ABSTRACT
This contribution describes the development of a simple, fast, cost-effective, and sensitive impedimetric immunosensor for quantifying bovine tuberculosis (TB) in bovine serum samples. The construction of the immunosensor involved immobilizing the purified protein derivative (PPD) of M. bovis onto a screen-printed electrode that was modified with gold nanoparticles (AuNPs) and a polypyrrole (pPy) film synthesized electrochemically. The immunosensor exhibited a linear range from 0.5 µg mL-1 to 100 µg mL-1 and achieved a limit of detection (LD) of 100 ng mL-1 for the detection of anti-M. bovis antibody. The recovery percentages obtained in bovine serum samples were excellent, ranging between 98 % and 103 %. This device presents several advantages over alternative methods for determining TB in bovine serum samples. These include direct, in situ measurement without the need for pre-treatment, utilization of small volumes, thus avoiding harmful solvents and expensive reagents, and portability. In addition, the immunosensor exhibits both physical and chemical stability, retaining effectiveness even after 30 days of modification. This allows simultaneous incubations and facilitates large-scale detection. Hence, this immunosensor presents itself as a promising diagnostic tool for detecting anti-M. bovis antibodies in bovine serum. It serves as a viable alternative to tuberculin and ELISA tests.
Subject(s)
Biosensing Techniques , Electrochemical Techniques , Gold , Metal Nanoparticles , Tuberculosis, Bovine , Animals , Cattle , Tuberculosis, Bovine/diagnosis , Tuberculosis, Bovine/blood , Tuberculosis, Bovine/immunology , Gold/chemistry , Electrochemical Techniques/methods , Immunoassay/methods , Biosensing Techniques/methods , Metal Nanoparticles/chemistry , Mycobacterium bovis/immunology , Polymers/chemistry , Pyrroles/chemistry , Electrodes , Limit of Detection , Antibodies, Bacterial/blood , Antibodies, Bacterial/immunologyABSTRACT
This work comprehends the development and characterization of a carbon black-based electrode modified with Au microflowers to increase its effect as a capacitance biosensor for the determination of PARK7/DJ-1. Due to its high surface-to-volume ratio and biocompatibility, Au particles are suitable for antibody binding, and by monitoring surface capacitance, it is possible to identify the immune-pair interaction. Au microflowers allowed the adequate immobilization of Parkinsonian-related proteins: PARK7/DJ-1 and its antibody. The protein is associated with several antioxidant mechanisms, but its abnormal concentrations or mutations can be the cause of the loss of dopaminergic neurons, leading to Parkinson's disease. The device was characterized by scanning electron microscopy and cyclic voltammetry, revealing the flower-like structures and the electrochemically-interest enhancements they provide, such as increased heterogeneous electron transfer rate coefficient and electroactive area. The self-assembled monolayers of different molecules were optimized with the aid of 22 central composite experiments and a linear calibration curve was obtained between 0.700 and 120 ng mL-1 of PARK7/DJ-1, with a limit of detection of 0.207 ng mL-1. The data confirms that the addition of Au microflowers enhanced the electrochemical signal of the device, as well as allowed for the determination of an early stage Parkinson's disease biomarker with appreciable analytical performance.
Subject(s)
Biosensing Techniques , Electric Capacitance , Electrochemical Techniques , Gold , Parkinson Disease , Protein Deglycase DJ-1 , Gold/chemistry , Biosensing Techniques/methods , Parkinson Disease/diagnosis , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Humans , Immunoassay/methods , Biomarkers/analysis , Antibodies, Immobilized/immunology , Limit of Detection , ElectrodesABSTRACT
Bio-impedance Spectroscopy (BIS) is a technique that allows tissue analysis to diagnose a variety of diseases, such as medical imaging, cancer diagnosis, muscle fatigue detection, glucose measurement, and others under research. The development of CMOS integrated circuit front-ends for bioimpedance analysis is required by the increasing use of wearable devices in the healthcare field, as they offer key features for battery-powered wearable devices. These features include high miniaturization, low power consumption, and low voltage power supply. A key circuit in BIS systems is the current source, and one of the most common topology is the Enhanced Howland Current Source (EHCS). EHCS is also used when the current driver is driven by a pseudo-random signal like discrete interval binary sequences (DIBS), which, due to its broadband nature, requires high performance operational amplifiers. These facts lead to the need for a current source more compatible with DIBS signals, ultra-low power supply, standard CMOS integrated circuit, output current amplitude independent of input voltage amplitude, high output impedance, high load capability, high output voltage swing, and the possibility of tetra-polar BIS analysis, that is a pseudotetra-polar in the case of EHCS. The objective of this work is to evaluate the performance of the Switching CMOS Current Source (SCMOSCS) over EHCS using a Cole-skin model as a load using SPICE simulations (DC and AC sweeps and transient analysis). The SCMOSCS demonstrated an output impedance of more than 20 MΩ, a ± 2.5 V output voltage swing from a +3.3 V supply, a 275 µA current consumption, and a 10 kΩ load capacity. These results contrast with the + 1.5 V output voltage swing, the 3 kΩ load capacity, and the 4.9 mA current of the EHCS case.
ABSTRACT
Healthcare-associated infections (HAIs) pose significant challenges to global health due to pathogen complexity and antimicrobial resistance. Biosensors utilizing antimicrobial peptides offer innovative solutions. Hylarana picturata Multiple Active Peptide 1 (Hp-MAP1), derived from Temporin-PTA, exhibits antibacterial properties sourced from the skin secretions of the Malaysian fire-bellied frog. An innovative sensing layer was developed for the electrochemical biorecognition of diverse pathogens: Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli, and Staphylococcus aureus. Electrochemical impedance spectroscopy differentiated microorganisms based on distinct electrochemical responses. The sensor layer, composed of functionalized multi-walled carbon nanotubes (MWCNTs) associated with Hp-MAP1, exhibited varying levels of charge transfer resistance (RCT) for different microorganisms. Gram-negative species, especially P. aeruginosa, displayed higher RCT values, indicating better impedimetric responses. Excellent LODs were observed for P. aeruginosa (0.60), K. pneumoniae (0.42), E. coli (0.67), and S. aureus (0.59), highlighting the efficacy of the MWCNTs/Hp-MAP1 biosensor in microbial identification. The MWCNTs/Hp-MAP1 biosensor platform presents a promising and effective microbial identification strategy with potential healthcare applications to mitigate HAIs and enhance patient care.
ABSTRACT
Structural health monitoring applications have gained significant attention in recent research, particularly in the study of the mechanical-electrical properties of materials such as cement-based composites. While most researchers have focused on the piezoresistive properties of cement-based composites under compressive stress, exploring the electrical impedance of such materials can provide valuable insights into the relationship between their mechanical and electrical characteristics. In this study, we investigated the connection between the mechanical properties and electrical impedance of cement-based composites modified with Au nanoparticles. Cylindrical samples with dimensions of 3 cm in diameter and 6 cm in length were prepared with a ratio of w/c = 0.47. The Au nanoparticles (Au NPs) were synthesized using pulsed laser ablation in liquids, and their size distribution was analyzed through dynamical light scattering. Mechanical properties were evaluated by analyzing the Young modulus derived from strain-stress curves obtained at various force rates. Electrical properties were measured by means of electrical impedance spectroscopy. The experimental results revealed a notable reduction of 91% in the mechanical properties of Au NPs-cement compounds, while their electrical properties demonstrated a significant improvement of 65%. Interestingly, the decrease in mechanical properties resulting from the inclusion of gold nanoparticles in cementitious materials was found to be comparable to that resulting from variations in the water/cement ratios or the hydration reaction.
ABSTRACT
The concentration effect of Tradescantia spathacea (T. spathacea) as corrosion inhibitor of API 5L X52 steel in 0.5 M of H2SO4 was studied here through electrochemical and gravimetric techniques. To achieve it, samples of the material were prepared to be submitted to each of the tests. Results from electrochemical impedance spectroscopy (EIS) showed that there was an optimum concentration of the inhibitor in which is reached the maximum inhibition efficiency, displaying the best inhibition characteristics for this system with a maximum inhibition of 89% by using 400 ppm. However, the efficiency decreased until 40% when the temperature was increased to 60°C. Potentiodynamic polarization curves (PDP) revealed that some of the present compounds of T. spathacea may affect anodic and cathodic process, so it can be classified as a mix-type corrosion inhibitor for API 5L X52 in sulfuric acid. Also, this compound followed an adsorption mechanism; this can be described through a Frumkin isotherm with an adsorption standard free energy difference (ΔG°) of -56.59 kJmol-1. Metal surface was studied through scanning electron microscope, results revealed that by adding inhibitor, the metal surface is protected; also, they evidenced low damages compared with the surface with no inhibitor. Finally, Tradescantia spathacea inhibited the corrosion process with 82% efficiency.
ABSTRACT
Piezoelectric cement-based composites could serve to monitor the strain state of structural elements or act as self-powered materials in structural health monitoring (SHM) applications. The incorporation of piezoelectric materials as an active phase within cement matrices has presented a highly attractive avenue until today. However, their application is challenged by the low electrical conductivity of the hydrated cement matrix. Gold nanoparticles (Au NPs) possess substantial potential for elevating the free electrical charge within the matrix, increasing its electrical conductivity between the Au NPs and the cement matrix, thereby enhancing the piezoelectric response of the composite. In this sense, the objective of this study is to investigate the effects of incorporating low concentrations of gold nanoparticles (Au NPs) (442 and 658 ppm) on the electrical and piezoelectric properties of cement-based composites. Additionally, this study considers the effects of such properties when the material is cured under a constant electric field. Electrical impedance spectroscopy was used to evaluate the polarization resistance and piezoresistive properties of the material. Additionally, open-circuit potential measurements were taken alongside the application of mechanical loads to assess the piezoelectric activity of the composites. The findings revealed a notable decrease in the composite's total electrical resistance, reaching a value of 1.5 ± 0.2 kΩ, almost four times lower than the reference specimens. In the realm of piezoelectricity, the piezoelectric voltage parameter g33 exhibited a remarkable advancement, improving by a factor of 57 when compared to reference specimens. This significant enhancement can be attributed to both the concentration of Au NPs and the electrical curing process. In summary, the outcomes of this study underscore the feasibility of creating a highly electrically conductive cement-based matrix, using low concentrations of gold nanoparticles as electric charge carries, and indicate the possible piezoelectric behavior of the studied compposite.
ABSTRACT
Biodiesel is a mixture of saturated and unsaturated Fatty Acid Methyl Esters (FAMEs) whose composition affects the corrosion behavior of metal containers during storage. This study examines the effect of the C=C bond present in selected FAMEs (Methyl Stearate, Methyl Oleate, and Methyl Linoleate) in aluminum corrosion in the absence of oxygen. First, mass loss assays were carried out at 100, 200, and 280 °C for 1000 h using pure Methyl Stearate (MS), 5% Methyl Oleate in Methyl Stearate (MS-5% MO), and 5% Methyl Linoleate in Methyl Stearate (MS-5% ML). Next, chemical changes in FAMEs were studied using FTIR, TGA, and GC/MS. SEM/EDS analysis allowed us to inspect the aluminum surfaces and their chemical characterization. We estimated higher corrosion rates for MS assays than those of unsaturated methyl ester mixtures. In a separate set of experiments, we used electrochemical techniques (potentiodynamic polarization, linear polarization resistance, and electrochemical impedance spectroscopy) to investigate aluminum corrosion induced by thermal-degraded products from FAMEs at 100, 200, and 280 °C for 300 h able to dissolve in aqueous extracts. These electrochemical experiments revealed that the products in the aqueous extracts from the unsaturated methyl ester mixture form a passive layer on the Al surface thicker than pure MS at the corresponding degradation temperatures.
ABSTRACT
A new conductive ink based on the addition of carbon black to a poly(vinyl alcohol) matrix is developed and investigated for electrochemical sensing and biosensing applications. The produced devices were characterized using morphological and electrochemical techniques and modified with Pd nanoparticles to enhance electrical conductivity and reaction kinetics. With the aid of chemometrics, the parameters for metal deposition were investigated and the sensor was applied to the determination of Parkinson's disease biomarkers, specifically epinephrine and α-synuclein. A linear behavior was obtained in the range 0.75 to 100 µmol L-1 of the neurotransmitter, and the device displayed a limit of detection (LOD) of 0.051 µmol L-1. The three-electrode system was then tested using samples of synthetic cerebrospinal fluid. Afterward, the device was modified with specific antibodies to quantify α-synuclein using electrochemical impedance spectroscopy. In phosphate buffer, a linear range was obtained for α-synuclein concentrations from 1.5 to 15 µg mL-1, with a calculated LOD of 0.13 µg mL-1. The proposed immunosensor was also applied to blood serum samples, and, in this case, the linear range was observed from 6.0 to 100.5 µg mL-1 of α-synuclein, with a LOD = 1.3 µg mL-1. Both linear curves attend the range for the real diagnosis, demonstrating its potential application to complex matrices.
Subject(s)
Biosensing Techniques , Nanoparticles , Parkinson Disease , Humans , Parkinson Disease/diagnosis , alpha-Synuclein , Biosensing Techniques/methods , ImmunoassayABSTRACT
Single-phase tungsten-doped lanthanum molybdenum oxide (La2MoWO9) ceramic powders were synthesized using the complex polymerization technique. Porous ceramic pellets were obtained by thermally removing graphite, which served as a pore former. The porous pellets were then impregnated with molten eutectic lithium-sodium-potassium carbonates. The energy dispersive X-ray analysis and scanning electron microscopy (FEG-SEM) images of the external and fracture surfaces of the La2MoWO9-(Li,Na,K)2CO3 composite dual-phase membrane revealed the percolation of the carbonate mixture through the pores. Electrochemical impedance spectroscopy measurements conducted at temperatures below and above the melting point of the eutectic carbonate composition demonstrated the contributions of oxygen and carbonate ions to the ionic conductivity of the dual membrane. The electrical conductivity of the carbonate ions within the membrane was continuously monitored for over 1300 h with negligible degradation, implying that the membrane could be used for long-term monitoring of CO2 without aging effects. A comparison of FEG-SEM images taken before and after this endurance test suggested minimal fouling, indicating that the membrane could potentially replace similar zirconia- and ceria-based composite membranes.
ABSTRACT
In this paper, the influence of a nickel binder metal and molybdenum carbide as an additional alloying element on the microstructure and corrosion behavior of WC-based cemented carbides, processed by conventional powder metallurgy, was studied, and a comparison with conventional cemented carbide (WC-Co) was carried out. The sintered alloys were characterized, before and after corrosive tests, by analyses using optical microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction. The corrosion resistance of the cemented carbides was investigated by open circuit potential, potentiodynamic polarization, and electrochemical impedance spectroscopy in a 3.5 wt.% NaCl solution. The WC-NiMo cemented carbides showed microstructures similar to those of WC-Co; however, pores and binder islands were observed in the microstructures. The corrosion tests showed promising results, the WC-NiMo cemented carbide showed superior corrosion resistance and higher passivation capacity than the WC-Co cemented carbide. The WC-NiMo alloy showed a higher EOC ≈-0.18 V vs. Ag|AgCl|KCl3mol/L than the WC-Co (EOC≈-0.45 V vs. Ag|AgCl|KCl3mol/L). The potentiodynamic polarization curves showed lower current density values throughout the potential range for the WC-NiMo alloy, and it was observed that Ecorr was less negative (≈-0.416 V vs. Ag|AgCl|KCl3mol/L) than for WC-Co (≈-0.543 V vs. V vs. Ag|AgCl|KCl3mol/L). The EIS analysis confirmed low rate corrosion of WC-NiMo associated with the formation of a passive thin layer. This alloy showed a higher Rct (1970.70 Ω).
ABSTRACT
Alzheimer's disease (AD) is a neurodegenerative disease with only late-stage detection; thus, diagnosis is made when it is no longer possible to treat the disease, only its symptoms. Consequently, this often leads to caregivers who are the patient's relatives, which adversely impacts the workforce along with severely diminishing the quality of life for all involved. It is, therefore, highly desirable to develop a fast, effective and reliable sensor to enable early-stage detection in an attempt to reverse disease progression. This research validates the detection of amyloid-beta 42 (Aß42) using a Silicon Carbide (SiC) electrode, a fact that is unprecedented in the literature. Aß42 is considered a reliable biomarker for AD detection, as reported in previous studies. To validate the detection with a SiC-based electrochemical sensor, a gold (Au) electrode-based electrochemical sensor was used as a control. The same cleaning, functionalization and Aß1-28 antibody immobilization steps were used on both electrodes. Sensor validation was carried out by means of Cyclic Voltammetry (CV) and Electrochemical Impedance Spectroscopy (EIS) aiming to detect an 0.5 µg·mL-1 Aß42 concentration in 0.1 M buffer solution as a proof of concept. A repeatable peak directly related to the presence of Aß42 was observed, indicating that a fast SiC-based electrochemical sensor was constructed and may prove to be a useful approach for the early detection of AD.
ABSTRACT
8 mol% Y2O3-stabilized ZrO2 (8YSZ) ceramics were prepared with KCl and LiF additions to obtain porous specimens with high skeletal density. Thermogravimetric and differential thermal analyses (TG/DTA) were carried out on 8YSZ and on 8YSZ mixed to 5 wt.% KCl or 5 wt.% LiF as sacrificial pore formers that were thermally removed during sintering. The melting and evaporation of the alkali halides were evaluated by differential thermal analysis. Dilatometric analysis was also carried out following the same TG/DTA temperature profile with results suggesting rearrangement of the 8YSZ particles during LiF and KCl melting. The dilatometric data of 8YSZ green pellets mixed to KCl or LiF exhibited an initial expansion up to the melting of the alkali halide, followed by shrinkage due to sintering evolution with grain growth and pore elimination. The time that the alkali halide molten phase was kept during sintering was found to be an important parameter for obtaining 8YSZ-sintered specimens with specific pore content; bulk density and open porosity could then be tuned by controlling the time the alkali halide remained liquid during sintering. Scanning electron microscopy images of the pellet fracture surfaces showed pores that contributed to increasing the electrical resistivity as evaluated by impedance spectroscopy analysis.
ABSTRACT
The impacts on the morphological, electrical and hardness properties of thermoplastic polyurethane (TPU) plates using multi-walled carbon nanotubes (MWCNTs) as reinforcing fillers have been investigated, using MWCNT loadings between 1 and 7 wt%. Plates of the TPU/MWCNT nanocomposites were fabricated by compression molding from extruded pellets. An X-ray diffraction analysis showed that the incorporation of MWCNTs into the TPU polymer matrix increases the ordered range of the soft and hard segments. SEM images revealed that the fabrication route used here helped to obtain TPU/MWCNT nanocomposites with a uniform dispersion of the nanotubes inside the TPU matrix and promoted the creation of a conductive network that favors the electronic conduction of the composite. The potential of the impedance spectroscopy technique has been used to determine that the TPU/MWCNT plates exhibited two conduction mechanisms, percolation and tunneling conduction of electrons, and their conductivity values increase as the MWCNT loading increases. Finally, although the fabrication route induced a hardness reduction with respect to the pure TPU, the addition of MWCNT increased the Shore A hardness behavior of the TPU plates.
ABSTRACT
This article developed a novel electrochemical immunosensor for the specific detection of aflatoxin B1 (AFB1). Amino-functionalized iron oxide nanoparticles (Fe3 O4 -NH2 ) were synthesized. Fe3 O4 -NH2 were chemically bound on self-assembly monolayers (SAMs) of mercaptobenzoic acid (MBA). Finally, polyclonal antibodies (pAb) were immobilized on Fe3 O4 -NH2 -MBA. The sensor system was evaluated through atomic force microscopy (AFM), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). A reduction in the anodic and cathodic peak currents was observed after the assembly of the sensor platform. The charge transfer resistance (Rct ) was increased due to the electrically insulating bioconjugates. Then, the specific interaction between the sensor platform and AFB1 blocks the electron transfer of the [Fe(CN)6 ]3-/4- redox pair. The nanoimmunosensor showed a linear response range estimated from 0.5 to 30 µg/mL with a limit of detection (LOD) of 9.47 µg/mL and a limit of quantification (LOQ) of 28.72 µg/mL for AFB1 identification in a purified sample. In addition, a LOD of 3.79 µg/mL, a LOQ of 11.48 µg/mL, and a regression coefficient of 0.9891 were estimated for biodetection tests on peanut samples. The proposed immunosensor represents a simple alternative, successfully applied in detecting AFB1 in peanuts, and therefore, represents a valuable tool for ensuring food safety.
Subject(s)
Arachis , Biosensing Techniques , Aflatoxin B1/analysis , Aflatoxin B1/chemistry , Biosensing Techniques/methods , Electrochemical Techniques/methods , Immunoassay , Limit of Detection , Gold/chemistryABSTRACT
Systemic sclerosis (SSc) is a chronic, autoimmune disease that primarily affects connective tissue. SSc can be classified into limited cutaneous (lSSc) and diffuse cutaneous (dSSc). Oncostatin M receptor (sOSMR) is an important inflammatory biomarker expressed in the serum of patients with autoimmune diseases. A nanoengineered immunosensor surface was developed. The biosensor was composed of a conductive layer of polypyrrole, electrodeposited gold nanoparticles, and sOSMR protein for anti-human OSMR monoclonal antibody biorecognition. The electrochemical response evaluated by cyclic voltammetry and electrochemical impedance spectroscopy indicated the detection of the target analyte present in clinical samples from lSSc and dSSc patients. The voltammetric anodic shift for lSSc specimens was 82.7% ± 0.9-93.6% ± 3.2, and dSSc specimens was 118.7 ± 2.6 to 379.6 ± 2.6, revealing a differential diagnostic character for SSc subtypes. The sensor platform was adapted for identifying sOSMR, using anti-OSMR antibodies as bioreceptors. With a linear response range estimated from 0.005 to 500 pg mL-1 and a limit of detection of 0.42 pg mL-1, the sensing strategy demonstrated high sensitivity in identifying the human OSMR protein in clinical samples. The proposed biosensor is a promising and innovative tool for SSc-related biomarker research.
Subject(s)
Biosensing Techniques , Metal Nanoparticles , Scleroderma, Systemic , Humans , Autoantibodies , Biomarkers , Gold , Immunoassay , Polymers , Pyrroles , Receptors, Oncostatin M , Scleroderma, Systemic/diagnosis , Electrochemical TechniquesABSTRACT
A miniaturized and low-cost electrochemical 3D-printed system for rapid and accurate quantification of ethanol content in ethanol fuel using electrochemical impedance spectroscopy (EIS) was developed. The monolithic design of the system incorporates insulating thermoplastic electrode separators, with only the cover being mobile, allowing for easy assembly and handling. The portable device, measuring approximately 26 × 24 mm, has a maximum capacity of 1 mL, making it suitable for lab-on-a-chip and portable analysis. By utilizing the dielectric constant of ethanol and ethanol fuel mixtures with water, the miniaturized EIS cell quantifies ethanol content effectively. To validate its performance, we compared measurements from four gas stations with a digital densimeter, and the values obtained from the proposed system matched perfectly. Our miniaturized and low-cost electrochemical 3D-printed device can be printed and assembled in two hours, offering a cost-effective solution for fast and precise ethanol quantification. Its versatility, affordability, and compatibility with lab-on-a-chip platforms make it easily applicable, including for fuel quality control and on-site analysis in remote locations.
ABSTRACT
The aim of this study was to use the electrical impedance spectroscopy technique (IS) to carry out a systematic study on the mechanism of metakaolin geopolymerization for up to 7 curing days. The study was developed on two batches of metakaolin (MK), and their reaction processes were compared. Interpretative fundamental elements were developed based on the effective electrical conductivity curves regarding the metakaolin geopolymerization. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) were previously carried out and used to interpret and validate the electrical behavior of the fresh and hardened MK-based geopolymer pastes. The results highlighted the sensibility of the impedance technique to the identification and description of the MK geopolymerization process, as well as the changes resulting from even slight variations in the metakaolin composition. Furthermore, this indicated that the geopolymerization process in highly alkaline solutions could be divided into seven stages, including the processes of dissolution, nucleation, precipitation and formation of the gel and, eventually, the retraction/microcracks constitution. Late dissolution processes could be observed during the more advanced stages and were attributed to particles not being fully hydrated.
ABSTRACT
The surface modification of materials obtained from natural polymers, such as silk fibroin with metal nanoparticles that exhibit intrinsic electrical characteristics, allows the obtaining of biocomposite materials capable of favoring the propagation and conduction of electrical impulses, acting as communicating structures in electrically isolated areas. On that basis, this investigation determined the electrochemical and electroconductive behavior through electrochemical impedance spectroscopy of a silk fibroin electrospun membrane from silk fibrous waste functionalized with gold or silver nanoparticles synthetized by green chemical reduction methodologies. Based on the results obtained, we found that silk fibroin from silk fibrous waste (SFw) favored the formation of gold (AuNPs-SFw) and silver (AgNPs-SFw) nanoparticles, acting as a reducing agent and surfactant, forming a micellar structure around the individual nanoparticle. Moreover, different electrospinning conditions influenced the morphological properties of the fibers, in the presence or absence of beads and the amount of sample collected. Furthermore, treated SFw electrospun membranes, functionalized with AuNPs-SFw or AgNPS-SFw, allowed the conduction of electrical stimuli, acting as stimulators and modulators of electric current.
ABSTRACT
Zeolites are materials of undeniable importance for science and technology. Since the properties of zeolites can be tuned after the inclusion of additional chemical species into the zeolitic framework, it is necessary to study the nature of zeolites after modification with transition metals to understand the new properties that were obtained, and with this information, novel applications can be proposed. This paper reports a solvent-free approach for the rapid synthesis of zeolites modified with iron and/or iron oxide particles. The samples were characterized, and their electrical and magnetic properties were investigated.