HCC.

8.
Front Immunol ; 15: 1427100, 2024.
Article in English | MEDLINE | ID: mdl-38983847

ABSTRACT

Introduction: Interleukin-18 (IL-18), a pro-inflammatory cytokine belonging to the IL-1 Family, is a key mediator ofautoinflammatory diseases associated with the development of macrophage activation syndrome (MAS).High levels of IL-18 correlate with MAS and COVID-19 severity and mortality, particularly in COVID-19patients with MAS. As an inflammation inducer, IL-18 binds its receptor IL-1 Receptor 5 (IL-1R5), leadingto the recruitment of the co-receptor, IL-1 Receptor 7 (IL-1R7). This heterotrimeric complex subsequentlyinitiates downstream signaling, resulting in local and systemic inflammation. Methods: We reported earlier the development of a novel humanized monoclonal anti-human IL-1R7 antibody whichspecifically blocks the activity of human IL-18 and its inflammatory signaling in human cell and wholeblood cultures. In the current study, we further explored the strategy of blocking IL-1R7 inhyperinflammation in vivo using animal models. Results: We first identified an anti-mouse IL-1R7 antibody that significantly suppressed mouse IL-18 andlipopolysaccharide (LPS)-induced IFNg production in mouse splenocyte and peritoneal cell cultures. Whenapplied in vivo, the antibody reduced Propionibacterium acnes and LPS-induced liver injury and protectedmice from tissue and systemic hyperinflammation. Importantly, anti-IL-1R7 significantly inhibited plasma,liver cell and spleen cell IFNg production. Also, anti-IL-1R7 downregulated plasma TNFa, IL-6, IL-1b,MIP-2 production and the production of the liver enzyme ALT. In parallel, anti-IL-1R7 suppressed LPSinducedinflammatory cell infiltration in lungs and inhibited the subsequent IFNg production andinflammation in mice when assessed using an acute lung injury model. Discussion: Altogether, our data suggest that blocking IL-1R7 represents a potential therapeutic strategy to specificallymodulate IL-18-mediated hyperinflammation, warranting further investigation of its clinical application intreating IL-18-mediated diseases, including MAS and COVID-19.


Subject(s)
Inflammation , Lipopolysaccharides , Animals , Mice , Lipopolysaccharides/immunology , Inflammation/immunology , Humans , Interleukin-18/metabolism , Interleukin-18/immunology , Disease Models, Animal , COVID-19/immunology , Mice, Inbred C57BL , Macrophage Activation Syndrome/immunology , SARS-CoV-2/immunology
9.
J Invest Dermatol ; 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39084489

ABSTRACT

Hidradenitis suppurativa (HS) is a chronic inflammatory disease manifesting as painful dermal nodules, abscesses, and tunnels. Activation of the IL-1R/toll-like receptor pathway is strongly implicated in the pathogenesis of HS; thus, the role of a key signaling node, IRAK4, was investigated in a noninterventional study (NCT04440410) that enrolled 30 patients with HS. IRAK4 expression was evaluated in blood and lesional, perilesional, and nonlesional skin biopsies. PBMCs expressed IRAK4, with significantly higher levels in monocytes (P ≤ .0001). Ex vivo treatment of PBMCs with KT-474, a targeted degrader of IRAK4, robustly decreased IRAK4 in all immune cell types from healthy volunteers and patients with HS. Ex vivo treatment of toll-like receptor-stimulated healthy donor monocytes with KT-474 decreased IRAK4 protein levels and inhibited inflammatory cytokine production. In HS skin samples, IRAK4 protein levels were significantly higher in lesional than in nonlesional tissue (P ≤ .0001), and IRAK4-positive immune infiltrate increased with greater disease severity. Multiple inflammatory mediators were upregulated in HS lesional skin, correlating with IRAK4 overexpression. These data confirm the significance of the IL-1R/toll-like receptor pathway in the pathogenesis of HS and provide support for ongoing clinical studies evaluating KT-474 in the treatment of HS.

10.
J Pancreatol ; 7(2): 119-130, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38883575

ABSTRACT

Objective: Pancreatic cancer is one of the most aggressive malignancies, a robust prognostic signature and novel biomarkers are urgently needed for accurate stratification of the patients and optimization of clinical decision-making. Methods: A list of bioinformatic analysis were applied in public dataset to construct an immune-related signature. Furthermore, the most pivotal gene in the signature was identified. The potential mechanism of the core gene function was revealed through GSEA, CIBERSORT, ESTIMATE, immunophenoscore (IPS) algorithm, single-cell analysis, and functional experiment. Results: An immune-related prognostic signature and associated nomogram were constructed and validated. Among the genes constituting the signature, interleukin 1 receptor type II (IL1R2) was identified as the gene occupying the most paramount position in the risk signature. Meanwhile, knockdown of IL1R2 significantly inhibited the proliferation, invasion, and migration ability of pancreatic cancer cells. Additionally, high IL1R2 expression was associated with reduced CD8+ T cell infiltration in pancreatic cancer microenvironment, which may be due to high programmed cell death-ligand-1 (PD-L1) expression in cancer cells. Finally, the IPS algorithm proved that patients with high IL1R2 expression possessed a higher tumor mutation burden and a higher probability of benefiting from immunotherapy. Conclusion: In conclusion, our study constructed an efficient immune-related prognostic signature and identified the key role of IL1R2 in the development of pancreatic cancer, as well as its potential to serve as a biomarker for immunotherapy efficacy prediction for pancreatic cancer.

11.
Int Immunopharmacol ; 136: 112400, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38850793

ABSTRACT

The decoy receptor interleukin 1 receptor 2 (IL-1R2), also known as CD121b, has different forms: membrane-bound (mIL-1R2), soluble secreted (ssIL-1R2), shedded (shIL-1R2), intracellular domain (IL-1R2ICD). The different forms of IL-1R2 exert not exactly similar functions. IL-1R2 can not only participate in the regulation of inflammatory response by competing with IL-1R1 to bind IL-1 and IL-1RAP, but also regulate IL-1 maturation and cell activation, promote cell survival, participate in IL-1-dependent internalization, and even have biological activity as a transcriptional cofactor. In this review, we provide a detailed description of the biological characteristics of IL-1R2 and discuss the expression and unique role of IL-1R2 in different immune cells. Importantly, we summarize the role of IL-1R2 in immune regulation from different autoimmune diseases, hoping to provide a new direction for in-depth studies of pathogenesis and therapeutic targets in autoimmune diseases.


Subject(s)
Autoimmune Diseases , Receptors, Interleukin-1 Type II , Humans , Receptors, Interleukin-1 Type II/metabolism , Receptors, Interleukin-1 Type II/genetics , Autoimmune Diseases/immunology , Animals
12.
Eur J Pharmacol ; 978: 176773, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38936453

ABSTRACT

The interleukin-1 receptor-associated kinase (IRAK) family is a group of serine-threonine kinases that regulates various cellular processes via toll-like receptor (TLR)/interleukin-1 receptor (IL1R)-mediated signaling. The IRAK family comprises four members, including IRAK1, IRAK2, IRAK3, and IRAK4, which play an important role in the expression of various inflammatory genes, thereby contributing to the inflammatory response. IRAKs are key proteins in chronic and acute liver diseases, and recent evidence has implicated IRAK family proteins (IRAK1, IRAK3, and IRAK4) in the progression of liver-related disorders, including alcoholic liver disease, non-alcoholic steatohepatitis, hepatitis virus infection, acute liver failure, liver ischemia-reperfusion injury, and hepatocellular carcinoma. In this article, we provide a comprehensive review of the role of IRAK family proteins and their associated inflammatory signaling pathways in the pathogenesis of liver diseases. The purpose of this study is to explore whether IRAK family proteins can serve as the main target for the treatment of liver related diseases.


Subject(s)
Interleukin-1 Receptor-Associated Kinases , Liver Diseases , Interleukin-1 Receptor-Associated Kinases/metabolism , Interleukin-1 Receptor-Associated Kinases/genetics , Humans , Liver Diseases/metabolism , Animals , Signal Transduction
13.
Proc Natl Acad Sci U S A ; 121(19): e2400903121, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38683992

ABSTRACT

The IL-17 pathway displays remarkably diverse functional modes between different subphyla, classes, and even orders, yet its driving factors remains elusive. Here, we demonstrate that the IL-17 pathway originated through domain shuffling between a Toll-like receptor (TLR)/IL-1R pathway and a neurotrophin-RTK (receptor-tyrosine-kinase) pathway (a Trunk-Torso pathway). Unlike other new pathways that evolve independently, the IL-17 pathway remains intertwined with its donor pathways throughout later evolution. This intertwining not only influenced the gains and losses of domains and components in the pathway but also drove the diversification of the pathway's functional modes among animal lineages. For instance, we reveal that the crustacean female sex hormone, a neurotrophin inducing sex differentiation, could interact with IL-17Rs and thus be classified as true IL-17s. Additionally, the insect prothoracicotropic hormone, a neurotrophin initiating ecdysis in Drosophila by binding to Torso, could bind to IL-17Rs in other insects. Furthermore, IL-17R and TLR/IL-1R pathways maintain crosstalk in amphioxus and zebrafish. Moreover, the loss of the Death domain in the pathway adaptor connection to IκB kinase and stress-activated protein kinase (CIKSs) dramatically reduced their abilities to activate nuclear factor-kappaB (NF-κB) and activator protein 1 (AP-1) in amphioxus and zebrafish. Reinstating this Death domain not only enhanced NF-κB/AP-1 activation but also strengthened anti-bacterial immunity in zebrafish larvae. This could explain why the mammalian IL-17 pathway, whose CIKS also lacks Death, is considered a weak signaling activator, relying on synergies with other pathways. Our findings provide insights into the functional diversity of the IL-17 pathway and unveil evolutionary principles that could govern the pathway and be used to redesign and manipulate it.


Subject(s)
Interleukin-17 , Signal Transduction , Toll-Like Receptors , Animals , Interleukin-17/metabolism , Toll-Like Receptors/metabolism , Nerve Growth Factors/metabolism , Nerve Growth Factors/genetics , Receptors, Interleukin-1/metabolism , Receptors, Interleukin-1/genetics , Evolution, Molecular , Receptors, Interleukin-17/metabolism , Receptors, Interleukin-17/genetics
14.
Haemophilia ; 30(3): 752-764, 2024 May.
Article in English | MEDLINE | ID: mdl-38439143

ABSTRACT

INTRODUCTION: Poor response to platelet and recombinant factor VII administration is a major problem in patients with Glanzmann Thrombasthenia (GT). The risk factors associated with poor response to treatment in these patients are unknown. Some genetic variations of cytokines may contribute to therapy resistance. AIMS: We evaluated, for the first time, whether genetic polymorphisms on cytokine genes are related to poor treatment response in GT patients. METHODS: We enrolled 30 patients with GT (15 resistant and 15 non-resistant) and 100 healthy controls. Gene polymorphisms of IL-10 and TNF-α were analysed using TaqMan Realtime PCR, and IL-1, IL-1R1 and IL-1RN were investigated with the RFLP method. In-silico analyses were performed to predict the potential impact of these polymorphisms. RESULTS: In the resistant group, all patients had a variant of the IL-10 gene at the -1082 position (rs1800896), with a GG genotype that was significantly more frequent than the non-resistant group. Analysis between healthy controls and GT patients revealed a probable correlation between rs3783550, rs3783553, rs3917356 and rs2234463 and GT. The In-silico study indicated that TNF-α rs1800629 and IL-10 rs1800896 polymorphisms result in different allelic expressions which may contribute to poor response to therapy. CONCLUSIONS: These findings suggest that polymorphisms in the IL-10 and IL-1 receptor antagonist genes may play a role in poor therapy response in GT patients. In addition, some polymorphisms in IL-1α, IL1-ß, IL-1R1 and IL-R antagonists might be involved in the GT progression.


Subject(s)
Interleukin 1 Receptor Antagonist Protein , Thrombasthenia , Female , Humans , Male , Case-Control Studies , Genotype , Interleukin 1 Receptor Antagonist Protein/genetics , Interleukin 1 Receptor Antagonist Protein/therapeutic use , Interleukin-10/genetics , Polymorphism, Genetic , Polymorphism, Single Nucleotide , Receptors, Interleukin-1 Type I/genetics , Recombinant Proteins/therapeutic use , Thrombasthenia/genetics , Thrombasthenia/drug therapy , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/antagonists & inhibitors
15.
J Agric Food Chem ; 72(14): 7882-7893, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38530797

ABSTRACT

IL-1ß is an important cytokine implicated in the progression of inflammatory bowel disease (IBD) and intestinal barrier dysfunction. The polyphenolic compound, geraniin, possesses bioactive properties, such as antitumor, antioxidant, anti-inflammatory, antihypertensive, and antiviral activities; however, its IL-1ß-targeted anticolitis activity remains unclear. Here, we evaluated the inhibitory effect of geraniin in IL-1ß-stimulated Caco-2 cells and a dextran sulfate sodium (DSS)-induced colitis mouse model. Geraniin blocked the interaction between IL-1ß and IL-1R by directly binding to IL-1ß and inhibited the IL-1ß activity. It suppressed IL-1ß-induced intestinal tight junction damage in human Caco-2 cells by inhibiting IL-1ß-mediated MAPK, NF-kB, and MLC activation. Moreover, geraniin administration effectively reduced colitis symptoms and attenuated intestinal barrier injury in mice by suppressing elevated intestinal permeability and restoring tight junction protein expression through the inhibition of MAPK, NF-kB, and MLC activation. Thus, geraniin exhibits anti-IL-1ß activity and anticolitis effect by hindering the IL-1ß and IL-1R interaction and may be a promising therapeutic anti-IL-1ß agent for IBD treatment.


Subject(s)
Colitis , Glucosides , Hydrolyzable Tannins , Inflammatory Bowel Diseases , Humans , Animals , Mice , Caco-2 Cells , Dextran Sulfate/adverse effects , Dextran Sulfate/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Colitis/chemically induced , Colitis/drug therapy , Colitis/genetics , Inflammation/metabolism , Inflammatory Bowel Diseases/chemically induced , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/metabolism , Mice, Inbred C57BL , Disease Models, Animal , Intestinal Mucosa/metabolism
16.
Front Med (Lausanne) ; 11: 1307394, 2024.
Article in English | MEDLINE | ID: mdl-38323035

ABSTRACT

Interleukin 1ß (IL-1ß) is a significant mediator of inflammation and tissue damage in IBD. The balance between IL-1ß and its endogenous inhibitor-IL-1Ra-, plays a critical role in both initiation and regulation of inflammation. However, the precise role of IL-1ß as a causative factor in IBD or simply a consequence of inflammation remains unclear. This review summarizes current knowledge on the molecular and cellular characteristics of IL-1ß, describes the existing evidence on the role of this cytokine as a modulator of intestinal homeostasis and an activator of inflammatory responses, and also discusses the role of microRNAs in the regulation of IL-1ß-related inflammatory responses in IBD. Current evidence indicates that IL-1ß is involved in several aspects during IBD as it greatly contributes to the induction of pro-inflammatory responses through the recruitment and activation of immune cells to the gut mucosa. In parallel, IL-1ß is involved in the intestinal barrier disruption and modulates the differentiation and function of T helper (Th) cells by activating the Th17 cell differentiation, known to be involved in the pathogenesis of IBD. Dysbiosis in the gut can also stimulate immune cells to release IL-1ß, which, in turn, promotes inflammation. Lastly, increasing evidence pinpoints the central role of miRNAs involvement in IL-1ß-related signaling during IBD, particularly in the maintenance of homeostasis within the intestinal epithelium. In conclusion, given the crucial role of IL-1ß in the promotion of inflammation and immune responses in IBD, the targeting of this cytokine or its receptors represents a promising therapeutic approach. Further research into the IL-1ß-associated post-transcriptional modifications may elucidate the intricate role of this cytokine in immunomodulation.

17.
Environ Toxicol ; 39(5): 3211-3224, 2024 May.
Article in English | MEDLINE | ID: mdl-38356310

ABSTRACT

Acute respiratory distress syndrome (ARDS) is a life-threatening condition characterized by lung inflammation and high mortality rates. Lung cancer, specifically lung adenocarcinoma (LUAD), is a major cause of cancer-related deaths worldwide. Patients with LUAD, particularly those undergoing chemotherapy, are more likely to develop ARDS. ARDS inflicts major malfunctioning in the immune system. We suspected a certain shared pathogenic mechanism between these diseases. This study analyzed 503 LUAD patients from the TCGA-LUAD cohort as the training set, 85 LUAD cases from the GSE30219 cohort as the validation set, and 24 RNA-seq samples from ARDS mice model and control groups in the GSE2411 cohort. The differentially expressed genes (DEGs) of ARDS were analyzed using the limma package and screened by Cox and Lasso analysis. ssGSEA and xCell algorithms were utilized for immune landscaping. RT-qPCR analysis was used to determine the mRNA levels of key genes in both the LPS-induced ARDS model and human LUAD cell lines. We identified DEGs between ARDS and control groups, which were highly associated with cytokine production and leukocyte migration. A prognosis model for LUAD patients was developed based on the expressions of the key genes in the ARDS-derived DEGs, including FMO3, IL1R2, CCL20, CFTR, and GADD45G. A satisfactory efficacy was observed in both the training and validation cohorts. The model demonstrated increased effectiveness in predicting the intratumor immune profile and mutation status of LUAD. Moreover, we utilized LPS to induce the ARDS model, which resulted in elevated expressions of IL1R2 and CCL20. Additionally, CCL20 was upregulated in cancerous LUAD cell lines. We developed an ARDS-based model for stratifying LUAD prognosis. CCL20 was found to be elevated in both the ARDS model and LUAD, suggesting a shared underlying mechanism of these two diseases.


Subject(s)
Adenocarcinoma of Lung , Adenocarcinoma , Lung Neoplasms , Animals , Mice , Humans , Lipopolysaccharides , Adenocarcinoma of Lung/genetics , Lung Neoplasms/genetics , Cell Line , Chemokine CCL20
18.
Oncoimmunology ; 13(1): 2297504, 2024.
Article in English | MEDLINE | ID: mdl-38170019

ABSTRACT

IL-37 is a member of the IL-1 superfamily exerting anti-inflammatory functions in a number of diseases. Extracellular IL-37 triggers the inhibitory receptor IL-1R8 that is known to regulate different NK cell pathways and functional activities including their anti-tumor effect. However, the effect of IL-37 on human NK cell functions is still to be unveiled. This study aimed to investigate the functional effect of IL-37 in human NK cells activated with IL-15. We found that IL-37 enhanced both NK cell cytotoxic activity against different tumor cell lines and cytokines production. These effects were associated with increased phosphorylation of ERK and NF-Kb. The improved NK cell activity was also strictly related to a time-dependent GSK3ß-mediated degradation of IL-1R8. The enhanced activation profile of IL-37 treated NK cells possibly due to IL-1R8 degradation was confirmed by the results with IL-1R8-silenced NK cells. Lastly, in line with these data, through the analysis of the TNM plot database of a large group of patients, IL-37 mRNA expression was found to be significantly lower in colon and skin cancers than in normal tissues. Colon adenocarcinoma and neuroblastoma patients with higher IL-37 mRNA levels had significantly higher overall survival, suggesting that the presence of IL-37 might be considered an independent positive prognostic factor for this tumor. Our results provide novel information on the mechanisms regulating IL-1R8 function in human NK cells, highlighting the IL-37-IL-1R8 axis as a potential new target to improve the anti-tumor immune response.


Subject(s)
Adenocarcinoma , Colonic Neoplasms , Humans , Cytokines/metabolism , Adenocarcinoma/drug therapy , Killer Cells, Natural/metabolism , Anti-Inflammatory Agents/metabolism , Anti-Inflammatory Agents/pharmacology , RNA, Messenger/metabolism , RNA, Messenger/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL