Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 28(5): e202103142, 2022 Jan 24.
Article in English | MEDLINE | ID: mdl-34897851

ABSTRACT

An investigation of pulsed-laser-ablated Zn, Cd and Hg metal atom reactions with HCN under excess argon during co-deposition with laser-ablated Hg atoms from a dental amalgam target also provided Hg emissions capable of photoionization of the CN photo-dissociation product. A new band at 1933.4 cm-1 in the region of the CN and CN+ gas-phase fundamental absorptions that appeared upon annealing the matrix to 20 K after sample deposition, and disappeared upon UV photolysis is assigned to (Ar)n CN+ , our key finding. It is not possible to determine the n coefficient exactly, but structure calculations suggest that one, two, three or four argon atoms can solvate the CN+ cation in an argon matrix with C-N absorptions calculated (B3LYP) to be between 2317.2 and 2319.8 cm-1 . Similar bands were observed in solid krypton at 1920.5, in solid xenon at 1935.4 and in solid neon at 1947.8 cm-1 . H13 CN reagent gave an 1892.3 absorption with shift instead, and a 12/13 isotopic frequency ratio-nearly the same as found for 13 CN+ itself in the gas phase and in the argon matrix. The CN+ molecular ion serves as a useful infrared probe to examine Ng clusters. The following ion reactions are believed to occur here: the first step upon sample deposition is assisted by a focused pulsed YAG laser, and the second step occurs on sample annealing: (Ar)2 + +CN→Ar+CN+ →(Ar)n CN+ .

2.
Chem Asian J ; 16(18): 2626-2632, 2021 Sep 20.
Article in English | MEDLINE | ID: mdl-34288497

ABSTRACT

Developing ideal IR probes is essential to understand the structure and dynamics of biomolecules with time-resolved IR spectroscopies and imaging techniques. Especially, nitrile (CN) group has recently been proposed to serve as IR probes of the local environment of proteins. Herein, we investigated the effect of a substituent on the vibrational properties of the benzonitrile. The electron-donating and withdrawing character of p-substituent on benzonitrile are expected to modulate the vibrational frequency, molar extinction coefficient, and vibrational lifetime of CN probe. FT-IR revealed the positive correlation between electron-donating character and the molar extinction coefficient of CN stretch mode. Infrared pump-probe (IR-PP) measurements showed that the vibrational lifetime of CN stretch mode exhibits a relatively weak correlation with the electron-donating strength. Among the investigated samples, 4-dimethylamino benzonitrile with the strongest electron-donating strength shows enhanced absorption and extended vibrational lifetime. Utilizing substituent effects will be a practical strategy to improve the performance of the IR probe.

SELECTION OF CITATIONS
SEARCH DETAIL