Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
1.
Article in English | MEDLINE | ID: mdl-39136511

ABSTRACT

BACKGROUND: Current evidence highlights clear cell renal carcinoma (ccRCC) as the most prevalent form of kidney cancer despite ongoing challenges in treating advanced-stage disease. Integrin subunit beta 3 (ITGB3) has recently emerged as a critical player in tumorigenesis, prompting our investigation into its role in ccRCC. This study aimed to elucidate the mechanisms responsible for ITGB3 downregulation and evaluate its clinical significance, particularly regarding its impact on the immune landscape within ccRCC. METHODS: We first conducted analyses utilizing data from both TCGA and GEO datasets to explore ITGB3 expression in ccRCC tissues. Subsequently, we evaluated the association between ITGB3 expression levels and patient prognosis and pathological staging. Pathway and functional enrichment analyses were performed to assess correlations between ITGB3 and immune and methylation-related pathways. Additionally, we examined the relationship between ITGB3 transcriptional expression and DNA hypermethylation. A prognostic risk model was developed using LASSO-based analysis on selected ITGB3-associated DNA methylation probes. Immunohistochemistry (IHC) analysis, alongside TIMER and ssGSEA results, was utilized to investigate ITGB3 expression and its association with immune cell infiltration. RESULTS: Our analyses revealed significant downregulation of ITGB3 mRNA expression in ccRCC tissues compared to other members of the ITGB family, consistent across TCGA and GEO datasets. Higher ITGB3 expression correlated with improved prognosis and lower pathological stage in ccRCC patients. Pathway and functional enrichment analyses demonstrated positive correlations between ITGB3 and immune and methylation-related pathways, while ITGB3 transcriptional expression showed a negative correlation with DNA hypermethylation. The established prognostic risk model identified a high-risk group with poorer survival probabilities than the low-risk group. Immunohistochemical quantification revealed a positive correlation between CD4+ and CD8+ immune cell infiltration and ITGB3 expression. CONCLUSION: Overall, our study provides compelling evidence supporting the significant role of ITGB3 in ccRCC immunity. The downregulation of ITGB3, coupled with its association with better prognosis and immune activation, suggests its potential as a therapeutic target and prognostic marker for this patient population.

2.
Mol Carcinog ; 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39136603

ABSTRACT

The regulatory mechanisms underlying bone metastasis in lung adenocarcinoma (LUAD) are not yet fully understood despite the frequent occurrence of bone involvement. This study aimed to examine the involvement and mechanism of integrin subunit beta 3 (ITGB3) in the process of LUAD bone metastasis. Our findings indicate that ITGB3 facilitates the migration and invasion of LUAD cells in vitro and metastasis to the bone in vivo. Furthermore, ITGB3 stimulates osteoclast production and activation, thereby expediting osteolytic lesion progression. Extracellular vesicles (EVs) isolated from the conditioned medium (CM) of LUAD cells overexpressing ITGB3 determined that ITGB3 facilitates osteoclastogenesis and enhances osteoclast activity by utilizing EVs-mediated transport to RAW264.7 cells. Our in vivo findings demonstrated that ITGB3-EVs augmented the population of osteoclasts, thereby establishing an osteoclastic pre-metastatic niche (PMN) conducive to the colonization and subsequent growth of LUAD cells in the bone. ITGB3 is enriched in serum EVs of patients diagnosed with LUAD bone metastasis, potentially facilitating osteoclast differentiation and activation in vitro. Our research illustrates that ITGB3-EVs derived from LUAD cells facilitate osteoclast differentiation and activation by modulating the phosphorylation level of p38 MAPK. This process ultimately leads to the generation of osteolytic PMN and accelerates the progression of bone metastasis.

3.
J Biol Chem ; 300(8): 107516, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38960036

ABSTRACT

Focal segmental glomerulosclerosis (FSGS), a common cause of primary glomerulonephritis, has a poor prognosis and is pathologically featured by tubulointerstitial injury. Thrombospondin-1 (TSP-1) is an extracellular matrix protein that acts in combination with different receptors in the kidney. Here, we analyzed the tubular expression of TSP-1 and its receptor integrin ß3 (ITGB3) in FSGS. Previously the renal interstitial chip analysis of FSGS patients with tubular interstitial injury showed that the expression of TSP-1 and ITGB3 were upregulated. We found that the expression of TSP-1 and ITGB3 increased in the tubular cells of FSGS patients. The plasma level of TSP-1 increased and was correlated to the degree of tubulointerstitial lesions in FSGS patients. TSP-1/ITGB3 signaling induced renal tubular injury in HK-2 cells exposure to bovine serum albumin and the adriamycin (ADR)-induced nephropathy model. THBS1 KO ameliorated tubular injury and renal fibrosis in ADR-treated mice. THBS1 knockdown decreased the expression of KIM-1 and caspase 3 in the HK-2 cells treated with bovine serum albumin, while THBS1 overexpression could induce tubular injury. In vivo, we identified cyclo-RGDfK as an agent to block the binding of TSP-1 to ITGB3. Cyclo-RGDfK treatment could alleviate ADR-induced renal tubular injury and interstitial fibrosis in mice. Moreover, TSP-1 and ITGB3 were colocalized in tubular cells of FSGS patients and ADR-treated mice. Taken together, our data showed that TSP-1/ITGB3 signaling contributed to the development of renal tubulointerstitial injury in FSGS, potentially identifying a new therapeutic target for FSGS.

4.
Neurobiol Dis ; 191: 106410, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38220131

ABSTRACT

Integrins are receptors that have been linked to various brain disorders, including Alzheimer's disease (AD), the most prevalent neurodegenerative disorder. While Integrin beta-3 (ITGB3) is known to participate in multiple cellular processes such as adhesion, migration, and signaling, its specific role in AD remains poorly understood, particularly in astrocytes, the main glial cell type in the brain. In this study, we investigated alterations in ITGB3 gene and protein expression during aging in different brain regions of the 5xFAD mouse model of AD and assessed the interplay between ITGB3 and astrocytes. Primary cultures from adult mouse brains were used to gain further insight into the connection between ITGB3 and amyloid beta (Aß) in astrocytes. In vivo studies showed a correlation between ITGB3 and the astrocytic marker GFAP in the 5xFAD brains, indicating its association with reactive astrocytes. In vitro studies revealed increased gene expression of ITGB3 upon Aß treatment. Our findings underscore the potential significance of ITGB3 in astrocyte reactivity in the context of Alzheimer's disease.


Subject(s)
Alzheimer Disease , Animals , Mice , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Astrocytes/metabolism , Disease Models, Animal , Mice, Transgenic , Neuroglia/metabolism , Up-Regulation
5.
Cell Biol Int ; 48(2): 216-228, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38081783

ABSTRACT

Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer (BC) compared to other BC subtypes in clinical settings. Currently, there are no effective therapeutic strategies for TNBC treatment. Therefore, there is an urgent need to identify suitable biomarkers or therapeutic targets for TNBC patients. Thrombomodulin (TM) plays a role in cancer progression and metastasis in many different cancers. However, the role of TM in TNBC is not yet fully understood. First, silenced-TM in MDA-MB-231 cells caused an increase in proliferative and metastatic activity. In contrast, overexpression of TM in Hs578T cells caused a reduction in proliferation, invasion, and migration rate. Using RNA-seq analysis, we found that Integrin beta 3 (ITGB3) expression may be a downstream target of TM. Furthermore, we found an increase in ITGB3 levels in TM-KD cells by QPCR and western blot analysis but a decrease in ITGB3 levels in TM-overexpressing cells. We found phospho-smad2/3 levels were increased in TM-KD cells but decreased in TM-overexpressing cells. This implies that TM negatively regulates ITGB3 levels through the activation of the smad2/3 pathway. Silencing ITGB3 in TM-KD cells caused a decrease in proliferation and migration. Finally, we found that higher ITGB3 levels were correlated with poor overall survival and relapse-free survival in patients with TNBC. Our results indicated a novel regulatory relationship between TM and ITGB3 in TNBC.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Blotting, Western , Cell Line, Tumor , Cell Movement , Cell Proliferation , Integrin beta3/genetics , Thrombomodulin/genetics , Triple Negative Breast Neoplasms/metabolism
6.
Biomedicines ; 11(9)2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37760946

ABSTRACT

Post-translational modification of proteins is involved in the occurrence of endometriosis (EM); however, the role of ubiquitination modification in EM remains unclear. Integrin ß3 (ITGB3) is one of the ß-subunits of integrins, which plays a key role in tumor progression. In this study, we investigated the roles of ITGB3 and ITCH, one of the ubiquitin E3 ligases, in ectopic endometrial stromal cells (ESCs) and EM. Primary ectopic ESCs and normal ESCs were isolated and purified. Western blot was used to detect the expression of ITGB3 and ITCH in ESCs. The interaction between ITGB3 and ITCH in ESCs was investigated by the co-immunoprecipitation and ubiquitylation analysis. With or without the overexpression of ITCH and/or ITGB3, the proliferation and invasion of ectopic ESCs were detected by the CCK8 assay and transwell migration assay, respectively. We found that ITGB3 is upregulated in ectopic ESCs from patients with EM. ITCH interacts with ITGB3 by co-immunoprecipitation, and ITCH-overexpressing significantly increased the ubiquitination of ITGB3. The data of the CCK8 assays showed that ITGB3 overexpression significantly promoted cell proliferation of ectopic ESCs at 12, 24, 48, and 72 h. The transwell migration assays showed that ITGB3 overexpression significantly enhanced the invasive ability. However, ITCH had the opposite effects in both assays. Our findings indicate that ITCH-mediated ubiquitylation of ITGB3 regulates the proliferation and invasion ability of ectopic ESCs in EM.

7.
Gene ; 888: 147805, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37716584

ABSTRACT

BACKGROUND/AIM: Recently, it was reported that the non-synonymous c.1431C > T (p. G477=) mutation of the integrin subunit ß3 (ITGB3) gene is the cause of Glanzmann's thrombasthenia (GT). However, the functional consequences of this mutation on the ITGB3 gene and protein expression remain to be elucidated. Therefore, this study was conducted to cover this scientific shortage. METHODS: Peripheral blood samples were collected from Chinese family members (parents and proband and his sister), and DNA was extracted and sequenced using whole-exome and Sanger sequencing. The effect of c.1431C > T mutation on the splicing of mRNA was verified by the in vitro minigene assay and the three variants that resulted from the mutation were cloned into a phage vector and pEGFP-C1 vector, and ITGB3 gene and protein expression was detected in the transfected 293 T cells using qPCR and Western blotting. RESULTS: Minigene splicing assay showed that c.1431C > T mutation causes three kinds of alternative splicing; (1) a 95 bp deletion in the middle of exon10, (2) a 155 bp deletion (95 bp deletion in the middle of exon10 plus a 60 bp deletion in the right side of exon10), and (3) a 261 bp deletion in the right side of exon10. The in vitro expression assay showed that the c.1431C > T variant did not affect the ITGB3 mRNA levels, but directly led to protein truncation and declined expression. CONCLUSION: Due to its significant impact on protein expression, c.1431C > T mutation in ITGB3 could be considered a pathogenic variant of GT. This could enrich the ITGB3 mutation spectrum and provide a base for the genetic diagnosis of GT.


Subject(s)
Thrombasthenia , Humans , Thrombasthenia/genetics , Thrombasthenia/diagnosis , Mutation , RNA Splicing , Base Sequence , RNA, Messenger/genetics , Integrin beta3/genetics
8.
J Thromb Haemost ; 21(12): 3597-3607, 2023 12.
Article in English | MEDLINE | ID: mdl-37604334

ABSTRACT

BACKGROUND: Glanzmann thrombasthenia (GT) is an autosomal recessive platelet aggregation disorder caused by mutations in ITGA2B or ITGB3. OBJECTIVES: We aimed to assess the phenotype and investigate the genetic etiology of a GT pedigree. METHODS: A patient with bleeding manifestations and mild mental retardation was enrolled. Complete blood count, coagulation, and platelet aggregation tests were performed. Causal mutations were identified via whole exome and genome sequencing and subsequently confirmed through polymerase chain reaction and Sanger sequencing. The transcription of ITGB3 was characterized using RNA sequencing and reverse transcription polymerase chain reaction. The αⅡb and ß3 biosynthesis was investigated via whole blood flow cytometry and in vitro studies. RESULTS: GT was diagnosed in a patient with defective platelet aggregation. Novel compound heterozygous ITGB3 variants were identified, with a maternal nonsense mutation (c.2222G>A, p.Trp741∗) and a paternal SINE-VNTR-Alu (SVA) retrotransposon insertion. The 5' truncated SVA element was inserted in a sense orientation in intron 11 of ITGB3, resulting in aberrant splicing of ITGB3 and significantly reducing ß3 protein content. Meanwhile, both the expression and transportation of ß3 were damaged by the ITGB3 c.2222G>A. Almost no αⅡb and ß3 expressions were detected on the patient's platelets surface. CONCLUSION: Novel compound heterozygous ITGB3 mutations were identified in the GT pedigree, resulting in defects of αⅡbß3 biosynthesis. This is the first report of SVA retrotransposon insertion in the genetic pathogenesis of GT. Our study highlights the importance of combining multiple high-throughput sequencing technologies for the molecular diagnosis of genetic disorders.


Subject(s)
Thrombasthenia , Humans , Thrombasthenia/diagnosis , Thrombasthenia/genetics , Retroelements , Platelet Glycoprotein GPIIb-IIIa Complex/metabolism , Phenotype , Blood Platelets/metabolism , Integrin beta3/genetics , Integrin beta3/metabolism
9.
Mol Brain ; 16(1): 49, 2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37296444

ABSTRACT

The relationship between autism spectrum disorder (ASD) and dendritic spine abnormalities is well known, but it is unclear whether the deficits relate to specific neuron types and brain regions most relevant to ASD. Recent genetic studies have identified a convergence of ASD risk genes in deep layer pyramidal neurons of the prefrontal cortex. Here, we use retrograde recombinant adeno-associated viruses to label specifically two major layer V pyramidal neuron types of the medial prefrontal cortex: the commissural neurons, which put the two cerebral hemispheres in direct communication, and the corticopontine neurons, which transmit information outside the cortex. We compare the basal dendritic spines on commissural and corticopontine neurons in WT and KO mice for the ASD risk gene Itgb3, which encodes for the cell adhesion molecule ß3 integrin selectively enriched in layer V pyramidal neurons. Regardless of the genotype, corticopontine neurons had a higher ratio of stubby to mushroom spines than commissural neurons. ß3 integrin affected selectively spine length in corticopontine neurons. Ablation of ß3 integrin resulted in corticopontine neurons lacking long (> 2 µm) thin dendritic spines. These findings suggest that a deficiency in ß3 integrin expression compromises specifically immature spines on corticopontine neurons, thereby reducing the cortical territory they can sample. Because corticopontine neurons receive extensive local and long-range excitatory inputs before relaying information outside the cortex, specific alterations in dendritic spines of corticopontine neurons may compromise the computational output of the full cortex, thereby contributing to ASD pathophysiology.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Mice , Animals , Dendritic Spines/metabolism , Autistic Disorder/genetics , Autistic Disorder/metabolism , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/metabolism , Integrin beta3/genetics , Integrin beta3/metabolism , Pyramidal Cells/physiology
10.
Immunobiology ; 228(4): 152399, 2023 07.
Article in English | MEDLINE | ID: mdl-37329825

ABSTRACT

BACKGROUND: Susceptibility to severe acute respiratory syndrome coronavirus 2 shows individual variability in un-vaccinated and previously un-exposed individuals. We investigated the impact of ABO blood group, titers of anti-A and anti-B, other blood group antigens, and the extracellular deposition of ABH antigens as controlled by secretor fucosyltransferase 2 (FUT2) status. STUDY DESIGN AND METHODS: We studied incidents in three different hospitals between April to September 2020, where un-diagnosed coronavirus disease 2019 (COVID-19) patients were cared for by health care workers without use of personal protection and with close contact while delivering therapy. We recruited 108 exposed staff, of whom 34 were diagnosed with COVID-19. ABO blood type, titer of anti-A and -B, blood group specific alleles, and secretor status were determined. RESULTS: Blood group O was associated with lower risk of COVID-19 (OR 0.39, 95 %CI (0.16-0.92), p = 0.03) compared to non-O, i.e., blood groups A, B and AB. High titer anti-A immunoglobulin G (IgG) compared to low titer was associated with lower risk of COVID-19 (OR 0.24 95 %CI (0.07-0.78), p = 0.017). High titer of anti-B immunoglobulin M (IgM) compared to no anti-B (IgM) was associated with lower risk of COVID-19 (OR 0.16, 95 %CI (0.039-0.608), p = 0.006) and the same applies to low titer anti-B (IgM) compared to no titer (OR 0.23, 95 %CI (0.07-0.72), p = 0.012). The 33Pro variant in Integrin beta-3, that is part of human platelet antigen 1b (HPA-1b), was associated with lower risk of COVID-19 (OR 0.23, 95 %CI (0.034-0.86), p = 0.028). CONCLUSION: Our data showed that blood group O, anti-A (IgG) titer, anti-B (IgM) titer as well as HPA-1b are associated with lower risk for COVID-19.


Subject(s)
ABO Blood-Group System , COVID-19 , Humans , Immunoglobulin M , Immunoglobulin G , SARS-CoV-2
11.
J Med Life ; 16(2): 261-266, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36937472

ABSTRACT

Puberty menorrhagia is one of the urgent problems of modern reproductive medicine. The study aimed to investigate the relationship between polymorphism of the GP IIIa (PLA1/PLA2) gene and improve the diagnosis of puberty menorrhagia in girls with thyroid gland pathology. Ninety-seven girls at puberty age were divided into three groups: group 1 (main) - girls with puberty menorrhagia and thyroid gland pathology (30 individuals), group 2 (comparison) - 40 girls with puberty menorrhagia, group 3 (control) - 27 practically healthy girls. Polymorphism of the GP IIIa (PLA1/PLA2) gene was studied by isolating genomic DNA from peripheral blood leukocytes, followed by amplification with a polymerase chain reaction. Results showed that mutation in the 17th chromosome of q21.32 of the GP IIIa gene occurred in 8.6% of cases among adolescents with menorrhagia, in contrast to the control group, where it was not observed at all. The A1A1-genotype occurred by 11.7% (X2=4.01, p=0.041) more often in adolescents with menorrhagia than in girls with concomitant thyroid gland pathology and by 15.0% (X2=4.54, p=0.033) more often than in the control group. It was also found that the presence of the A1A2-genotype unreliably reduced the chances of uterine bleeding in adolescent girls by 1.45 times (OR=2.12) and was a protective factor in the puberty menorrhagia occurrence (OR=0.47). It may be concluded that the identification of a hereditary factor of the reproductive system diseases of adolescent girls fundamentally changes the point of view on the tactics of disease management and subsequent therapy.


Subject(s)
Integrin beta3 , Menorrhagia , Adolescent , Female , Humans , Genetic Testing , Genotype , Integrin beta3/genetics , Menorrhagia/genetics , Puberty
12.
Hippocampus ; 33(8): 936-947, 2023 08.
Article in English | MEDLINE | ID: mdl-36967540

ABSTRACT

In excitatory hippocampal pyramidal neurons, integrin ß3 is critical for synaptic maturation and plasticity in vitro. Itgb3 is a potential autism susceptibility gene that regulates dendritic morphology in the cerebral cortex in a cell-specific manner. However, it is unknown what role Itgb3 could have in regulating hippocampal pyramidal dendritic morphology in vivo, a key feature that is aberrant in many forms of autism and intellectual disability. We found that Itgb3 mRNA is expressed in the stratum pyramidale of CA3. We examined the apical dendritic morphology of CA3 hippocampal pyramidal neurons in conditional Itgb3 knockouts and controls, utilizing the Thy1-GFP-M line. We fully reconstructed the apical dendrite of each neuron and determined each neuron's precise location along the dorsoventral, proximodistal, and radial axes of the stratum pyramidale. We found a very strong effect for Itgb3 expression on CA3 apical dendritic morphology: neurons from conditional Itgb3 knockouts had longer and thinner apical dendrites than controls, particularly in higher branch orders. We also assessed potential relationships between pairs of topographic or morphological variables, finding that most variable pairs were free from any linear relationships to each other. We also found that some neurons from controls, but not conditional Itgb3 knockouts, had a graded pattern of overall diameter along the dorsoventral and proximodistal axes of the stratum pyramidale of CA3. Taken together, Itgb3 is essential for constructing normal dendritic morphology in pyramidal neurons throughout CA3.


Subject(s)
Dendrites , Integrin beta3 , Integrin beta3/genetics , Dendrites/physiology , Hippocampus/physiology , Pyramidal Cells/physiology , Neurons
13.
Cancer Med ; 12(7): 8452-8463, 2023 04.
Article in English | MEDLINE | ID: mdl-36772869

ABSTRACT

OBJECTIVE: Osteosarcoma is the most malignant and common primary bone tumor with a high rate of recurrence that mainly occurs in children and young adults. Therefore, it is vital to facilitate the development of novel effective therapeutic means and improve the overall prognosis of osteosarcoma patients via a deeper understanding of the mechanisms of chemoresistance in osteosarcoma progression. METHODS: In this research, the relationship between ITGB3 and the clinical characteristics of patients was detected through analysis of publicly available clinical datasets. The expression of ITGB3 was analysis in collected human osteosarcoma tissues. In addition, the potential functions of ITGB3 in the cisplatin resistance of osteosarcoma cells were investigated in vitro and in tumor xenotransplantation. Finally, the molecular mechanism of ITGB3 in the progression and recurrence of osteosarcoma were explored via transcriptome analysis. RESULTS: ITGB3 was identified as a potential regulator of tumorigenicity and cisplatin resistance in relapsed osteosarcoma. Furthermore, the decreased osteosarcoma cell proliferation and migration ability in ITGB3 knockout osteosarcoma cells were related to increased apoptosis and slowing cell cycle progression. In addition, ITGB3 had a positive correlation with cisplatin resistance in cells and tumor xenografts in mice. Accordingly, ITGB3 performed the functions of proliferation and cisplatin resistance in osteosarcoma through the MAPK and VEGF signaling pathways. CONCLUSION: Our results will contribute to a better understanding of the function and mechanism of ITGB3 in osteosarcoma cisplatin resistance and provide a novel therapeutic target to decrease cisplatin resistance and tumor recurrence in osteosarcoma patients.


Subject(s)
Antineoplastic Agents , Bone Neoplasms , Osteosarcoma , Child , Young Adult , Humans , Animals , Mice , Cisplatin/pharmacology , Cisplatin/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Drug Resistance, Neoplasm/genetics , Apoptosis , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/genetics , Osteosarcoma/drug therapy , Osteosarcoma/genetics , Osteosarcoma/metabolism , Bone Neoplasms/drug therapy , Bone Neoplasms/genetics , Bone Neoplasms/metabolism , Cell Line, Tumor , Cell Proliferation , Integrin beta3
14.
Cells ; 12(2)2023 01 04.
Article in English | MEDLINE | ID: mdl-36672149

ABSTRACT

Glanzmann thrombasthenia (GT) is a rare autosomal recessive inherited platelet disorder occurring frequently in populations with high incidence of consanguineous marriages. GT is characterized by quantitative and/or qualitative defect of the platelet αIIbß3 (GPIIb/IIIa) receptor caused by pathogenic variants of the encoding genes: ITGA2B and ITGB3. Patients present with a moderate to severe bleeding tendency with normal platelet count. Platelets show reduced/absent aggregation for all agonists except ristocetin in light transmission aggregometry and reduced/absent αIIbß3 expression in flow cytometry (FC). In this study, we investigated a cohort of 20 Pakistani patients and 2 families collected from the National Institute of Blood Disease, Karachi and Chughtai's Lab, Lahore. Platelet aggregation studies, FC (platelet CD41, CD61, CD42a, CD42b) and direct sequencing of the candidate genes were performed. All patients showed altered platelet aggregation, but normal agglutination after stimulation with ristocetin. Absent/reduced αIIbß3 receptor expression was present in the platelets of 16 patients, in 4 patients expression was borderline/normal. Candidate gene sequencing identified pathogenic/likely pathogenic variants in 15 patients. Seven variants are novel. One patient with absent receptor expression remained without genetic finding. 13 (86.7%) of 15 patients stated consanguinity reflected by homozygosity finding in 14 (93.3%) patients.


Subject(s)
Thrombasthenia , Humans , Thrombasthenia/genetics , Receptors, Fibrinogen , Ristocetin , Pakistan , Platelet Glycoprotein GPIIb-IIIa Complex/genetics , Platelet Glycoprotein GPIIb-IIIa Complex/metabolism
15.
Chinese Journal of Neonatology ; (6): 484-488, 2023.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-990777

ABSTRACT

Objective:To study the clinical features and genotypes of neonatal Glanzmann thrombasthenia(NGT).Methods:A male neonate with NGT admitted to the Department of Neonatology of our hospital was retrospectively reviewed. CNKI, Wangfang database, VIP, the Chinese Medical Journal Full Text database, PubMed and Embase database were searched using key words '(neonate OR newborn) AND (Glanzmann thrombasthenia)' both in English and Chinese. The clinical features and genotypes of NGT were summarized and analyzed.Results:A male full-term neonate was admitted to our hospital for mass on the forehead and ecchymosis and petechiae on the body within half an hour after birth. He gradually developed subgaleal hemorrhage and severe anemia. Platelet count, mean platelet volume and coagulation functions were normal. The platelet aggregation test indicated decreased platelet aggregation rate induced by arachidonic acid and adenosine diphosphate. Genetic testing revealed two heterozygous mutations in the patient's ITGA2B gene: NM_000419.4: c.886G>A(p.Gly296Arg) and NM_000419.4: c.2855dup(p.Phe953Valfs*83). A total of 42 literature involving 44 patients (our case included) with NGT were retrieved. 33 cases (75.0%) of NGT showed ecchymosis or petechiae on the first day after birth. For 13 cases with detailed information, 5 cases with severe anemia were given erythrocyte and plasma transfusion and platelet transfusion was given in 1 case. 4 cases had homozygous variants and 4 cases showed compound heterozygous variants. 10 cases had follow-up records, including 2 cases without any bleeding and 8 cases with varying degrees of bleeding during follow-up. No deaths were reported.Conclusions:Neonates with ecchymosis and petechiae in the early postnatal period should be suspected of NGT. Blood transfusion is preferred when the indication for transfusion is met.

16.
Int J Biol Sci ; 18(15): 5858-5872, 2022.
Article in English | MEDLINE | ID: mdl-36263165

ABSTRACT

Nasopharyngeal carcinoma (NPC) is a malignancy with high metastatic and invasive nature. Distant metastasis contributes substantially to treatment failure and mortality in NPC. Platelets are versatile blood cells and the number of platelets is positively associated with the distant metastasis of tumor cells. However, the role and underlying mechanism of platelets responsible for the metastasis of NPC cells remain unclear. Here we found that the distant metastasis of NPC patients was positively correlated with the expression levels of integrin ß3 (ITGB3) in platelet-derived extracellular vesicles (EVs) from NPC patients (P-EVs). We further revealed that EVs transfer occurred from platelets to NPC cells, mediating cell-cell communication and inducing the metastasis of NPC cells by upregulating ITGB3 expression. Mechanistically, P-EVs-upregulated ITGB3 increased SLC7A11 expression by enhancing protein stability and activating the MAPK/ERK/ATF4/Nrf2 axis, which suppressed ferroptosis, thereby facilitating the metastasis of NPC cells. NPC xenografts in mouse models further confirmed that P-EVs inhibited the ferroptosis of circulating NPC cells and promoted the distant metastasis of NPC cells. Thus, these findings elucidate a novel role of platelet-derived EVs in NPC metastasis, which not only improves our understanding of platelet-mediated tumor distant metastasis, but also has important implications in diagnosis and treatment of NPC.


Subject(s)
Extracellular Vesicles , Ferroptosis , Nasopharyngeal Neoplasms , Mice , Animals , Humans , Nasopharyngeal Carcinoma/genetics , Integrin beta3/genetics , Integrin beta3/metabolism , NF-E2-Related Factor 2/metabolism , Cell Line, Tumor , Extracellular Vesicles/metabolism , Nasopharyngeal Neoplasms/metabolism , Neoplasm Metastasis/pathology , Gene Expression Regulation, Neoplastic
17.
Mol Med ; 28(1): 120, 2022 09 30.
Article in English | MEDLINE | ID: mdl-36180828

ABSTRACT

BACKGROUND: The miR-351 gene is significantly upregulated in diabetic mice with atherosclerosis. However, the mechanism by which its presence is important for the overall disease has not been elucidated. Therefore, this study will investigate the mechanism of miR-351 in the process of diabetes mellitus with atherosclerosis through miR-351 gene knockout mice. METHODS: In this study, miR-351-/- C57BL/6 mice were first induced to form a type 2 diabetes mellitus model with atherosclerosis by STZ injection and a high-fat diet. Pathological tests (oil red O, HE, and Masson staining) combined with biochemical indices (TC, TG, LDL-C, HDL-C, TNF-α, hs-CRP, NO, SOD, MDA, CAT, and GSH-Px) were performed to evaluate the pathological degree of atherosclerosis in each group. Mouse aortic endothelial cells were treated with oxidized low-density lipoprotein (ox-LDL) and 30 mM glucose to establish a diabetic atherosclerosis cell model. Combined with cell oil red O staining and flow cytometry, the effects of silencing miR-351 on lipid accumulation and cell apoptosis in the diabetic atherosclerosis cell model were determined. Fluorescence in situ hybridization was used to detect the localization and transcription levels of miR-351 in cells. The target genes of miR-351 were predicted by bioinformatics and verified by dual-luciferase activity reporting. Western blotting was used to detect the expression levels of phosphorylated inosine 3-kinase regulatory subunit 1 (PIK3R1)/serine/threonine kinase 1 (Akt) and apoptosis-related proteins after transfection with integrin subunit ß3 (ITGB3) small interfering ribonucleic acid (siRNA). RESULTS: The expression of the miR-351 gene was significantly increased in the high-fat wild-type (HWT) group, and its expression was significantly decreased in the knockout mice. Silencing miR-351 effectively alleviated atherosclerosis in mice. The levels of miR-351 expression, apoptosis, lipid accumulation, and oxidative stress in ox-LDL + high glucose-induced endothelial cells were significantly increased. These phenomena were effectively inhibited in lentivirus-infected miR-351-silenced cell lines. Bioinformatics predicted that miR-351-5p could directly target the ITGB3 gene. Transfection of ITGB3 siRNA reversed the downregulation of apoptosis, decreased oil accumulation, and decreased oxidative stress levels induced by miR-351 silencing. In addition, it inhibited the activation of the PIK3R1/Akt pathway. CONCLUSION: Silencing miR-351 upregulates ITGB3 and activates the PIK3R1/Akt pathway, thereby exerting anti-apoptosis and protective effects on endothelial cells.


Subject(s)
Atherosclerosis , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , MicroRNAs , Animals , Atherosclerosis/metabolism , Azo Compounds , C-Reactive Protein/metabolism , Cholesterol, LDL/metabolism , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Endothelial Cells/metabolism , Glucose/metabolism , In Situ Hybridization, Fluorescence , Inosine/metabolism , Inosine/pharmacology , Integrins/genetics , Lipoproteins, LDL/metabolism , Luciferases/genetics , Luciferases/metabolism , Luciferases/pharmacology , Mice , Mice, Inbred C57BL , MicroRNAs/genetics , MicroRNAs/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RNA, Small Interfering , Serine/genetics , Serine/metabolism , Serine/pharmacology , Signal Transduction , Superoxide Dismutase/metabolism , Tumor Necrosis Factor-alpha/metabolism
18.
Acta Histochem ; 124(6): 151926, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35777302

ABSTRACT

This study was conducted to investigate the impact of the microRNA (miR)-25-3p/ITGB3 axis on the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) from patients with osteoporosis (OP). BMSCs isolated from the bone marrow of healthy controls and OP patients were identified by flow cytometry, in which ITGB3 mRNA and miR-25-3p expression was detected by RT-qPCR and ITGB3, Runx2, OPN, ALP, and OSX protein expression by western blot. The binding between ITGB3 and miR-25-3p was assessed by dual-luciferase reporter gene and Ago2-RIP assays. BMSC osteogenic differentiation was observed by alizarin red staining and ALP activity. The differentiation of BMSCs to adipocytes and chondrocytes was measured by oil red O staining and alcian blue staining, respectively. BMSCs were successfully isolated from the bone marrow of healthy controls (normal-BMSCs) and OP patients (OP-BMSCs). ITGB3, Runx2, OPN, ALP, and OSX expression was poorer and miR-25-3p expression was higher in OP-BMSCs than in normal-BMSCs. Mechanistically, ITGB3 was negatively targeted by miR-25-3p. After osteogenic, adipogenic, and chondrogenic differentiation of BMSCs were successfully induced, adipogenic differentiation increased and osteogenic and chondrogenic differentiation decreased in OP-BMSCs compared with normal-BMSCs. Overexpression of ITGB3 facilitated mineralized nodule formation and elevated ALP activity and Runx2, OPN, and ALP expression in OP-BMSCs. miR-25-3p upregulation diminished mineralized nodule formation, ALP activity, and Runx2, OPN, and ALP expression in OP-BMSCs and normal-BMSCs, which was annulled by additional ITGB3 overexpression. miR-25-3p targets ITGB3, thereby suppressing osteogenic differentiation of BMSCs from OP patients.


Subject(s)
Mesenchymal Stem Cells , MicroRNAs , Osteoporosis , Cell Differentiation/genetics , Cells, Cultured , Core Binding Factor Alpha 1 Subunit , Humans , Integrin beta3/genetics , Integrin beta3/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Osteogenesis/genetics , Osteoporosis/genetics , Osteoporosis/metabolism
19.
Cancer Sci ; 113(9): 2986-3001, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35534983

ABSTRACT

Emerging evidence has indicated that long noncoding RNAs (lncRNAs) are potential biomarkers and play crucial roles in cancer development. However, the functions and underlying mechanisms of lncRNA TPT1-AS1 in pancreatic ductal adenocarcinoma (PDAC) remain elusive. RNAseq data of PDAC tissues and normal tissues were analyzed, and lncRNAs which were associated with PDAC prognosis were identified. The clinical relevance of TPT1-AS1 for PDAC patients was explored, and the effects of TPT1-AS1 in PDAC progression were investigated in vitro and in vivo. LncRNA TPT1-AS1 was highly expressed in PDAC, and high TPT1-AS1 levels predicted a poor prognosis. Moreover, functional experiments revealed that TPT1-AS1 promoted pancreatic cancer cell proliferation, migration, invasion, and epithelial-to-mesenchymal transition (EMT) process in vitro and in vivo. Mechanistically, TPT1-AS1 functioned as an endogenous sponge for miR-30a-5p, which increased integrin ß3 (ITGB3) level in pancreatic cancer cells. Conversely, our data revealed that ITGB3 could activate the transcription factor signal transducer and activator of transcription 3 (STAT3), which in turn bound directly to the TPT1-AS1 promoter and affected the expression of TPT1-AS1, thus forming a positive feedback loop with TPT1-AS1. Taken together, our results uncovered a reciprocal loop of TPT1-AS1 and ITGB3 which contributed to pancreatic cancer growth and development, and indicated that TPT1-AS1 might serve as a novel potential diagnostic biomarker and therapeutic target for PDAC patients.


Subject(s)
Carcinoma, Pancreatic Ductal , MicroRNAs , Pancreatic Neoplasms , RNA, Long Noncoding , Carcinoma, Pancreatic Ductal/genetics , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Feedback , Gene Expression Regulation, Neoplastic , Humans , Integrin beta3/genetics , Integrin beta3/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Pancreatic Neoplasms
20.
Tissue Cell ; 76: 101793, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35430412

ABSTRACT

OBJECTIVE: The critical role of circular RNAs (circRNAs) in osteoporosis (OP) has been highlighted. We tried to explore the role of circPVT1 in OP in relation to microRNA-30d-5p (miR-30d-5p) and ITGB3. METHODS: After bone marrow collection, bone marrow mesenchymal stem cells (BMSCs) were isolated and identified. Then, Pearson coefficient was used to analyze the correlation among circPVT1, miR-30d-5p and ITGB3, and the binding sites were predicted and verified. Gain- and loss-of function assays in circPVT1, miR-30d-5p and ITGB3 were performed to analyze their effect on osteogenic differentiation of BMSCs. RESULTS: The osteogenic differentiation of BMSCs from OP patients was significantly decreased, and reduced circPVT1 expression was found in the BMSCs from OP patients. Overexpression of circPVT1 stimulated the formation of calcified nodules, increased alkaline phosphatase activity, and enhanced the expression of osteogenic marker genes in the BMSCs from OP patients. Additionally, circPVT1 expression was negatively correlated with miR-30d-5p, and miR-30d-5p was negatively correlated with ITGB3 in OP patients. Mechanically, circPVT1 regulated the osteogenic differentiation potential of BMSCs by relieving the inhibition of miR-30d-5p on ITGB3 through the competitive endogenous RNA mechanism. CONCLUSION: Our study highlighted a circPVT1/miR-30d-5p/ITGB3 axis in regulating osteogenic differentiation potential of BMSCs from OP patients.


Subject(s)
Mesenchymal Stem Cells , MicroRNAs , Osteoporosis , Bone Marrow Cells/metabolism , Cell Differentiation/genetics , Cells, Cultured , Humans , Integrin beta3/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Osteogenesis/genetics , Osteoporosis/genetics
SELECTION OF CITATIONS
SEARCH DETAIL