Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.359
Filter
1.
Neurol Neurochir Pol ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38935422

ABSTRACT

Trigeminal autonomic cephalgias (TACs) are a well-defined subset of uncommon primary headaches that share comparable onset, pathophysiology and symptom patterns. TACs are characterised by the presentation of one-sided and high-intensity trigeminal pain together with unilateral cranial autonomic signs, which can include lacrimation, rhinorrhea, and miosis. The International Classification of Headache Disorders 3rd Edition recognises four different headache entities in this group, with cluster headache as the most recognised among them. Hemicrania continua (HC) and paroxysmal hemicrania (PH) are both distinctive cephalgias of which the diagnostic criteria include an absolute response to indomethacin. Consequently, for this reason they are often referred to as 'indomethacin-responsive' TACs. The main focus of this review was to discuss the state of knowledge regarding the pathophysiology and key characteristics of PH and HC. Given the limited understanding of these conditions, and their exceptionally uncommon prevalence, a correct diagnosis can pose a clinical challenge and the search for an effective treatment may be prolonged, which frequently has a serious impact upon patients' quality of life. The information provided in this review is meant to help physicians to differentiate indomethacin-sensitive cephalgias from other distinct headache disorders with a relatively similar clinical presentation, such as cluster headache, trigeminal neuralgia, and various migraine conditions.

2.
Article in English | MEDLINE | ID: mdl-38939991

ABSTRACT

BACKGROUND: Non-communicable diseases are chronic systemic inflammation in humans that occurs because of enhanced inflammatory mediators of the arachidonic acid cas-cade. We aimed to explore whether the lead chalcone compounds could exhibit anti-inflam-matory activity via dual blockage of COX-2/5-LOX enzymes and their regulatory mechanism. METHODS: RAW 264.7 macrophages were collected from NCC, Pune, for in-vitro experiments. The IC50 values of chalcone compounds C45 and C64 were calculated. RAW 264.7 macro-phages were treated with C45 and C64 (10%, 5%, 2.5%, 0.125%, and 0.0625% concentration). The cell viability was carried out with an MTT assay. The COX-1, COX-2, 5-LOX, PGE2, and LTB4 levels were detected by ELISA-based kits. The in-vivo evaluation was carried out in Male Wistar rats (250-300 g, 7-8 weeks old) with acute and chronic anti-inflammatory models and histopathological studies on the stomach, liver, and kidney. RESULTS: The present study described the in-vitro and in-vivo biological evaluation of dual COX-2/5-LOX inhibitors in chalcone derivatives (C45 and C64) compounds showed the most effective COX-2 and 5-LOX inhibition with IC50 values 0.092 and 0.136µM respectively. Simultaneously, compound C64 showed comparable selectivity towards COX-2 with a Selec-tivity Index (SI) of 68.43 compared to etoricoxib, with an SI of 89.32. In-vivo carrageenan-induced rat paw oedema activity, the compound C64 showed a significant reduction in oedema with 78.28% compared to indomethacin with 88.07% inhibition. Furthermore, cotton pellet-induced granuloma activity revealed that compound C64 significantly reduced 32.85% com-pared with standard 40.13% granuloma inhibition. CONCLUSION: The chalcone compound C64, (E)-1-(4-Amino-2-hydroxyphenyl)-3-(3,4,5-tri-methoxyphenyl)-prop-2-en-1-one was proved to be a potent and novel Dual COX-2/5-LOX inhibitor with improved gastric safety profiling.

3.
Article in English | MEDLINE | ID: mdl-38940848

ABSTRACT

Gastric ulcer disease remains one of the common medical burdens affecting millions worldwide due to its prevalent risk factors with the chronic usage of non-steroidal anti-inflammatory drugs at the top, reportedly through the stimulation of oxidative stress and triggering of inflammatory and apoptotic cascades in the gastric mucosa. Astaxanthin, a dietary keto-carotenoid derived from marine organisms is gaining a wide interest as a nutraceutical for its pronounced antioxidant properties. Here, we aim to examine the potential modulatory role of astaxanthin on indomethacin-induced gastric ulceration in experimental mice. Twenty-four Swiss albino mice were randomly distributed into four groups: a control group, an indomethacin group, and two groups pre-treated with either omeprazole or astaxanthin. The gastric tissues were assessed using gross morphology, ulcer scoring, gastric juice acidity, as well as reduced glutathione (GSH) and malondialdehyde (MDA) levels. Histopathological examination and immunostaining for nuclear factor-kappa B (NF-κB) and caspase-3 levels were also employed. Indomethacin group tended to show a higher number of mucosal ulcerations relative to control and pre-treated groups. The indomethacin group also showed significantly lower GSH levels and higher MDA levels relative to control. Immunostaining of gastric tissue sections showed a higher reactivity to NF-κB and caspase-3 in indomethacin group. Astaxanthin pre-treatment significantly elevated gastric juice pH, normalized GSH levels, and lowered the indomethacin-induced elevations in MDA, NF-κB, and caspase-3 levels. These results indicate that astaxanthin exhibits a comparable protective effect to omeprazole, against indomethacin-induced gastric ulceration. This anti-ulcerogenic effect could be mediated through its antioxidant, anti-inflammatory, and anti-apoptotic modulatory activities.

4.
Int J Biochem Cell Biol ; 173: 106609, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38880193

ABSTRACT

Indomethacin, as a non-steroidal anti-inflammatory drugs, is widely used in the clinic. However, it can cause severe injury to the gastrointestinal tract and the incidence is increasing. It has become an essential clinical problem in preventing intestinal damage. Teprenone has been reported to have a significant positive effect on intestinal mucosal lesions, but long-term use of teprenone can elicit adverse reactions. WeiNaiAn capsule is a traditional Chinese medicine formulation used widely in the treatment of gastric and duodenal mucosal injury. However, how WeiNaiAn protects against intestinal mucosal injury and its mechanism of action are not known. In this study, WeiNaiAn capsule or Teprenone treatment improved the intestinal mucosal pathological score and antioxidant level in indomethacin-induced rats. 16 S rRNA sequence data showed WeiNaiAn capsule reverted the structure community and replenished the beneficial bacteria. Furthermore, fingerprint analysis revealed multiple components of WeiNaiAn capsule, including calycosin glucoside, ginsenoside Rg1, ginsenoside Rb1, taurocholic acid sodium, formonetin, and calycosin glucoside. The components of WeiNaiAn capsule promoted the wound healing of the epithelial cell in vitro. Moreover, the components of WeiNaiAn capsule inhibited the protein expressions of phosphoinositide 3-kinase /protein kinase B /mammalian target of rapamycin in hydrogen peroxide or lipopolysaccharides-induced cell model. In conclusion, WeiNaiAn capsule improves intestinal mucosal injury by regulating cell migration, enhancing antioxidant activity, and promoting the structure of the bacterial community homeostasis, the multiple targets provide the parameters for the treatment in the clinic.

5.
J Agric Food Chem ; 72(25): 14165-14176, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38872428

ABSTRACT

Atractylodes macrocephala Koidz, a traditional Chinese medicine, contains atractylenolide I (ATR-I), which has potential anticancer, anti-inflammatory, and immune-modulating properties. This study evaluated the therapeutic potential of ATR-I for indomethacin (IND)-induced gastric mucosal lesions and its underlying mechanisms. Noticeable improvements were observed in the histological morphology and ultrastructures of the rat gastric mucosa after ATR-I treatment. There was improved blood flow, a significant decrease in the expression of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), IL-1ß, and IL-18, and a marked increase in prostaglandin E2 (PGE2) expression in ATR-I-treated rats. Furthermore, there was a significant decrease in the mRNA and protein expression levels of NOD-like receptor thermal protein domain associated protein 3 (NLRP3), apoptosis-associated speck-like protein (ASC), cysteinyl aspartate specific proteinase-1 (caspase-1), and nuclear factor-κB (NF-κB) in rats treated with ATR-I. The results show that ATR-I inhibits the NLRP3 inflammasome signaling pathway and effectively alleviates local inflammation, thereby improving the therapeutic outcomes against IND-induced gastric ulcers in rats.


Subject(s)
Atractylodes , Gastric Mucosa , Indomethacin , Inflammasomes , Lactones , NLR Family, Pyrin Domain-Containing 3 Protein , Rats, Sprague-Dawley , Sesquiterpenes , Stomach Ulcer , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Indomethacin/adverse effects , Stomach Ulcer/drug therapy , Stomach Ulcer/chemically induced , Stomach Ulcer/metabolism , Rats , Sesquiterpenes/pharmacology , Sesquiterpenes/chemistry , Lactones/pharmacology , Lactones/chemistry , Inflammasomes/metabolism , Inflammasomes/genetics , Inflammasomes/drug effects , Male , Atractylodes/chemistry , Gastric Mucosa/drug effects , Gastric Mucosa/metabolism , Humans , NF-kappa B/genetics , NF-kappa B/metabolism , NF-kappa B/immunology , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/immunology , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Interleukin-1beta/immunology , Caspase 1/genetics , Caspase 1/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Interleukin-6/immunology , Interleukin-18/genetics , Interleukin-18/metabolism
6.
Article in English | MEDLINE | ID: mdl-38842560

ABSTRACT

Gastric ulcer disease is associated with significant morbidity and mortality rates. The most two common causes of the ulcer are Helicobacter pylori infection and non-steroidal anti-inflammatory drugs. In the past few decades, a significant decrease in the morbidity and mortality rate has been observed probably due to the discovery of proton pump inhibitors. However, the medications used to treat gastric ulcers impose several nauseous side effects. Therefore, recent studies focus on the use of natural products to treat gastric ulcers. In the current study, gastric ulcer was effectively induced using indomethacin, and the protective effect of apigenin, a potent antioxidant flavonoid, was assessed in comparison to omeprazole. The administration of a single oral indomethacin (50 mg/kg) induced gastric ulcer as manifested by hemorrhagic lesions in the gastric mucosa, increased ulcer index, and histopathological alterations. Indomethacin also increased lipid peroxidation, decreased the activities of the antioxidant enzymes superoxide dismutase (SOD) and catalase, increased the immunoreactivity of the inflammatory markers cyclo-oxygenase-2 (COX-2), tumor necrosis factor-alpha (TNF-α), and nuclear factor-kappa B (NF-κB), increased the transcription of the apoptotic marker, Bax, and decreased that of the antiapoptotic Bcl-2. Indomethacin also decreased the immunoreactivity of transforming growth factor-beta 1 (TGF-ß1). On the other hand, pretreatment with apigenin (10 and 20 mg/kg) resulted in a dose-dependent improvement in the macroscopic and microscopic features of the gastric mucosa in a manner comparable to that of omeprazole. The gastroprotective effects of apigenin may be attributed to its anti-inflammatory, anti-antioxidant, and anti-apoptotic activities as well as enhancing the expression of TGF-ß1. Further experimental and clinical research is required to confirm activity of apigenin as anti-ulcer agent.

7.
BMC Chem ; 18(1): 109, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831344

ABSTRACT

Recently, there is a particular interest to utilize protic ionic liquids (PILs) in drug solubility. This study is exploring the effect of three protic ionic liquids (PILs) based on 2-hydroxyethylammonium carboxylate [2-hydroxyethylammonium acetate (MEAA), 2-hydroxyethylammonium lactate (MEAL), and 2-hydroxyethylammonium propionate (MEAP)] on the solubility of the very poorly soluble drug in water, indomethacin (IMC). The shake flask method was used to measure the experimental solubility of IMC at the different temperatures range (298.15-313.15) K. The results demonstrate significantly enhancment the solubility of IMC in PILs compared to pure water, with an approximate increase of 200 times. The experimental solubility data have been correlated using the empirical models which showed the performance as the order: Modified Apelblat-Jouyban-Acree > Van't Hoff-Jouyban-Acree > Modified Apelblat equations and also the performance for the Wilson model indicated as the order (absolute relative deviation): 2-hydroxyethylammonium acetate (3.030) > 2-hydroxyethylammonium propionate (3.239) > 2-hydroxyethylammonium lactate (7.665). Then the thermodynamic dissolution properties were obtained by usage of Gibbs and Van't Hoff equations to investigate the thermodynamic behavior of the IMC in the aqueous solution PILs. Eventually, the cytotoxicity of the co-solvents (PILs) under study was evaluated using a standard MTT assay. The results showed that the cell viability percentage increased in the following order: MEAA < MEAP < MEAL. These findings indicated that these PILs had low to moderate toxicity. It is noteworthy that the functional groups of the anions were not the only determinant factor of the cytotoxicity. Other factors encompassing concentration, exposure time, and cell line characteristics also had significant effects.

8.
J Pharm Biomed Anal ; 246: 116201, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38788621

ABSTRACT

Patient can be exposed to the photodegradation products of a drug after skin application of topical formulations. NSAIDs, with analgesic and anti-inflammatory properties, are known for the potential photoinstability, and are applied often in the form of creams, gels or liquids, commonly used among athletes, elderly people, geriatric patients and patients treated with multidrug therapies. Susceptibility to photodegradation hazard of those group arises the need for development of a new approach, with the ability to evaluate the patient safety. We planned to use a rapid assessment procedure (RAP) of safety by testing the photostability of popular skin medicinal products. This method, proposed many years ago by WHO, is now reintroduced to analytical applications in industry, when emergency drugs (e.g. for Covid) are implemented to the market in accelerated procedures. In the health care system, qualitative evaluation of drugs is extremely valuable, therefore we have planned to identify photodegradation using the FTIR method - infrared spectroscopy and DSC - differential scanning calorimetry, whilst the risk of formation of genotoxic products using the Ames test. We have successfully demonstrated that changes in the chemical structure and physical form of both pure APIs and drug products containing the API be assessed in a short time. Another advantage of our work is the combination of the developed results from FTIR/NIR spectra with statistical analysis. As a result, full and quick qualitative assessment of the effects of photoexposure of selected NSAIDs is performed, fortunately showing no mutagenicity. Due to the popularity of NSAIDs applied to the skin, a gel containing naproxen and spray with indomethacin were selected for testing. The analysis carried out for various formulations of both preparations allows us to demonstrate the universality of the applied RAP methods in assessing the risk of hazard to the patient, thus we present research results that expand or widen the knowledge and assessment of risks related to the use of drugs on the skin.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal , Indomethacin , Naproxen , Photolysis , Skin , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Naproxen/chemistry , Naproxen/analysis , Indomethacin/chemistry , Humans , Skin/drug effects , Skin/radiation effects , Spectroscopy, Fourier Transform Infrared/methods , Calorimetry, Differential Scanning/methods , Administration, Cutaneous , Drug Stability
9.
Int Immunopharmacol ; 135: 112281, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38762925

ABSTRACT

The administration of nonsteroidal anti-inflammatory drugs (NSAIDs) may cause significant intestinal alteration and inflammation and lead to the occurrence of inflammatory diseases resembling duodenal ulcers. Astragaloside IV (AS-IV) is a glycoside of cycloartane-type triterpene isolated from the dried root of Astragalus membranaceus (Fisch.) Bge. (family Fabaceae), and has been used for ameliorating the NSAID-induced inflammation in the small intestine. The present study aimed to investigate the effects of AS-IV on indomethacin (IND)-induced inflammation in the small intestine of rats and its underlying mechanisms. Hematoxylin-eosin (H&E) staining, transmission and scanning electron microscopy were carried out to observe the surface morphology and ultrastructure of the small intestinal mucosa. Immunofluorescence and ELISA tests were employed to detect the expressions of NLRP3, ASC, caspase-1, and NF-κB proteins, as well as inflammatory factors IL-1ß and IL-18, to uncover potential molecular mechanisms responsible for mitigating small intestinal inflammation. The results demonstrated that AS-IV significantly decreased the ulcer index, improved the surface morphology and microstructure of the small intestinal mucosa, and increased mucosal blood flow. Molecular docking revealed a strong and stable binding capacity of AS-IV to NLRP3, ASC, caspase-1, and NF-κB proteins. Further experimental validation exhibited that AS-IV markedly decreased levels of IL-1ß and IL-18, and inhibited the protein expression of NLRP3, ASC, caspase-1, and NF-κB. Our data demonstrate that AS-IV ameliorates IND-induced intestinal inflammation in rats by inhibiting the activation of NLRP3 inflammasome and reducing the release of IL-1ß and IL-18, thereby representing a promising therapy for IND-induced intestinal inflammation.


Subject(s)
Indomethacin , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Rats, Sprague-Dawley , Saponins , Triterpenes , Animals , Saponins/pharmacology , Saponins/therapeutic use , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Triterpenes/pharmacology , Triterpenes/therapeutic use , Inflammasomes/metabolism , Inflammasomes/drug effects , Male , Rats , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Intestine, Small/drug effects , Intestine, Small/pathology , Intestine, Small/metabolism , Intestine, Small/immunology , Intestinal Mucosa/drug effects , Intestinal Mucosa/pathology , Intestinal Mucosa/metabolism , NF-kappa B/metabolism , Interleukin-1beta/metabolism , Molecular Docking Simulation , Caspase 1/metabolism , Inflammation/drug therapy , Inflammation/chemically induced
10.
Int J Biol Macromol ; 270(Pt 1): 132062, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705340

ABSTRACT

Oral drug administration, especially when composed of mucoadhesive delivery systems, has been a research trend due to increased residence time and contact with the mucosa, potentially increasing drug bioavailability and stability. In this context, this study aimed to develop self-assembly mucoadhesive beads composed of blends of κ-carrageenan and sericin (κ-Car/Ser) loaded with the anti-inflammatory drug indomethacin (IND). We investigated the swelling, adhesion behaviour, and mechanical/physical properties of the beads, assessing their effects on cell viability, safety and permeation characteristics in both 2D and triple-culture model. The swelling ratio of the beads indicated pH-responsiveness, with maximum water absorption at pH 6.8, and strong mucoadhesion, increasing primarily with higher polymer concentrations. The beads exhibited thermal stability and no chemical interaction with IND, showing improved mechanical properties. Furthermore, the beads remained stable during accelerated and long-term storage studies. The beads were found to be biocompatible, and IND encapsulation improved cell viability (>70 % in both models, 79 % in VN) and modified IND permeation through the models (6.3 % for F5 formulation (κ-Car 0.90 % w/v | Ser 1.2 % w/v| IND 3.0 g); 10.9 % for free IND, p < 0.05). Accordingly, κ-Car/Ser/IND beads were demonstrated to be a promising IND drug carrier to improve oral administration while mitigating the side effects of non-steroidal anti-inflammatories.


Subject(s)
Carrageenan , Delayed-Action Preparations , Indomethacin , Sericins , Indomethacin/chemistry , Indomethacin/administration & dosage , Indomethacin/pharmacokinetics , Carrageenan/chemistry , Administration, Oral , Humans , Sericins/chemistry , Delayed-Action Preparations/chemistry , Drug Carriers/chemistry , Drug Liberation , Cell Survival/drug effects , Microspheres , Animals , Caco-2 Cells , Hydrogen-Ion Concentration
11.
Toxicol Appl Pharmacol ; 486: 116950, 2024 May.
Article in English | MEDLINE | ID: mdl-38701902

ABSTRACT

Antidepressant duloxetine has been shown protective effect on indomethacin-induced gastric ulcer, which was escorted by inflammation in the gastric mucosa. Cytokines are the principal mediators of inflammation. Thus, by screening the differential expression of cytokines in the gastric mucosa using cytokine array at 3 h after indomethacin exposure, when the gastric ulcer began to format, we found that indomethacin increased cytokines which promoted inflammation responses, whereas duloxetine decreased pro-inflammatory cytokines increased by indomethacin and increased RANTES expression. RANTES was consistently increased by pretreated with both 5 mg/kg and 20 mg/kg duloxetine at 3 h and 6 h after indomethacin exposure in male rats. Selective blockade of RANTES-CCR5 axis by a functional antagonist Met-RANTES or a CCR5 antagonist maraviroc suppressed the protection of duloxetine. Considering the pharmacologic action of duloxetine on reuptake of monoamine neurotransmitters, we examined the serotonin (5-HT), norepinephrine and dopamine contents in the blood and discovered 20 mg/kg duloxetine increased 5-HT levels in platelet-poor plasma, while treatment with 5-HT promoted expression of RANTES in the gastric mucosa and alleviated the indomethacin-induced gastric injury. Furthermore, duloxetine activated PI3K-AKT-VEGF signaling pathway, which was regulated by RANTES-CCR5, and selective inhibitor of VEGF receptor axitinib blocked the prophylactic effect of duloxetine. Furthermore, duloxetine also protected gastric mucosa from indomethacin in female rats, and RANTES was increased by duloxetine after 6 h after indomethacin exposure too. Together, our results identified the role of cytokines, particularly RANTES, and the underlying mechanisms in gastroprotective effect of duloxetine against indomethacin, which advanced our understanding in inflammatory modulation by monoamine-based antidepressants.


Subject(s)
Chemokine CCL5 , Duloxetine Hydrochloride , Gastric Mucosa , Indomethacin , Proto-Oncogene Proteins c-akt , Rats, Sprague-Dawley , Serotonin , Signal Transduction , Stomach Ulcer , Vascular Endothelial Growth Factor A , Animals , Duloxetine Hydrochloride/pharmacology , Gastric Mucosa/drug effects , Gastric Mucosa/pathology , Gastric Mucosa/metabolism , Male , Indomethacin/toxicity , Proto-Oncogene Proteins c-akt/metabolism , Chemokine CCL5/metabolism , Signal Transduction/drug effects , Rats , Vascular Endothelial Growth Factor A/metabolism , Stomach Ulcer/chemically induced , Stomach Ulcer/prevention & control , Stomach Ulcer/pathology , Stomach Ulcer/metabolism , Serotonin/metabolism , Phosphatidylinositol 3-Kinases/metabolism
12.
Article in English | MEDLINE | ID: mdl-38703207

ABSTRACT

Parthenolide (PTL) is a sesquiterpene lactone that occurs naturally. It demonstrates a variety of beneficial effects, such as antioxidant, anti-inflammatory, and antiapoptotic properties. The study investigated the potential protective impact of PTL on indomethacin (INDO) induced stomach ulcers in rats. The rats were classified into 5 distinct categories. Group 1 served as the "control" group. Rats in the second group received a single oral dosage of INDO (50 mg kg-1). Rats in Groups three and four received 20 and 40 mg kg-1 oral PTL 1 h before INDO. Omeprazole (30 mg kg-1) was given orally to Group 5 rats 1 h before INDO. Pretreatment with PTL increased stomach pH and decreased gastric volume as well as reduced the morphological and histological changes induced by INDO. Analysis of probable pathways showed that pre-treatment with PTL successfully reduced oxidative, inflammatory, and apoptotic consequences caused by INDO. The ingestion of PTL leads to a notable increase in the levels of glutathione reduced (GSH) and the activities of superoxide dismutase (SOD) and catalase (CAT). Furthermore, PTL decreased the concentration of malondialdehyde (MDA). In contrast, it was shown that PTL increased both cyclooxygenase-1 (COX-1) and prostaglandin E2 (PGE2). PTL shows a significant decrease in the expression of interleukin-1 beta (IL-1ß), tumor necrosis factor-alpha (TNF-α), inducible nitric oxide synthase (iNOS), and nuclear factor kappa B (NF-κB). PTL therapy resulted in a decrease in Bcl-2-associated X protein (Bax) levels and an increase in B-cell lymphoma 2 (Bcl2) levels. In conclusion, PTL offers gastroprotection by its antioxidant, anti-inflammatory, and anti-apoptotic qualities.

13.
Mol Biol Rep ; 51(1): 684, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796650

ABSTRACT

BACKGROUND: Indomethacin is an anti-inflammatory drug that causes ulcers on the gastric mucosa due to its use. Probiotic bacteria are live microorganisms, and it has been stated by various studies that these bacteria have antioxidant and anti-inflammatory effects. In this study, we investigated the possible protective effect of various types of probiotic bacteria (Lactobacillus rhamnosus, Lactobacillus fermentum, and Lactobacillus brevis) against acute gastric mucosal damage caused by indomethacin. METHODS: Control group - Physiological saline was administered daily for 10 days. Indo group-Physiological saline was administered daily for 10 days. Ranitidine + Indo group 5 mg/kg ranitidine dose was administered daily for 5 days. On day 11, a single dose of 100 mg/kg of indomethacin was given to the same group. Probiotic + Indo group 1 ml/kg of oral probiotic bacteria was administered daily for 10 days. On day 11, a single 100 mg/kg dose of indomethacin was given. After the application, the rats were anesthetized with ketamine xylazine, killed under appropriate conditions, the abdominal cavity was opened and the stomach tissues were removed. The obtained gastric tissues were used in the biochemical and histopathological analyses discussed below. All data were statistically evaluated by one-way ANOVA using SPSS 20.00, followed by Duncan Post hoc test. The data were expressed as mean ± SD. P < 0.05 was considered statistically significant. RESULTS: As a result, the administration of indomethacin caused gastric damage, stimulating oxidative stress, inflammation, and apoptosis. We found that the use of probiotic bacteria reduces oxidative stress (TOC), increases the activity of antioxidant enzymes (TAC), suppresses inflammation (IL-6 and Tnf-α), and inhibits apoptosis (Bax and Bcl-2) (P < 0.05). CONCLUSION: Probiotic treatment can mitigate gastric damage and apoptosis caused by indomethacin-induced gastric damage in rats. Probiotic also enhances the restoration of biochemical oxidative enzymes as it has anti-inflammatory, antioxidant, and antiapoptotic properties.


Subject(s)
Apoptosis , Gastric Mucosa , Indomethacin , Inflammation , Oxidative Stress , Probiotics , Stomach Ulcer , Indomethacin/adverse effects , Probiotics/pharmacology , Animals , Stomach Ulcer/chemically induced , Stomach Ulcer/prevention & control , Stomach Ulcer/pathology , Stomach Ulcer/metabolism , Oxidative Stress/drug effects , Apoptosis/drug effects , Rats , Gastric Mucosa/drug effects , Gastric Mucosa/pathology , Gastric Mucosa/metabolism , Inflammation/metabolism , Male , Rats, Wistar , Antioxidants/metabolism , Antioxidants/pharmacology
14.
J Inflamm Res ; 17: 1983-1994, 2024.
Article in English | MEDLINE | ID: mdl-38566982

ABSTRACT

Background: Gastric ulcers pose a significant health risk due to an imbalance between protective and aggressive factors on the mucous membrane. Nonsteroidal anti-inflammatory drug (NSAID)-induced gastric damage affects 25% of users. Quinoxaline compounds, known for their diverse biological properties, have potential applications in cancer therapy and as antimicrobial agents targeting various pathogens. Objective: Our study aimed to investigate the impact of DMQ on gastroprotective mechanisms in an experimental model of indomethacin-induced gastric ulcer. Methods: Thirty male Wistar rats were randomly assigned to five groups. Group 1 served as the control, while Group 2 received a single oral dose of IND (30 mg/kg). Groups 3 and 4 received oral DMQ (30 mg/kg and 60 mg/kg, respectively) for three days, with the final dose administered intragastrically one hour before IND administration. Group 5 received esomeprazole (30 mg/kg) orally for three days, with the final dose given one hour before IND administration. Rats were sacrificed four hours after IND induction. Results: Indomethacin-induced ulcers were associated with epithelial damage and blood streaks on the gastric mucosa. However, DMQ significantly decreased levels of inflammatory biomarkers (TNF-α, IL-6, Cox-2, IFN-γ, and IL-ß1) while increasing gastroprotective mediator prostaglandin E2 (PGE2) and mucin levels. Histopathological analysis revealed a significant reduction in ulcer-induced pathological alterations and upregulation of tumor suppressor genes (NF-κB levels) following DMQ treatment. Rats treated with Indo+DMQ showed a significant decrease in ulcer index compared to the Indo group, with mild injuries observed. Conclusion: DMQ demonstrated promising gastroprotective effects against IND-induced gastric ulcers, as evidenced by alterations in histopathological data and upregulation of gene expression.

15.
J Mol Cell Biol ; 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38578631

ABSTRACT

The recognition of cytosolic nucleic acid triggers the DNA/RNA sensor-IRF3 axis-mediated production of type I interferons (IFNs), which are essential for antiviral immune responses. However, the inappropriate activation of these signaling pathways is implicated in autoimmune conditions. Here, we report that indomethacin, a widely used nonsteroidal anti-inflammatory drug, inhibits nucleic acid-triggered IFN production. We found that both DNA- and RNA-stimulated IFN expression can be effectively blocked by indomethacin. Interestingly, indomethacin also prohibits the nuclear translocation of IRF3 following cytosolic nucleic acid recognition. Importantly, in cell lines and a mouse model of Aicardi-Goutières syndrome, indomethacin administration blunts self-DNA-induced autoimmune responses. Thus, our study reveals a previously unknown function of indomethacin and provides a potential treatment for cytosolic nucleic acid-stimulated autoimmunity.

16.
Pharmaceutics ; 16(4)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38675206

ABSTRACT

The aim of this study was to assess the impact of physiological factors, namely tear fluid and lysozyme enzyme, as well as surfactant polysorbate, on the release profile from solid lipid microparticles (SLM), in the form of dispersion intended for ocular application. Indomethacin (Ind) was used as a model drug substance and a release study was performed by applying the dialysis bag method. Conducting release studies taking into account physiological factors is expected to improve development and screening studies, as well as support the regulatory assessment of this multi-compartment lipid dosage form. The effect of the lysozyme was directly related to its effect on lipid microparticles, as it occurred only in their presence (no effect on the solubility of Ind). Polysorbate also turned out to be an important factor interacting with the SLM surface, which determined the release of Ind from SLM. However, in study models without tear fluid or lysozyme, the release of Ind did not exceed 60% within 96 h. Ultimately, only the simultaneous application of artificial tear fluid, lysozyme, and polysorbate allowed for the release of 100% of Ind through the SLM dispersion. The examination of the residues after the release studies indicated the possibility of releasing 100% of Ind from SLM without complete degradation of the microparticles' matrix. The incubation of SLM with tear fluid confirmed a similar influence of physiological factors contained in tear fluid on the surface structure of SLM as that observed during the in vitro studies.

17.
Biotech Histochem ; 99(3): 147-156, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38644776

ABSTRACT

The purpose of this study was to evaluate the effects of syringic acid, an anti-oxidant, on indomethacin induced gastric ulcers in rats. Experimental groups were control, ulcer, ulcer treated with 20 mg/kg esomeprazole (a proton pump inhibitor that reduces acid secretion), and ulcer treated with 100 mg/kg syringic acid. Rats were pretreated with esomeprazole or syringic acid two weeks before ulcer induction. Our histopathological observations showed that either syringic acid or esomeprazole attenuated the severity of gastric mucosal damage. Moreover, syringic acid and esomeprazole pretreatments alleviated indomethacin-induced damage by regulating oxidative stress, inflammatory response, the level of transforming growth factor-ß (TGF-ß), expressions of COX and prostaglandin E2, cell proliferation, apoptosis and regulation of the NF-κB signaling pathway. We conclude that either esomeprazole or syringic acid administration protected the gastric mucosa from harmful effects of indomethacin. Syringic acid might, therefore be a potential therapeutic agent for preventing and treating indomethacin-induced gastric damage.


Subject(s)
Apoptosis , Gallic Acid , Indomethacin , Inflammation , Oxidative Stress , Stomach Ulcer , Animals , Indomethacin/pharmacology , Indomethacin/toxicity , Stomach Ulcer/chemically induced , Stomach Ulcer/drug therapy , Stomach Ulcer/pathology , Oxidative Stress/drug effects , Apoptosis/drug effects , Inflammation/chemically induced , Inflammation/drug therapy , Male , Gallic Acid/analogs & derivatives , Gallic Acid/pharmacology , Rats , Rats, Sprague-Dawley , Gastric Mucosa/drug effects , Gastric Mucosa/pathology , Esomeprazole/pharmacology
18.
Article in English | MEDLINE | ID: mdl-38679455

ABSTRACT

Backgrounds/Aims: This trial evaluated whether anti-inflammatory agents hydrocortisone (H) and indomethacin (I) could reduce major complications after pancreatoduodenectomy (PD). Methods: Between June 2018 and June 2020, 105 patients undergoing PD with > 40% of acini on the intraoperative frozen section were randomized into three groups (35 patients per group): 1) intravenous H 100 mg 8 hourly, 2) rectal I suppository 100 mg 12 hourly, and 3) placebo (P) from postoperative day (POD) 0-2. Participants, investigators, and outcome assessors were blinded. The primary outcome was major complications (Clavien-Dindo grades 3-5). Secondary outcomes were overall complications (Clavien-Dindo grades 1-5), Clinically relevant postoperative pancreatic fistula (CR-POPF), delayed gastric emptying (DGE), postpancreatectomy hemorrhage (PPH), surgical site infections (SSI), length of stay, POD-3 serum amylase, readmission rate, and mortality. Results: Major complications were comparable (8.6%, 5.7%, and 8.6% in groups H, I, and P, respectively). However, overall complications were significantly lower in group H than in group P (45.7% vs. 80.0%, p = 0.006). CR-POPF (14.3% vs. 25.7%, p = 0.371), PPH (8.6% vs. 14.3%, p = 0.710), DGE (8.6% vs. 22.9%, p = 0.188), and SSI (14.3% vs. 25.7%, p = 0.371) were comparable between groups H and P. Major complications and overall complications in group I were 5.7% and 60.0%, respectively, which were comparable to those in groups P and H. CR-POPF rates in groups H, I, and P were 14.3%, 17.1%, and 25.7%, respectively, which was comparable. Conclusions: H and I did not decrease major complications in PD.

19.
Recent Pat Biotechnol ; 18(4): 344-357, 2024.
Article in English | MEDLINE | ID: mdl-38566382

ABSTRACT

BACKGROUND: There are patents available related to fermented food and beverages which enhance to human health. Citrus limetta (Mosambi) has a high content of flavonoids and exhibits antioxidant activity, which could stimulate the digestive system and be useful for gastroprotective activity. It supports digestion by neutralizing the acidic digestive juices and reducing gastric acidity. OBJECTIVE: This study explored the potential of using waste peel extract from Citrus limetta to prevent ulcers. The study specifically sought to assess the anti-ulcer properties of fermented and non-fermented extracts and compare them. Further, the study looked at the potential benefits of treating or preventing ulcers with Citrus limetta waste peels and whether fermentation affected the efficacy of the treatment. METHODS: Thirty female Wistar albino rats were equally distributed into five different groups. Group 1 received distilled water (20 ml/kg/b.w); Group 2 received indomethacin (mg/kg/b.w); Group 3 received omeprazole (20 mg/kg/b.w); Group 4 received aqueous extract of Mosambi peel (400 mg/kg/b.w) and Group 5 received fermented product of extract of Mosambi peel (400 mg/kg/b.w). RESULTS: Findings explored that, compared to non-fermented citrus fruit juice, biofermented exhibited less gastric volume (1.58 ± 0.10 ml vs. 1.8 ± 0.14 ml), reduced MDA levels (355.23 ± 100.70 µmol/mg protein vs. 454.49 ± 155.88 µmol/mg protein), and low ulcer index (0.49 ± 0.07 vs. 0.72 ± 0.14). CONCLUSION: The results suggest that the bio-fermented product of Citrus limetta peel has better anti-ulcer potential against peptic ulcer induced by indomethacin in Wistar albino rats compared to non-fermented.


Subject(s)
Anti-Ulcer Agents , Citrus , Fermentation , Plant Extracts , Rats, Wistar , Stomach Ulcer , Animals , Citrus/chemistry , Female , Rats , Plant Extracts/pharmacology , Plant Extracts/chemistry , Anti-Ulcer Agents/pharmacology , Anti-Ulcer Agents/chemistry , Stomach Ulcer/drug therapy , Stomach Ulcer/metabolism , Stomach Ulcer/pathology , Patents as Topic , Indomethacin/metabolism , Fruit/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Omeprazole/pharmacology
20.
Endocrine ; 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38625503

ABSTRACT

PURPOSE: Some evidence that non-steroidal anti-inflammatory drugs have neuroprotective effects indicates their potential for use in a new field. However, their effects on hormone secretion have yet to be adequately discovered. Therefore, we aimed to evaluate the effects of metamizole and indomethacin on neuronal markers as well as the GnRH expression in the GT1-7 cell line. METHODS: The effects of these drugs on proliferation were evaluated by MTT analysis. The effect of 10-50-250 µM concentrations of the drugs also on the expression of neuronal factors and markers, including NGF, nestin and ßIII Tubulin, and additionally GnRH, was determined by the RT-qPCR method. RESULTS: NGF and nestin mRNA expressions were increased in all concentrations of both metamizole and indomethacin. No changes were detected in ßIII Tubulin. While metamizole showed an increase in GnRH mRNA expression, there was no change at 10 and 50 µM concentrations of indomethacin, but a remarkable decrease was observed at 250 µM concentrations. CONCLUSIONS: The results of our study showing an increase in the expression of neuronal factors reveal that metamizole and indomethacin may have possible neuroprotective effects. Moreover, the effects on the GnRH expression appear to be different. Animal models are required to confirm these effects of NSAIDs on neurons.

SELECTION OF CITATIONS
SEARCH DETAIL
...