Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
Pest Manag Sci ; 79(2): 678-687, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36229424

ABSTRACT

BACKGROUND: Exposure of agricultural workers in rice paddies to the insecticide chlorantraniliprole and its subsequent potential health risks were investigated during two scenarios (mixing/loading and hand-held spraying). The exposure factors, such as the outer dosimeter, inner dosimeter, gauze, and nitrile gloves, were calculated using whole-body dosimetry to measure dermal exposure. The inhalation exposure was determined using a fiberglass filter which is set with an Institute of Occupational Medicine (IOM) sampler. A recovery test was performed to evaluate the accuracy of the analytical method. RESULTS: The exposure amounts of various matrices were calculated from extraction volume and concentration of the target compound. The dermal exposure to chlorantraniliprole was 0.6 mg [0.001% of the total active ingredient (a.i.)] for mixing and loading, and 28.6 mg (0.066% of the total a.i.) for application. The inhalation exposure to chlorantraniliprole was 7.2 µg (1.3%, 1.2 × 10-5 % of the total applied a.i.) for mixing and loading, and 1.9 µg (0.006%, 4.4 × 10-6 % of the total applied a.i.) for application. The most exposed part of the body was the hand (90.4%) during mixing and loading, whereas the primary sites during application were the thighs (32.8%) and shins (22.6%). For mixing and loading, the amount of actual dermal exposure was 5.5 µg day-1 and that of actual inhalation exposure was 21.9 µg day-1 . By contrast, in the application, the amounts of actual dermal and actual inhalation exposures were 34 178.7 and 5.9 µg day-1 , respectively. CONCLUSIONS: The risk assessment results demonstrated that the risk of chlorantraniliprole exposure in rice paddies was low during application than during mixing and loading. © 2022 Society of Chemical Industry.


Subject(s)
Insecticides , Occupational Exposure , Oryza , Humans , Insecticides/analysis , Occupational Exposure/analysis , Farmers , Risk Assessment , Inhalation Exposure/analysis
2.
Ecotoxicol Environ Saf ; 243: 113988, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36029578

ABSTRACT

Dermal & inhalation exposure was examined and according to these results, risk assessment of agricultural workers to thiamethoxam was performed during pesticide mixing/loading and hand-held sprayer application (11 replicates, each of about 1000 L of spray suspension) in vineyards. For the whole body dosimetry (WBD), clothing (Outer and inner), gauze, and nitrile gloves were analyzed to determine dermal exposure using whole-body dosimetry exposure protocol. The inhalation exposure was measured using a glass fiber filter with an IOM sampler. Analytical method validation of exposure matrices was evaluated including the field recovery and breakthrough test. The dermal exposure amount during mixing/loading was 0.163 mg (0.0004% of the total mixed/loaded active ingredient [a.i.]), whereas there was no inhalation exposure. The gloves (0.154 mg, 94.5%) were the most exposed body parts followed by the chest and stomach (0.009 mg, 5.5%). During application, the dermal and inhalation exposure amounts were 32.3 mg (0.07% of the total applied a.i.) and 10.8 µg (2.4 × 10-6% of the total applied a.i), respectively. The shin (35.1%) had the highest exposure to pesticides, followed by the chest & stomach (15.6%) and pelvis (12.6%). In case of mixing/loading, the amounts of actual dermal exposure (ADE) and actual inhalation exposure (AIE) were 0.0 and 0.0 µg/day, while those of ADE and AIE were 4707.6 and 15.8 µg/day for application. In risk assessment of the two different scenarios, the risk index was much lower than 1 (mixing/loading:0.000, application:0.014), indicating that vineyard workers are at low risk of thiamethoxam exposure. To determine the validity of the risk assessment using WBD method, the urinary metabolite was analyzed. Comparison of biomonitoring data and WBD exposure data show a reliable correlation (r = 0.885, p = 0.0003), suggesting that these are suitable methods to estimate exposure.


Subject(s)
Occupational Exposure , Pesticides , Farmers , Farms , Humans , Occupational Exposure/analysis , Risk Assessment , Thiamethoxam
3.
J Occup Environ Hyg ; 16(9): 634-642, 2019 09.
Article in English | MEDLINE | ID: mdl-31298629

ABSTRACT

An ideal inhalable aerosol sampler for occupational exposure monitoring would have a sampling efficiency that perfectly matches the inhalable particulate matter (IPM) criterion. Two common aerosol samplers in use worldwide are the closed-face cassette (CFC) and the Institute of Occupational Medicine (IOM) sampler. However, the CFC is known to under-sample, with near zero sampling efficiency for particles >30 µm, whereas the IOM, considered by many to be the "gold standard" in inhalable samplers, has been shown to over-sample particles >60 µm. A new sampler in development incorporates characteristics of both the CFC and the IOM. Like the CFC, it would be disposable, have a simple design, and is intended to be oriented at a 45° downward angle. Like the IOM, the new sampler has a 15-mm inlet diameter and incorporates a 25-mm filter cassette with a protruding lip. The IOM is oriented at 0° to the horizontal, so it is hypothesized that orienting the new sampler at ∼45° downward angle will reduce oversampling of larger particles. In comparison, the CFC's inlet diameter is 4 mm; increasing the size of the inlet should allow the new sampler to have an increased efficiency relative to the CFC for all particles. A unique characteristic of the new sampler is the incorporation of a one-piece capsule-style filter that mimics the IOM's cassette but is made of disposable material. Seven different sizes of alumina particles (mean aerodynamic diameters from 4.9-62.4 µm) were tested (total = 124 samples collected). For each test, six samplers were placed on a manikin located inside a wind tunnel operated at 0.2 m/sec. Results indicated that the new sampler improved on the CFC for smaller particles, providing a larger range for which it matches the IPM criterion, up to 44.3 µm. However, the efficiency was significantly lower in comparison to the IPM criterion for particle sizes above 60 µm. Overall, the new sampler showed promise, but additional modifications may help improve sampling efficiency for larger particles.


Subject(s)
Air Pollutants, Occupational/analysis , Disposable Equipment , Environmental Monitoring/instrumentation , Inhalation Exposure/analysis , Occupational Exposure/analysis , Aerosols , Equipment Design , Humans , Particle Size , Particulate Matter/analysis
4.
J Occup Environ Hyg ; 16(3): 250-257, 2019 03.
Article in English | MEDLINE | ID: mdl-30640589

ABSTRACT

This study evaluates the performance of the disposable inhalable aerosol sampler (DIAS), a new sampler developed to be more cost-effective than the traditional inhalable particle samplers and comparable to the inhalable particle sampling convention. Forty-eight pairs of the DIAS prototype and the IOM sampler were utilized to collect copper exposure measurements (23 personal and 25 area) at an electrorefinery facility. The geometric mean (GM) value of ratios of exposure data (DIAS/IOM) was 1.1, while the GM of ratios (DIAS/IOM) was 1.6 for the area exposure data, revealing 84% of the ratios were greater than one. For both personal and area exposure data, the concordance correlation coefficient tests revealed significant disagreements between the two types of samplers and suggested precision as the source of the disagreement. The estimated mean concentration was higher for the DIAS compared that for the IOM for the area exposure data (p < 0.05), while the results were comparable for the personal exposure data (p = 0.49). Overall, the DIAS generated higher exposure results compared to the IOM sampler for the area exposures. For the personal exposures, the findings were inconclusive due to inconsistent results of factors aforementioned. This study is limited to one metal component (copper) of the dust at a worksite. To date, this is the first field evaluation using personal exposure data to test the performance of the DIAS and the second evaluation using area exposure data. Thus, it will be necessary to conduct additional field evaluations with various elements to further evaluate the performance of the DIAS. In addition, particle migration to the internal walls of the cap was observed during the transportation of collected samples to a laboratory for both sampler types (6.4% for the DIAS and 7.4% for the IOM). Occupational health and safety professionals should be aware of potential errors caused from transferring samples from a field to a laboratory and should be careful not to exclude particles collected on the caps.


Subject(s)
Aerosols/analysis , Air Pollutants, Occupational/analysis , Copper , Dust/analysis , Environmental Monitoring/instrumentation , Inhalation Exposure/analysis , Occupational Exposure/analysis , Disposable Equipment , Environmental Monitoring/methods , Equipment Design , Humans
5.
J Occup Environ Hyg ; 14(5): 323-334, 2017 05.
Article in English | MEDLINE | ID: mdl-27792474

ABSTRACT

Airborne coal dust generated during mining can deposit and accumulate on mine surfaces, presenting a dust explosion hazard. When assessing dust hazard mitigation strategies for airborne dust reduction, sampling is done in high-velocity ventilation air, which is used to purge the mining face and gallery tunnel. In this environment, the sampler inlet velocity should be matched to the air stream velocity (isokinetic sampling) to prevent oversampling of coarse dust at low sampler-to-air velocity ratios. Low velocity ratios are often encountered when using low flow rate, personal sampling pumps commonly used in underground mines. In this study, with a goal of employing mine-ready equipment, a personal sampler was adapted for area sampling of coarse coal dust in high-velocity ventilation air. This was done by adapting an isokinetic nozzle to the inlet of an Institute of Occupational Medicine (Edinburgh, Scotland) sampling cassette (IOM). Collected dust masses were compared for the modified IOM isokinetic sampler (IOM-MOD), the IOM without the isokinetic nozzle, and a conventional dust sampling cassette without the cyclone on the inlet. All samplers were operated at a flow rate typical of personal sampling pumps: 2 L/min. To ensure differences between collected masses that could be attributed to sampler design and were not influenced by artifacts from dust concentration gradients, relatively uniform and repeatable dust concentrations were demonstrated in the sampling zone of the National Institute for Occupational Safety and Health experimental mine gallery. Consistent with isokinetic theory, greater differences between isokinetic and non-isokinetic sampled masses were found for larger dust volume-size distributions and higher ventilation air velocities. Since isokinetic sampling is conventionally used to determine total dust concentration, and isokinetic sampling made a difference in collected masses, the results suggest when sampling for coarse coal dust the IOM-MOD may improve airborne coarse dust assessments over "off-the-shelf" sampling cassettes.


Subject(s)
Coal Mining , Coal/analysis , Dust/analysis , Environmental Monitoring/methods , Occupational Health , Equipment Design , Explosions/prevention & control , Humans , Particle Size , Ventilation
6.
Int J Occup Environ Health ; 22(2): 159-66, 2016 04.
Article in English | MEDLINE | ID: mdl-27373902

ABSTRACT

BACKGROUND: Particle size affects the performance of personal air samplers used to measure dust exposure in the workplace. Few field studies have been conducted for comparing the performance of personal inhalable samplers. OBJECTIVE: To compare wood dust sampling with two inhalable samplers: IOM (Institute of Occupational Medicine) and Italian cone. METHODS: 136 Italian cone/IOM paired samples and 136 passive IOM samples were collected in 30 Italian woodworking industries. The valid number of sample pairs was 114. Ultra-large particles were collected by passive IOM. The sampling membranes were weighed and the size particles were measured. Mass differences in active and passive IOM samples were calculated (IOM-Δ). RESULTS: Statistical analysis of all 114 Italian cone/active IOM paired results showed a significant mass difference (P < 0.05) and no significant mass difference for sanding and cutting woodworking processes. The Italian cone/IOM-Δ paired results consistently showed no statistically significant mass differences in any woodworking processes. Both samplers performed similarly when ultra-large particles mass contribution was not considered. CONCLUSIONS: These findings confirm the presence of ultra-large particles in woodworking. The Italian cone and IOM samplers can be used interchangeably for personal wood dust exposure assessment, when the wood activities produce small-size particles.


Subject(s)
Dust/analysis , Environmental Monitoring/instrumentation , Inhalation Exposure/analysis , Occupational Exposure/analysis , Wood , Air Pollutants, Occupational/analysis , Italy , Particle Size
7.
Article in English | MEDLINE | ID: mdl-26959046

ABSTRACT

Extrathoracic deposition of inhaled particles (i.e., in the head and throat) is an important exposure route for many hazardous materials. Current best practices for exposure assessment of aerosols in the workplace involve particle size selective sampling methods based on particle penetration into the human respiratory tract (i.e., inhalable or respirable sampling). However, the International Organization for Standardization (ISO) has recently adopted particle deposition sampling conventions (ISO 13138), including conventions for extrathoracic (ET) deposition into the anterior nasal passage (ET1) and the posterior nasal and oral passages (ET2). For this study, polyurethane foam was used as a collection substrate inside an inhalable aerosol sampler to provide an estimate of extrathoracic particle deposition. Aerosols of fused aluminum oxide (five sizes, 4.9 µm-44.3 µm) were used as a test dust in a low speed (0.2 m/s) wind tunnel. Samplers were placed on a rotating mannequin inside the wind tunnel to simulate orientation-averaged personal sampling. Collection efficiency data for the foam insert matched well to the extrathoracic deposition convention for the particle sizes tested. The concept of using a foam insert to match a particle deposition sampling convention was explored in this study and shows promise for future use as a sampling device.


Subject(s)
Aerosols/analysis , Air Pollutants, Occupational/analysis , Environmental Monitoring/methods , Environmental Monitoring/standards , Inhalation Exposure/analysis , Occupational Exposure/analysis , Polyurethanes/analysis , Aerosols/standards , Air Pollutants, Occupational/standards , Humans , Inhalation Exposure/standards , Models, Theoretical , Mouth/physiopathology , Nasal Cavity/physiopathology , National Academies of Science, Engineering, and Medicine, U.S., Health and Medicine Division , Occupational Exposure/standards , Particle Size , Polyurethanes/standards , Specimen Handling/methods , United States
8.
J Occup Environ Hyg ; 13(2): 133-40, 2016.
Article in English | MEDLINE | ID: mdl-26513302

ABSTRACT

In addition to chemical composition, the site of deposition of inhaled particles is important for determining the potential health effects from an exposure. As a result, the International Organization for Standardization adopted a particle deposition sampling convention. This includes extrathoracic particle deposition sampling conventions for the anterior nasal passages (ET1) and the posterior nasal and oral passages (ET2). This study assessed how well a polyurethane foam insert placed in an Institute of Occupational Medicine (IOM) sampler can match an extrathoracic deposition sampling convention, while accounting for possible static buildup in the test particles. In this way, the study aimed to assess whether neutralized particles affected the performance of this sampler for estimating extrathoracic particle deposition. A total of three different particle sizes (4.9, 9.5, and 12.8 µm) were used. For each trial, one particle size was introduced into a low-speed wind tunnel with a wind speed set a 0.2 m/s (∼40 ft/min). This wind speed was chosen to closely match the conditions of most indoor working environments. Each particle size was tested twice either neutralized, using a high voltage neutralizer, or left in its normal (non neutralized) state as standard particles. IOM samplers were fitted with a polyurethane foam insert and placed on a rotating mannequin inside the wind tunnel. Foam sampling efficiencies were calculated for all trials to compare against the normalized ET1 sampling deposition convention. The foam sampling efficiencies matched well to the ET1 deposition convention for the larger particle sizes, but had a general trend of underestimating for all three particle sizes. The results of a Wilcoxon Rank Sum Test also showed that only at 4.9 µm was there a statistically significant difference (p-value = 0.03) between the foam sampling efficiency using the standard particles and the neutralized particles. This is interpreted to mean that static buildup may be occurring and neutralizing the particles that are 4.9 µm diameter in size did affect the performance of the foam sampler when estimating extrathoracic particle deposition.


Subject(s)
Inhalation Exposure/analysis , Manikins , Polyurethanes , Static Electricity , Air Movements , Air Pollutants, Occupational/analysis , Air Pollution, Indoor/analysis , Environmental Monitoring/methods , Occupational Exposure/analysis , Particle Size , Workplace
SELECTION OF CITATIONS
SEARCH DETAIL