Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 133
Filter
1.
Adv Exp Med Biol ; 1448: 121-126, 2024.
Article in English | MEDLINE | ID: mdl-39117811

ABSTRACT

Macrophage activation syndrome (MAS) is a life-threatening episode of hyperinflammation driven by excessive activation and expansion of T cells (mainly CD8) and hemophagocytic macrophages producing proinflammatory cytokines. MAS has been reported in association with almost every rheumatic disease, but it is by far most common in systemic juvenile idiopathic arthritis (SJIA). Clinically, MAS is similar to familial or primary hemophagocytic lymphohistiocytosis (pHLH), a group of rare autosomal recessive disorders linked to various genetic defects all affecting the perforin-mediated cytolytic pathway employed by NK cells and cytotoxic CD8 T lymphocytes. Decreased cytolytic activity in pHLH patients leads to prolonged survival of target cells associated with increased production of proinflammatory cytokines that overstimulate macrophages. The resulting cytokine storm is believed to be responsible for the frequently fatal multiorgan system failure seen in MAS. Whole exome sequencing as well as targeted sequencing of pHLH-associated genes in patients with SJIA-associated MAS demonstrated increased "burden" of rare protein-altering variants affecting the cytolytic pathway compared to healthy controls, suggesting that as in pHLH, genetic variability in the cytolytic pathway contributes to MAS predisposition. Functional studies of some of the novel variants have shown that even in a heterozygous state, their presence partially reduces cytolytic activity that may lead to increased cytokine production.


Subject(s)
Arthritis, Juvenile , Macrophage Activation Syndrome , Humans , Macrophage Activation Syndrome/genetics , Macrophage Activation Syndrome/immunology , Arthritis, Juvenile/genetics , Arthritis, Juvenile/immunology , Arthritis, Juvenile/complications , Genetic Predisposition to Disease , Killer Cells, Natural/immunology , Cytokines/genetics , Cytokines/metabolism , Lymphohistiocytosis, Hemophagocytic/genetics , Lymphohistiocytosis, Hemophagocytic/immunology , Macrophages/immunology , Macrophages/metabolism
2.
J Med Virol ; 96(8): e29879, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39169736

ABSTRACT

Interferon regulatory factor 5 (IRF5) is a key transcription factor in inflammatory and immune responses, with its dysregulation linked to autoimmune diseases. Using bioinformatic approaches, including Basic Local Alignment Search Tool (BLAST) for sequence similarity searches, BLAST-Like Alignment Tool (BLAT) for genome-wide alignments, and several phylogenetics software, such as Multiple Alignment using Fast Fourier Transform (MAFFT), for phylogenetic analyses, we characterized the structure, origin, and evolutionary history of the human IRF5 pseudogene 1 (IRF5P1). Our analyses reveal that IRF5P1 is a chimeric processed pseudogene containing sequences derived from multiple sources, including IRF5-like sequences from disparate organisms. We find that IRF5P1 is specific to higher primates, likely originating through an ancient retroviral integration event approximately 60 million years ago. Interestingly, IRF5P1 resides within the triple QxxK/R motif-containing (TRIQK) gene, and its antisense strand is predominantly expressed as part of the TRIQK pre-messenger RNA (mRNA). Analysis of publicly available RNA-seq data suggests potential expression of antisense IRF5P1 RNA. We hypothesize that this antisense RNA may regulate IRF5 expression through complementary binding to IRF5 mRNA, with human genetic variants potentially modulating this interaction. The conservation of IRF5P1 in the primate lineage suggests its positive effects on primate evolution and innate immunity. This study highlights the importance of investigating pseudogenes and their potential regulatory roles in shaping lineage-specific immune adaptations.


Subject(s)
Evolution, Molecular , Interferon Regulatory Factors , Phylogeny , Primates , Pseudogenes , Pseudogenes/genetics , Animals , Humans , Interferon Regulatory Factors/genetics , Primates/genetics , Computational Biology/methods , Sequence Alignment
3.
J Cell Mol Med ; 28(16): e70004, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39159174

ABSTRACT

Ischemia and hypoxia activate astrocytes into reactive types A1 and A2, which play roles in damage and protection, respectively. However, the function and mechanism of A1 and A2 astrocyte exosomes are unknown. After astrocyte exosomes were injected into the lateral ventricle, infarct volume, damage to the blood-brain barrier (BBB), apoptosis and the expression of microglia-related proteins were measured. The dual luciferase reporter assay was used to detect the target genes of miR-628, and overexpressing A2-Exos overexpressed and knocked down miR-628 were constructed. qRT-PCR, western blotting and immunofluorescence staining were subsequently performed. A2-Exos obviously reduced the infarct volume, damage to the BBB and apoptosis and promoted M2 microglial polarization. RT-PCR showed that miR-628 was highly expressed in A2-Exos. Dual luciferase reporter assays revealed that NLRP3, S1PR3 and IRF5 are target genes of miR-628. After miR-628 was overexpressed or knocked down, the protective effects of A2-Exos increased or decreased, respectively. A2-Exos reduced pyroptosis and BBB damage and promoted M2 microglial polarization through the inhibition of NLRP3, S1PR3 and IRF5 via the delivery of miR-628. This study explored the mechanism of action of A2-Exos and provided new therapeutic targets and concepts for treating cerebral ischemia.


Subject(s)
Astrocytes , Blood-Brain Barrier , Brain Ischemia , Exosomes , MicroRNAs , Reperfusion Injury , MicroRNAs/genetics , MicroRNAs/metabolism , Animals , Astrocytes/metabolism , Reperfusion Injury/metabolism , Reperfusion Injury/genetics , Reperfusion Injury/pathology , Reperfusion Injury/therapy , Exosomes/metabolism , Brain Ischemia/metabolism , Brain Ischemia/genetics , Brain Ischemia/therapy , Brain Ischemia/pathology , Blood-Brain Barrier/metabolism , Male , Apoptosis/genetics , Microglia/metabolism , Microglia/pathology , Mice
4.
Clin Rheumatol ; 43(8): 2403-2416, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38963465

ABSTRACT

Systemic lupus erythematosus (SLE) is a common autoimmune disease with a polymorphic clinical presentation involving multisystem damages with significant differences in prevalence and disease severity among different ethnic groups. Although genetic, hormonal, and environmental factors have been demonstrated to contribute a lot to SLE, the pathogenesis of SLE is still unknown. Numerous evidence revealed that gene variants within the type I interferons (IFN) signaling pathway performed the great genetic associations with autoimmune diseases including SLE. To date, through genome-wide association studies (GWAS), genetic association studies showed that more than 100 susceptibility genes have been linked to the pathogenesis of SLE, among which TYK2, STAT1, STAT4, and IRF5 are important molecules directly connected to the type I interferon signaling system. The review summarized the genetic associations and the detailed risk loci of STAT4 and IRF5 with Asian SLE patients, explored the genotype distributions associated with the main clinical manifestations of SLE, and sorted out the potential reasons for the differences in susceptibility in Asia and Europe. Moreover, the therapies targeting STAT4 and IRF5 were also evaluated in order to propose more personalized and targeted treatment plans in SLE.


Subject(s)
Asian People , Genetic Predisposition to Disease , Genome-Wide Association Study , Interferon Regulatory Factors , Interferon Type I , Lupus Erythematosus, Systemic , STAT4 Transcription Factor , Humans , STAT4 Transcription Factor/genetics , Lupus Erythematosus, Systemic/genetics , Interferon Regulatory Factors/genetics , Asian People/genetics , Interferon Type I/genetics , Polymorphism, Single Nucleotide , Signal Transduction/genetics
5.
Clin Exp Pharmacol Physiol ; 51(7): e13868, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38745265

ABSTRACT

Cervical cancer (CC) is a gynaecological malignancy tumour that seriously threatens women's health. Recent evidence has identified that interferon regulatory factor 5 (IRF5), a nucleoplasm shuttling protein, is a pivotal transcription factor regulating the growth and metastasis of various human tumours. This study aimed to investigate the function and molecular basis of IRF5 in CC development. IRF5, protein phosphatase 6 catalytic subunit (PPP6C) and methyltransferase-like 3 (METTL3) mRNA levels were evaluated by quantitative real-time (qRT)-polymerase chain reaction (PCR). IRF5, PPP6C, METTL3, B-cell lymphoma 2 and Bax protein levels were detected using western blot. Cell proliferation, migration, invasion, angiogenesis and apoptosis were determined by using colony formation, 5-ethynyl-2'-deoxyuridine (EdU), transwell, tube formation assay and flow cytometry assay, respectively. Glucose uptake and lactate production were measured using commercial kits. Xenograft tumour assay in vivo was used to explore the role of IRF5. After JASPAR predication, binding between IRF5 and PPP6C promoter was verified using chromatin immunoprecipitation and dual-luciferase reporter assays. Moreover, the interaction between METTL3 and IRF5 was verified using methylated RNA immunoprecipitation (MeRIP). IRF5, PPP6C and METTL3 were highly expressed in CC tissues and cells. IRF5 silencing significantly inhibited cell proliferation, migration, invasion, angiogenesis and glycolytic metabolism in CC cells, while induced cell apoptosis. Furthermore, the absence of IRF5 hindered tumour growth in vivo. At the molecular level, IRF5 might bind with PPP6C to positively regulate the expression of PPP6C mRNA. Meanwhile, IRF5 was identified as a downstream target of METTL3-mediated m6A modification. METTL3-mediated m6A modification of mRNA might promote CC malignant progression by regulating PPP6C, which might provide a promising therapeutic target for CC treatment.


Subject(s)
Cell Proliferation , Interferon Regulatory Factors , Methyltransferases , Phosphoprotein Phosphatases , Up-Regulation , Uterine Cervical Neoplasms , Animals , Female , Humans , Mice , Apoptosis/genetics , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Disease Progression , Gene Expression Regulation, Neoplastic , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/metabolism , Methyltransferases/genetics , Methyltransferases/metabolism , Mice, Nude , Neoplasm Invasiveness , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/pathology , Neovascularization, Pathologic/metabolism , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/metabolism , Phosphoprotein Phosphatases/genetics , Phosphoprotein Phosphatases/metabolism
6.
Am J Physiol Cell Physiol ; 327(1): C1-C10, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38708521

ABSTRACT

The purpose of this study is to investigate the previously unknown connection that succinate has with neutrophils in the setting of adjuvant-mediated immunological enhancement. It has been discovered that succinates stimulate the recruitment of neutrophils in immunization sites, which in turn induces the expression of what is known as neutrophil-derived B cell-activating factor (BAFF). Further amplification of vaccine-induced antibody responses is provided via the succinate receptor 1-interferon regulatory factor 5 (SUCNR1-IRF5)-BAFF signaling pathway, which provides insights into a unique mechanism for immunological enhancement.NEW & NOTEWORTHY This study explores the role of succinate as a vaccine adjuvant, revealing its capacity to enhance neutrophil recruitment at immunization sites, which boosts B cell activation through the succinate receptor 1-interferon regulatory factor 5-B cell-activating factor (SUCNR1-IRF5-BAFF) signaling pathway. Results demonstrate succinate's potential to amplify vaccine-induced antibody responses, highlighting its significance in immunological enhancement and offering new insights into the adjuvant mechanisms of action, particularly in neutrophil-mediated immune responses.


Subject(s)
Adjuvants, Immunologic , Neutrophils , Signal Transduction , Succinic Acid , Neutrophils/immunology , Neutrophils/metabolism , Animals , Succinic Acid/metabolism , Adjuvants, Immunologic/pharmacology , Humans , Mice , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , B-Lymphocytes/drug effects , Neutrophil Infiltration/drug effects , B-Cell Activating Factor/metabolism , B-Cell Activating Factor/immunology , B-Cell Activating Factor/genetics , Mice, Inbred C57BL , Female
7.
Neuroscience ; 549: 121-137, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38754722

ABSTRACT

Myeloid differentiation primary response gene 88 (MyD88), a downstream molecule directly linked to Toll-like receptor (TLRs) and IL1 receptor, has been implicated in ischemia-reperfusion injury across various organs. However, its role in cerebral ischemia-reperfusion injury (CIRI) remains unclear. Five transient middle cerebral artery occlusion (tMCAO) microarray datasets were obtained from the Gene Expression Omnibus (GEO) database. We screened these datasets for differentially expressed genes (DEGs) using the GSE35338 and GSE58720 datasets and performed weighted gene co-expression network analysis (WGCNA) using the GSE30655, GSE28731, and GSE32529 datasets to identify the core module related to tMCAO. A protein-protein interaction (PPI) network was constructed using the intersecting DEGs and genes in the core module. Finally, we identified Myd88 was the core gene. In addition, Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Set Enrichment Analysis (GSEA) validated that TNFα, IL17, and MyD88 signaling pathways were significantly enriched in tMCAO. Subsequently, we investigated the mechanistic role of MyD88 in the tMCAO model using male C57BL/6 mice. MyD88 expression increased significantly 24 h after reperfusion. After intraperitoneal administration of TJ-M2010-5, a MyD88-specific inhibitor, during reperfusion, the infarction volumes in the mice were ameliorated. TJ-M2010-5 inhibits the activation of microglia and astrocytes. Moreover, it attenuates the upregulation of inflammatory cytokines TNFα, IL17, and MMP9 while preserving the expression level of ZO1 after tMCAO, thereby safeguarding against blood-brain barrier (BBB) disruption. Finally, our findings suggest that MyD88 regulates the IRAK4/IRF5 signaling pathway associated with microglial activation. MyD88 participates in CIRI by regulating the inflammatory response and BBB damage following tMCAO.


Subject(s)
Blood-Brain Barrier , Mice, Inbred C57BL , Myeloid Differentiation Factor 88 , Reperfusion Injury , Myeloid Differentiation Factor 88/metabolism , Animals , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/pathology , Male , Mice , Infarction, Middle Cerebral Artery/metabolism , Inflammation/metabolism , Brain Ischemia/metabolism , Brain Ischemia/pathology , Signal Transduction/drug effects , Signal Transduction/physiology , Microglia/metabolism , Microglia/drug effects , Protein Interaction Maps , Piperazines , Thiazoles
8.
Article in English | MEDLINE | ID: mdl-38459707

ABSTRACT

Introduction: IFN-α is the main cytokine in SLE, and single nucleotide polymorphisms (SNP) in different genes could induce it. Aim: To determine the association of rs2004640 (IRF5), rs179008 (TLR7), rs1800795 (IL-6) and rs2280788 (CCL5) with SLE in Mexican women with Mayan ethnicity. Methods: DNA and RNA were isolated from the peripheral blood of 110 patients and 200 healthy control subjects. SNP genotyping and gene expression analysis of IRF5, TLR7, IL-6 and IFN-α were determined by real-time PCR and analyzed with SNP Stat, Stata 10.1 and Graph Pad Prism v5. Results: rs2004640, rs179008, and rs1800795 in both groups were according to Hardy-Weinberg equilibrium. Risk alleles rs179008T and rs2004640T frequencies were higher in controls (p = 0.015 and p = 0.028, respectively), whereas rs179008A frequency was higher in patients (p = 0.015). Allelic combination AGT frequency was higher in patients (p = 0.001). IL-6 rs1800795C > G and CCL5 rs2280788G > C frequencies did not show significant differences (p > 0.05), being rs2280788G (CCL5) monomorphic in controls. SLE patients showed higher TLR7, IRF5, IL6, and IFN-α mRNA levels. IRF5 expression was higher in SLE patients homozygous for rs2004640T (IRF5). Conclusion: This work showed the contribution of TLR7 and IRF5 in SLE pathogenesis in Mayan females from Yucatan.

9.
Cell Rep ; 43(2): 113795, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38367238

ABSTRACT

Activation of endosomal Toll-like receptor (TLR) 7, TLR9, and TLR11/12 is a key event in the resistance against the parasite Toxoplasma gondii. Endosomal TLR engagement leads to expression of interleukin (IL)-12 via the myddosome, a protein complex containing MyD88 and IL-1 receptor-associated kinase (IRAK) 4 in addition to IRAK1 or IRAK2. In murine macrophages, IRAK2 is essential for IL-12 production via endosomal TLRs but, surprisingly, Irak2-/- mice are only slightly susceptible to T. gondii infection, similar to Irak1-/- mice. Here, we report that upon T. gondii infection IL-12 production by different cell populations requires either IRAK1 or IRAK2, with conventional dendritic cells (DCs) requiring IRAK1 and monocyte-derived DCs (MO-DCs) requiring IRAK2. In both populations, we identify interferon regulatory factor 5 as the main transcription factor driving the myddosome-dependent IL-12 production during T. gondii infection. Consistent with a redundant role of DCs and MO-DCs, mutations that affect IL-12 production in both cell populations show high susceptibility to infection in vivo.


Subject(s)
Interleukin-1 Receptor-Associated Kinases , Toxoplasmosis , Animals , Mice , Dendritic Cells , Interferon Regulatory Factors/genetics , Interleukin-12
10.
Article in English | MEDLINE | ID: mdl-38271298

ABSTRACT

Microglia play a critical role in the pathophysiology of Alzheimer's disease. They are involved in Aß-induced neuroinflammatory responses, regulating the production of inflammatory mediators. Interferon regulatory factor 5 (IRF5) plays a central role in inflammatory diseases in the periphery, the role of which in central nervous system remains elusive. This study aimed to investigate the role of IRF5 in Aß-induced neuroinflammation and the progression of Aß pathology. We found that Aß1-42 oligomers significantly increased the level of IRF5 in BV2 microglia. The levels of proinflammatory cytokines TNF-α, IL-1ß, and IL-6 were significantly upregulated with Aß treatment. IRF5 knockdown with siRNA in microglia significantly reduced the expression of these proinflammatory factors induced by Aß and promoted Aß phagocytosis. Besides, LC3 upregulation and p62 downregulation were observed in IRF5 knockdown microglia. This was also validated in APP/PS1 mice with IRF5 knockdown, leading to reduced Aß levels in the brain. We conclude that IRF5 mediates Aß-induced microglial inflammatory responses. IRF5 knockdown attenuated Aß-induced inflammatory responses and promoted the phagocytosis and autophagy of Aß by microglia.


Subject(s)
Alzheimer Disease , Animals , Mice , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Disease Models, Animal , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/metabolism , Mice, Transgenic , Microglia/metabolism , Phagocytosis
11.
Biochim Biophys Acta Rev Cancer ; 1879(1): 189061, 2024 01.
Article in English | MEDLINE | ID: mdl-38141865

ABSTRACT

Canonically, the transcription factor interferon regulatory factor 5 (IRF5) is a key mediator of innate and adaptive immunity downstream of pathogen recognition receptors such as Toll-like receptors (TLRs). Hence, dysregulation of IRF5 function has been widely implicated in inflammatory and autoimmune diseases. Over the last few decades, dysregulation of IRF5 expression has been also reported in hematologic malignancies and solid cancers that support a role for IRF5 in malignant transformation, tumor immune regulation, clinical prognosis, and treatment response. This review will provide an in-depth overview of the current literature regarding the mechanisms by which IRF5 functions as either a tumor suppressor or oncogene, its role in metastasis, regulation of the tumor-immune microenvironment, utility as a prognostic indicator of disease, and new developments in IRF5 therapeutics that may be used to remodel tumor immunity.


Subject(s)
Gene Expression Regulation , Interferon Regulatory Factors , Humans , Prognosis , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/metabolism , Adaptive Immunity
12.
Saudi Med J ; 44(12): 1232-1239, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38016737

ABSTRACT

OBJECTIVES: To determine the allelic frequencies and effects of genotypic variations in cytokine gene polymorphisms in a Saudi Arabian population. METHODS: This cross-sectional study involved 41 patients with Primary Sjögren's syndrome (pSS) and 71 healthy controls between October 2018 and May 2019. Single nucleotide polymorphisms genotyping was performed using the SEQUENOM MassARRAY® System, targeting nine polymorphisms in different cytokine genes. Chi-square tests were used to compare the patients and controls. RESULTS: The interleukin-1 beta (IL-1ß) rs1143627 CT (control, 52.7%; patients, 21.2%) and TT + CT (p= 0.003; p=0.033) genotypes were less frequent in patients with pSS than in healthy controls. The C allele in rs10488631 in the interferon regulatory factor 5 (IRF5) gene and the A allele in rs12583006 in the B-cell activating factor (BAFF) gene were associated with an increased risk of pSS development in the patient group. CONCLUSION: The CT genotype at -31 (rs1143627) in the IL-1ß gene was not associated with a high risk of pSS development in the Saudi population, in contrast to what has been verified in other ethnicities. However, the C allele in rs10488631 in IRF-5 and the A allele in rs12583006 in BAFF were associated.


Subject(s)
Polymorphism, Single Nucleotide , Sjogren's Syndrome , Humans , Cross-Sectional Studies , Saudi Arabia , Sjogren's Syndrome/genetics , Cytokines/genetics
13.
J Dig Dis ; 24(8-9): 480-490, 2023.
Article in English | MEDLINE | ID: mdl-37594849

ABSTRACT

OBJECTIVES: The interferon regulatory factor (IRF) family of proteins are involved in tumor progression. However, the role of IRF5 in tumorigenesis remains unknown. In this study we aimed to elucidate the functions of IRF5 in the progression of hepatocellular carcinoma (HCC). METHODS: IRF5 expression in HCC was analyzed through quantitative polymerase chain reaction (qPCR), western blot, and immunohistochemistry (IHC), etc. The Cell Counting Kit 8 (CCK8) assay, anchorage-independent assay, and EdU assay were used to evaluate the role of IRF5. The molecular mechanisms were studied by analyzing the metabolites with mass spectrum and immunoprecipitation. RESULTS: IRF5 was upregulated in HCC. Interfering with IRF5 inhibited the proliferation and tumorigenic potential of HCC cells. When studying the molecular mechanism, IRF5 was found to upregulate the expression of lactate dehydrogenase A (LDHA) and promoted glycolysis. Additionally, tripartite motif containing 35 (TRIM35) interacted with IRF5, promoting its ubiquitination and degradation. In the clinically obtained HCC samples, TRIM35 was negatively correlated with the expression of IRF5. CONCLUSION: These findings reveal the oncogenic function of IRF5 in the progression of HCC by enhancing glycolysis, further supporting the potential of IRF5 as a viable target for HCC therapy.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Cell Line, Tumor , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/metabolism , Glycolysis , Cell Proliferation , Gene Expression Regulation, Neoplastic , Apoptosis Regulatory Proteins/genetics
14.
Curr Mol Med ; 2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37622691

ABSTRACT

BACKGROUND: Neuropathic pain is chronic and affects the patient's life. Studies have shown that IRF5 and CXCL13/CXCR5 are involved in neuropathic pain; however, their interactions are unknown. OBJECTIVE: In this study, a rat neuropathic pain model was constructed by inducing chronic compression injury (CCI). IRF5 recombinant lentiviral vector and CXCL13 neutralizing antibody were administered to investigate their action mechanisms in neuropathic pain. Consequently, the new strategies for disease treatment could be evolved. METHODS: The CCI rats were intrathecally injected with recombinant lentivirus plasmid LV-IRF5 (overexpression), LV-SH-IRF5 (silencing), and CXCL13 neutralizing antibody. Mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) were measured. The tumor necrosis factor (TNF)-alpha, interleukin (IL)-1ß, and IL-6 levels were recorded via the enzyme-linked immunosorbent assay (ELISA). The spinal cord was stained using hematoxylin-eosin (HE). The binding of IRF5 to CXCL13 was analyzed by chromatin immunoprecipitation (ChIP) and dual luciferase reporter assay. The IRF5, neuronal nuclei (NeuN), CXCL13, and CXCR5 expressions were detected through quantitative real-time polymerase chain reaction and Western blot. RESULTS: The MWT and TWL values in the CCI group were lower than in the Sham group. The expressions of CXCL13, CXCR5, and IRF5 in CCI rats were gradually increased with the modeling time. IRF5 silencing suppressed the expression of NeuN and lumbar enlargement in CCI rats and promoted MWT and TWL. Moreover, IRF5 silencing inhibited the expressions of CXCR5 and CXCL13 genes and down-regulated the expression levels of inflammatory factors. IRF5 was directly and specifically bound with the endogenous CXCL13 promoter and thus regulated it. IRF5 overexpression exacerbated the disease phenotype of CCI-induced neuropathic pain in rats. Administration of CXCL13 neutralizing antibodies reversed the IRF5 overexpression effects. CONCLUSION: The IRF5 silencing alleviated neuropathic pain in CCI rats by downregulating the pain threshold, inflammatory cytokine levels, and CXCL13/CXCR5 signaling. IRF5 overexpression exacerbated the disease parameters of CCI-induced neuropathic pain in rats; however, they were reversed by neutralizing antibodies against CXCL13.

15.
Cell Rep ; 42(8): 112916, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37527038

ABSTRACT

Endolysosomal Toll-like receptors (TLRs) play crucial roles in immune responses to pathogens, while aberrant activation of these pathways is associated with autoimmune diseases, including systemic lupus erythematosus (SLE). The endolysosomal solute carrier family 15 member 4 (SLC15A4) is required for TLR7/8/9-induced responses and disease development in SLE models. SLC15A4 has been proposed to affect TLR7-9 activation through its transport activity, as well as by assembling an IRF5-activating complex with TASL, but the relative contribution of these functions remains unclear. Here, we show that the essential role of SLC15A4 is to recruit TASL to endolysosomes, while its transport activity is dispensable when TASL is tethered to this compartment. Endolysosomal-localized TASL rescues TLR7-9-induced IRF5 activation as well as interferon ß and cytokine production in SLC15A4-deficient cells. SLC15A4 acts as signaling scaffold, and this function is essential to control TLR7-9-mediated inflammatory responses. These findings support targeting the SLC15A4-TASL complex as a potential therapeutic strategy for SLE and related diseases.


Subject(s)
Lupus Erythematosus, Systemic , Toll-Like Receptor 7 , Humans , Toll-Like Receptor 7/metabolism , Toll-Like Receptors/metabolism , Interferon Regulatory Factors/metabolism , Immunity, Innate , Nerve Tissue Proteins/metabolism , Membrane Transport Proteins/metabolism
16.
J Ethnopharmacol ; 316: 116742, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37290736

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Shexiang Tongxin Dropping Pill (STDP), a traditional Chinese medicine compound, is fragrant, invigorates the qi, unblocks pulses, activates the blood circulation, removes blood stasis, and relieves pain. It is used clinically to treat coronary heart disease and angina pectoris. Coronary microvascular dysfunction (CMD) is associated with increased morbidity and mortality from cardiovascular events. Endothelial dysfunction and inflammation have been verified as its underlying causes. STDP can ameliorate CMD, but the mechanism has not been fully elucidated. AIM OF THE STUDY: To explore the effects of STDP on M1 macrophage polarization-induced inflammation and endothelial dysfunction as an inhibitor of CMD, and to determine its mechanisms of action. MATERIALS AND METHODS: The CMD rat model was established by left anterior descending artery (LAD) ligation. The efficacy of STDP against CMD was evaluated by echocardiography, optical microangiography, Evans blue staining, and histological examination. The OGD/R-induced endothelial injury model, the endothelial injury-induced sterile inflammation model, the Dectin-1 overexpression model, and the Dectin-1-overexpressing RAW264.7 macrophage supernatant-stimulated HUVEC-induced secondary injury of endothelial function model were established to confirm the efficacy of STDP against M1 macrophage polarization-induced inflammation and endothelial dysfunction. RESULTS: STDP blunted the deterioration of cardiac function and ameliorated CMD by reducing inflammatory cell infiltration and endothelial dysfunction in CMD rats. Endothelial injury and Dectin-1 overexpression induced M1 macrophage polarization and inflammation. Mechanically, STDP hindered M1 macrophage polarization and inflammation by inhibiting the Dectin-1/Syk/IRF5 pathway both in vivo and in vitro. STDP alleviated endothelial dysfunction induced by Dectin-1 overexpression in macrophages. CONCLUSION: STDP can alleviate M1 macrophage polarization-induced inflammation and endothelial dysfunction against CMD via the Dectin-1/Syk/IRF5 pathway. Dectin-1-associated M1 macrophage polarization might be developed as a novel target for ameliorating CMD.


Subject(s)
Myocardial Ischemia , Vascular Diseases , Rats , Animals , Macrophages , Inflammation/drug therapy , Inflammation/metabolism , Myocardial Ischemia/metabolism , Vascular Diseases/metabolism , Interferon Regulatory Factors/metabolism
17.
Adv Sci (Weinh) ; 10(16): e2207454, 2023 06.
Article in English | MEDLINE | ID: mdl-37038090

ABSTRACT

Pulmonary fibrosis (PF) is a heterogeneous disease with a poor prognosis. Therefore, identifying additional therapeutic modalities is required to improve outcome. However, the lack of biomarkers of disease progression hampers the preclinical to clinical translational process. Here, this work assesses and identifies progressive alterations in pulmonary function, transcriptomics, and metabolomics in the mouse lung at 7, 14, 21, and 28 days after a single dose of oropharyngeal bleomycin. By integrating multi-omics data, this work identifies two central gene subnetworks associated with multiple critical pathological changes in transcriptomics and metabolomics as well as pulmonary function. This work presents a multi-omics-based framework to establish a translational link between the bleomycin-induced PF model in mice and human idiopathic pulmonary fibrosis to identify druggable targets and test therapeutic candidates. This work also indicates peripheral cannabinoid receptor 1 (CB1 R) antagonism as a rational therapeutic target for clinical translation in PF. Mouse Lung Fibrosis Atlas can be accessed freely at https://niaaa.nih.gov/mouselungfibrosisatlas.


Subject(s)
Idiopathic Pulmonary Fibrosis , Multiomics , Humans , Mice , Animals , Lung/pathology , Idiopathic Pulmonary Fibrosis/genetics , Idiopathic Pulmonary Fibrosis/pathology , Bleomycin , Metabolomics
18.
J Neurooncol ; 162(1): 93-108, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36854924

ABSTRACT

PURPOSE: Exosomes are nano-vesicular carriers capable of delivering cargoes for intercellular communication, which holds potential as biocompatible and high efficiency systems for drug delivery. In this study, we evaluated the potential effect of T7 peptide-decorated exosome-loaded Galectin-9 siRNA (T7-Exo/siGalectin-9) in the M1 polarization of macrophages and immunosuppression of glioblastoma (GBM). METHODS: Differentially expressed genes in GBM were in silico predicted and then experimentally verified. Galectin-9 was knocked down by siRNA to assess its role in tumor-bearing mice. T7 peptide-decorated exosomes (derived from human embryonic kidney [HEK]-293T cells) targeting GBM were prepared, and loaded with Galectin-9 siRNA by electroporation to prepare nanoformulations (T7-Exo/siGalectin-9). The role of T7-Exo/siGalectin-9 in CD8+ T cell cytotoxicity to target GBM cells and polarization of macrophages was evaluated after artificial modulation of Galectin-9 expression. Anti-tumor effects of T7-Exo/siGalectin-9 were elucidated in vitro and in vivo. RESULTS: Galectin-9 was highly expressed in GBM tissues and cell lines. The siRNA-mediated knockdown of Galectin-9 repressed the growth of xenografts of GBM cells in C57BL/6 mice and activated immune response in the tumor microenvironment. T7-Exo/siGalectin-9 effectively delivered siGalectin-9 to GBM cells. T7-Exo/siGalectin-9 contributed to activation of the TLR7-IRF5 pathway, which polarized macrophages to M1 phenotype. By this mechanism, phagocytosis of GBM cells by macrophages was increased, the anti-tumor effect of CD8+ T cells was enhanced and the inflammatory responses were suppressed. CONCLUSION: Overall, T7-Exo/siGalectin-9 promotes macrophage repolarization and restricts the immunosuppression of GBM, thus providing novel insights into and drug delivery system of immunotherapy for GBM.


Subject(s)
Exosomes , Glioblastoma , Humans , Animals , Mice , Glioblastoma/drug therapy , Glioblastoma/genetics , RNA, Small Interfering/metabolism , Exosomes/metabolism , Cell Line, Tumor , Mice, Inbred C57BL , Macrophages , Galectins/genetics , Galectins/metabolism , Tumor Microenvironment , Interferon Regulatory Factors/metabolism
19.
J Leukoc Biol ; 113(2): 95-108, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36822176

ABSTRACT

The polarization of macrophages to the M1 or M2 phenotype has a pivotal role in inflammatory response following myocardial ischemia/reperfusion injury. Peli1, an E3 ubiquitin ligase, is closely associated with inflammation and autoimmunity as an important regulatory protein in the Toll-like receptor signaling pathway. We aimed to explore the function of Peli1 in macrophage polarization under myocardial ischemia/reperfusion injury and elucidate the possible mechanisms. We show here that Peli1 is upregulated in peripheral blood mononuclear cells from patients with myocardial ischemia/reperfusion, which is correlated with myocardial injury and cardiac dysfunction. We also found that the proportion of M1 macrophages was reduced and myocardial infarct size was decreased, paralleling improvement of cardiac function in mice with Peli1 deletion in hematopoietic cells or macrophages. Macrophage Peli1 deletion lessened M1 polarization and reduced the migratory ability in vitro. Mechanistically, Peli1 contributed to M1 polarization by promoting K63-linked ubiquitination and nuclear translocation of IRF5. Moreover, Peli1 deficiency in macrophages reduced the apoptosis of cardiomyocytes in vivo and in vitro. Together, our study demonstrates that Peli1 deficiency in macrophages suppresses macrophage M1 polarization and alleviates myocardial ischemia/reperfusion injury by inhibiting the nuclear translocation of IRF5, which may serve as a potential intervention target for myocardial ischemia/reperfusion injury.


Subject(s)
Myocardial Reperfusion Injury , Reperfusion Injury , Mice , Animals , Myocardial Reperfusion Injury/metabolism , Leukocytes, Mononuclear/metabolism , Macrophages/metabolism , Signal Transduction , Interferon Regulatory Factors/metabolism , Nuclear Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism
20.
Fish Shellfish Immunol ; 132: 108463, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36455778

ABSTRACT

Transcription factors related to the activation of type I interferons (IFNs) and nuclear factor-kappa B (NF-κB) are known to be critical in innate immune responses. Interferon regulatory factors (IRFs) are a family of transcription factors. IRF-3 is known to act as the primary regulator in type I IFN signaling in response to viral infections, and the upregulation of IRF5 by virus infection has been reported in various fish species. One of the ways to know the functional role of certain genes is the production of target gene(s) knockout cells or organisms. In the present study, we produced either IRF3 or IRF5 gene knockout Epithelioma papulosum cyprini (EPC) cells using a CRISPR/Cas9 system, and investigated the effect of IRF3 gene and IRF5 gene knockout on polyinosinic:polycytidylic acid (ploly (I:C))-mediated and viral hemorrhagic septicemia virus (VHSV) infection-mediated type I IFN response and NF-κB activation. Both IRF3 knockout and IRF5 knockout EPC cells showed severely decreased type I IFN responses measured by ISRE activity and the expression of Mx1 and ISG15 genes when stimulated with poly (I:C), while the decreased level of type I IFN responses was not high as by poly (I:C) stimulation when infected with VHSV. Different from type I IFN response, NF-κB activities in IRF3 and IRF5 knockout cells were not highly different between poly (I:C) stimulated cells and VHSV-infected cells. Further studies are needed to elucidate pathways responsible for the type I IFN responses and NF-κB activation by VHSV infection.


Subject(s)
Carcinoma , Interferon Type I , Virus Diseases , Animals , Interferon Type I/genetics , Interferon Type I/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , CRISPR-Cas Systems , Interferon Regulatory Factors/metabolism , Poly I-C
SELECTION OF CITATIONS
SEARCH DETAIL