ABSTRACT
BACKGROUND: Here we report the residual efficacy of the neonicotinoid insecticide clothianidin against pyrethroid-resistant Aedes aegypti. We first conducted a range-finding evaluation of clothianidin on three different substrates (wall, wood, cloth) using three doses (100, 300 and 600 mg a.i. m-2 ) and conducting World Health Organization (WHO) cone bioassays to assess acute (24 h) and delayed (up to 7 days) mortality. In experimental houses located in Merida (Mexico) and using free-flying pyrethroid-resistant Ae. aegypti females, we quantified the acute and delayed mortality after a 24-h exposure to the targeted indoor residual spraying (TIRS) of two clothianidin doses (100 and 300 mg a.i. m-2 ). RESULTS: Range-finding studies with WHO cones showed low (<50%) acute mortality for all surfaces, doses and times post spraying. Delayed mortality was higher, with average values above or close to the 60% mark (and 95% confidence interval estimates crossing 80% for the 600 mg a.i. m-2 dose). In experimental houses, a similar low acute mortality was quantified (range of mortality across 12 months was 2-44% for 100 mg a.i. m-2 and 8-61% for 300 mg a.i/m2 ). However, delayed mortality showed a strong effect of clothianidin on free-flying Ae. aegypti, with values above 80% up to 7 months post-TIRS. CONCLUSION: Novel residual insecticide molecules have a promising outlook for Ae. aegypti control and can contribute to the expansion and adoption of TIRS in urban areas. clothianidin can contribute to the control of resistant Ae. aegypti and provide residual control for up to 7 months after application. © 2022 Society of Chemical Industry.
Subject(s)
Aedes , Insecticides , Pyrethrins , Animals , Female , Insecticides/pharmacology , Pyrethrins/pharmacology , Mosquito Control , Insecticide Resistance , Neonicotinoids/pharmacologyABSTRACT
BACKGROUND: Haiti is planning targeted interventions to accelerate progress toward malaria elimination. In the most affected department (Grande-Anse), a combined mass drug administration (MDA) and indoor residual spraying (IRS) campaign was launched in October 2018. This study assessed the intervention's effectiveness in reducing Plasmodium falciparum prevalence. METHODS: An ecological quasi-experimental study was designed, using a pretest and posttest with a nonrandomized control group. Surveys were conducted in November 2017 in a panel of easy access groups (25 schools and 16 clinics) and were repeated 2-6 weeks after the campaign, in November 2018. Single-dose sulfadoxine-pyrimethamine and primaquine was used for MDA, and pirimiphos-methyl as insecticide for IRS. RESULTS: A total of 10 006 participants were recruited. Fifty-two percent of the population in the intervention area reported having received MDA. Prevalence diminished between 2017 and 2018 in both areas, but the reduction was significantly larger in the intervention area (ratio of adjusted risk ratios, 0.32 [95% confidence interval, .104-.998]). CONCLUSIONS: Despite a moderate coverage, the campaign was effective in reducing P. falciparum prevalence immediately after 1 round. Targeted MDA plus IRS is useful in preelimination settings to rapidly decrease the parasite reservoir, an encouraging step to accelerate progress toward malaria elimination.
Subject(s)
Insecticides , Malaria , Haiti/epidemiology , Humans , Insecticides/pharmacology , Malaria/drug therapy , Malaria/epidemiology , Malaria/prevention & control , Mass Drug Administration , Mosquito ControlABSTRACT
BACKGROUND: Indoor residual spraying (IRS) of insecticides is a key method to reduce vector transmission of Trypanosoma cruzi, causing Chagas disease in a large part of South America. However, the successes of IRS in the Gran Chaco region straddling Bolivia, Argentina, and Paraguay, have not equalled those in other Southern Cone countries. AIMS: This study evaluated routine IRS practices and insecticide quality control in a typical endemic community in the Bolivian Chaco. METHODS: Alpha-cypermethrin active ingredient (a.i.) captured onto filter papers fitted to sprayed wall surfaces, and in prepared spray tank solutions, were measured using an adapted Insecticide Quantification Kit (IQK™) validated against HPLC quantification methods. The data were analysed by mixed-effects negative binomial regression models to examine the delivered insecticide a.i. concentrations on filter papers in relation to the sprayed wall heights, spray coverage rates (surface area / spray time [m2/min]), and observed/expected spray rate ratios. Variations between health workers and householders' compliance to empty houses for IRS delivery were also evaluated. Sedimentation rates of alpha-cypermethrin a.i. post-mixing of prepared spray tanks were quantified in the laboratory. RESULTS: Substantial variations were observed in the alpha-cypermethrin a.i. concentrations delivered; only 10.4% (50/480) of filter papers and 8.8% (5/57) of houses received the target concentration of 50 mg ± 20% a.i./m2. The delivered concentrations were not related to those in the matched spray tank solutions. The sedimentation of alpha-cypermethrin a.i. in the surface solution of prepared spray tanks was rapid post-mixing, resulting in a linear 3.3% loss of a.i. content per minute and 49% loss after 15 min. Only 7.5% (6/80) of houses were sprayed at the WHO recommended rate of 19 m2/min (± 10%), whereas 77.5% (62/80) were sprayed at a lower than expected rate. The median a.i. concentration delivered to houses was not significantly associated with the observed spray coverage rate. Householder compliance did not significantly influence either the spray coverage rates or the median alpha-cypermethrin a.i. concentrations delivered to houses. CONCLUSIONS: Suboptimal delivery of IRS is partially attributable to the insecticide physical characteristics and the need for revision of insecticide delivery methods, which includes training of IRS teams and community education to encourage compliance. The IQK™ is a necessary field-friendly tool to improve IRS quality and to facilitate health worker training and decision-making by Chagas disease vector control managers.
Subject(s)
Chagas Disease/transmission , Insecticides/pharmacology , Mosquito Control/methods , Mosquito Vectors/drug effects , Triatoma/drug effects , Animals , Bolivia , Chagas Disease/parasitology , Family Characteristics , Female , Humans , Male , Mosquito Control/instrumentation , Mosquito Vectors/physiology , Pyrethrins/pharmacology , Triatoma/physiology , Trypanosoma cruzi/physiologyABSTRACT
OBJECTIVE: Failure to control domestic Triatoma infestans in the Chaco is attributed to vulnerable adobe construction, which provides vector refuges and diminishes insecticide contact. We conducted a pilot to test the impact of housing improvement plus indoor residual spraying (IRS) on house infestation and vector abundance in a rural community in the Bolivian Chaco. METHODS: The intervention included three arms: housing improvement + IRS [HI], assisted IRS [AS] in which the team helped to clear the house pre-IRS and routine IRS [RS]. HI used locally available materials, traditional construction techniques and community participation. Vector parameters were assessed by Timed Manual Capture for 2 person-hours per house at baseline and medians of 114, 173, 314, 389 and 445 days post-IRS-1. A second IRS round was applied at a median of 314 days post-IRS-1. RESULTS: Post-intervention infestation indices and abundance fell in all three arms. The mean odds of infestation was 0.29 (95% CL 0.124, 0.684) in the HI relative to the RS arm. No difference was observed between AS and RS. Vector abundance was reduced by a mean 44% (24.8, 58.0) in HI compared to RS, with no difference between AS and RS. Median delivered insecticide concentrations per house were lower than the target of 50 mg/m2 in >90% of houses in all arms. CONCLUSION: Housing improvement using local materials and community participation is a promising strategy to improve IRS effectiveness in the Bolivian Chaco. A larger trial is needed to quantify the impact on reinfestation over time.
Subject(s)
Construction Materials/standards , Housing/standards , Insect Vectors , Insecticides/administration & dosage , Triatoma , Trypanosoma cruzi , Animals , Bolivia , Chagas Disease/prevention & control , Community Participation , Pilot Projects , Rural PopulationABSTRACT
BACKGROUND: Understanding local anopheline vector species and their bionomic traits, as well as related human factors, can help combat gaps in protection. METHODS: In San José de Chamanga, Esmeraldas, at the Ecuadorian Pacific coast, anopheline mosquitoes were sampled by both human landing collections (HLCs) and indoor-resting aspirations (IAs) and identified using both morphological and molecular methods. Human behaviour observations (HBOs) (including temporal location and bed net use) were documented during HLCs as well as through community surveys to determine exposure to mosquito bites. A cross-sectional evaluation of Plasmodium falciparum and Plasmodium vivax infections was conducted alongside a malaria questionnaire. RESULTS: Among 222 anopheline specimens captured, based on molecular analysis, 218 were Nyssorhynchus albimanus, 3 Anopheles calderoni (n = 3), and one remains unidentified. Anopheline mean human-biting rate (HBR) outdoors was (13.69), and indoors (3.38) (p = 0.006). No anophelines were documented resting on walls during IAs. HBO-adjusted human landing rates suggested that the highest risk of being bitten was outdoors between 18.00 and 20.00 h. Human behaviour-adjusted biting rates suggest that overall, long-lasting insecticidal bed nets (LLINs) only protected against 13.2% of exposure to bites, with 86.8% of exposure during the night spent outside of bed net protection. The malaria survey found 2/398 individuals positive for asymptomatic P. falciparum infections. The questionnaire reported high (73.4%) bed net use, with low knowledge of malaria. CONCLUSION: The exophagic feeding of anopheline vectors in San Jose de Chamanga, when analysed in conjunction with human behaviour, indicates a clear gap in protection even with high LLIN coverage. The lack of indoor-resting anophelines suggests that indoor residual spraying (IRS) may have limited effect. The presence of asymptomatic infections implies the presence of a human reservoir that may maintain transmission.
Subject(s)
Culicidae/parasitology , Malaria, Falciparum/epidemiology , Malaria, Vivax/epidemiology , Mosquito Vectors/parasitology , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Anopheles/parasitology , Child , Child, Preschool , Cross-Sectional Studies , Ecuador/epidemiology , Female , Humans , Malaria, Falciparum/parasitology , Malaria, Vivax/parasitology , Male , Middle Aged , Pilot Projects , Plasmodium falciparum/physiology , Plasmodium vivax/physiology , Prevalence , Risk , Surveys and Questionnaires , Young AdultABSTRACT
Commercial aerosolized insecticides can be implemented as a community-based approach to targeted indoor residual spraying against Aedes aegypti, but their efficacy on pyrethroid-resistant mosquitoes has not yet been evaluated. Two commercial aerosolized products (H24 Poder Fulminante Ultra Eficaz®, carbamate, and Baygon Ultra Verde®, pyrethroid) were sprayed on common indoor surfaces e.g., cement, plywood, and cloth, and tested for their residual efficacy on susceptible and field-derived pyrethroid-resistant Ae. aegypti strains using the WHO cone bioassays. Overall, ≥80% 24-h mortality was observed for both products for at least 4 wk regardless of the mosquito strain or surface type used. H24 Poder Fulminante Ultra Eficaz showed the highest residual potency, sustaining >80% mortality for 7-wk posttreatment regardless of mosquito strain and surface type. For Baygon Ultra Verde, the mean mortality of female Ae. aegypti remained >80% for a shorter period (4-6 wk). Nonpyrethroid commercial aerosolized formulations can provide a lasting residual effect indoors compatible with the need for rapid and lasting mosquito control during outbreaks and may be suitable for community-based targeted indoor residual spraying.
Subject(s)
Aedes , Carbamates , Insecticides , Mosquito Control , Pyrethrins , Animals , Female , Mexico , Pesticide ResiduesABSTRACT
BACKGROUND: Malaria is a public health problem in the Brazilian Amazon region. In integrated vector management for malaria (anopheline) control, indoor residual spraying (IRS) represents one of the main tools in the basic strategy applied in the Amazonian states. It is essential to understand the residual efficacy of insecticides on different surfaces to determine spray cycles, ensure their rational use, and prevent wastage. This study aimed to evaluate the residual efficacy of six insecticide formulations used in the National Malaria Control Programme on four different types of walls in a field simulation at a "test house". METHODS: The tests were performed as a field-simulating evaluation at a "test house" built in the municipality of Macapá. Six insecticide formulations comprising four pyrethroids, a carbamate, and an organophosphate were used, and evaluated when applied on different wall surfaces: painted wood, unpainted wood, plastered cement, and unplastered cement. The insecticides were applied to the interior walls of the "test house" by a trained technician. RESULTS: In the bioassays performed with pyrethroids, deltamethrin water-dispersible granules (WG) performed particularly well, presenting residual bioefficacy of 8 months on both wood surfaces after the IRS, whereas alpha-cypermethrin suspension concentrate (SC) and etofenprox wettable powder (WP) demonstrated residual bioefficacy of 4 months on at least one of the wood surfaces; however, the pyrethroid lambda-cyhalothrin WP showed a low residual bioefficacy (< 3 months) on all tested surfaces, demonstrating its inefficiency for areas with a long transmission cycle of malaria. For the carbamate-bendiocarb WP, residual bioefficacy for 3 months was achieved only on wood surfaces. In general, the organophosphate pirimifos-methyl capsule suspension (CS) demonstrated the best result, with a mortality rate < 80% over a period of 6 months on all surfaces tested. CONCLUSION: Insecticide efficiency varies among different types of surface; therefore, a "test house" is a valuable evaluation tool. This work highlights the usefulness of associating the residual efficacy of insecticides on the surfaces commonly found in houses in endemic areas, together with knowledge about the transmission cycle duration of the transmission cycle and the insecticide susceptibility of the vector. This association helps in the decision-making for the malaria control intervention regarding.
Subject(s)
Anopheles , Insecticides , Malaria/prevention & control , Mosquito Control , Mosquito Vectors , Animals , Brazil , HousingABSTRACT
Background: The minimally invasive autopsy (MIA) is being investigated as an alternative to the complete diagnostic autopsy (CDA), gold standard for CoD determination, in settings where CDA is unfeasible and/or unacceptable. We aimed to explore healthcare providers' views and perceptions on theoretical and factual acceptability of the CDA and the MIA. Methods: A qualitative study, combining ethnographic and grounded-theory approaches, was conducted within a project aiming to validate the MIA tool against the CDA for CoD investigation. We present data on in-depth and semi-structured interviews of 33 healthcare providers operating within the formal and informal health services in Southern Mozambique. MIA perception was analysed through the theory of diffusion of innovations. Results: All participants considered CDA useful for CoD determination. CDA was perceived reliable, but the unpleasant nature of the procedure and its associated infection risk were the main perceived disadvantages. Participants considered the MIA simple, easy and quick to perform; likely to meet families' expectations to know the CoD, and able to provide evidence-based knowledge for disease management. Concerns were raised on its reliability compared to the CDA. Family's emotional status and accessibility to decision-makers were mentioned as principal barriers for MIA performance. The main jeopardizing factors for MIA implementation were the shortage of required resources and the significant proportion of people dying at home. Key facilitators for MIA acceptance included the need for the support from community and religious leaders, provision of clear information to the community, and accompaniment to bereaved families
Subject(s)
Humans , Male , Female , Adolescent , Adult , Middle Aged , Young Adult , Autopsy/methods , Cause of Death , Health Personnel/psychology , Health Knowledge, Attitudes, Practice , Mozambique/epidemiologyABSTRACT
BACKGROUND: In Peru, despite decades of concerted control efforts, malaria remains a significant public health burden. Peru has recently exhibited a dramatic rise in malaria incidence, impeding South America's progress towards malaria elimination. The Amazon basin, in particular the Loreto region of Peru, has been identified as a target for the implementation of intensified control strategies, aiming for elimination. No research has addressed why vector control strategies in Loreto have had limited impact in the past, despite vector control elsewhere being highly effective in reducing malaria transmission. This study employed qualitative methods to explore factors limiting the success of vector control strategies in the region. METHODS: Twenty semi-structured interviews were conducted among adults attending a primary care centre in Iquitos, Peru, together with 3 interviews with key informants (health care professionals). The interviews focussed on how local knowledge, together with social and cultural attitudes, determined the use of vector control methods. RESULTS: Five themes emerged. (a) Participants believed malaria to be embedded within their culture, and commonly blamed this for a lack of regard for prevention. (b) They perceived a shift in mosquito biting times to early evening, rendering night-time use of bed nets less effective. (c) Poor preventive practices were compounded by a consensus that malaria prevention was the government's responsibility, and that this reduced motivation for personal prevention. (d) Participants confused the purpose of space-spraying. (e) Participants' responses also exposed persisting misconceptions, mainly concerning the cause of malaria and best practices for its prevention. CONCLUSION: To eliminate malaria from the Americas, region-specific strategies need to be developed that take into account the local social and cultural contexts. In Loreto, further research is needed to explore the potential shift in biting behaviour of Anopheles darlingi, and how this interacts with the population's social behaviours and current use of preventive measures. Attitudes concerning personal responsibility for malaria prevention and long-standing misconceptions as to the cause of malaria and best preventive practices also need to be addressed.
Subject(s)
Health Knowledge, Attitudes, Practice , Malaria/psychology , Perception , Primary Prevention/statistics & numerical data , Adult , Aged , Aged, 80 and over , Animals , Anopheles/physiology , Female , Humans , Insect Bites and Stings/epidemiology , Malaria/prevention & control , Male , Middle Aged , Mosquito Vectors/physiology , Peru/epidemiology , Qualitative Research , Young AdultABSTRACT
The markedly anthropophilic and endophilic behaviors of Aedes aegypti (L.) make it a very efficient vector of dengue, chikungunya, and Zika viruses. Although a large body of research has investigated the immature habitats and conditions for adult emergence, relatively few studies have focused on the indoor resting behavior and distribution of vectors within houses. We investigated the resting behavior of Ae. aegypti indoors in 979 houses of the city of Acapulco, Mexico, by performing exhaustive indoor mosquito collections to describe the rooms and height at which mosquitoes were found resting. In total, 1,403 adult and 747 female Ae. aegypti were collected, primarily indoors (98% adults and 99% females). Primary resting locations included bedrooms (44%), living rooms (25%), and bathrooms (20%), followed by kitchens (9%). Aedes aegypti significantly rested below 1.5 m of height (82% adults, 83% females, and 87% bloodfed females); the odds of finding adult Ae. aegypti mosquitoes below 1.5 m was 17 times higher than above 1.5 m. Our findings provide relevant information for the design of insecticide-based interventions selectively targeting the adult resting population, such as indoor residual spraying.
Subject(s)
Aedes/physiology , Animals , Behavior, Animal , Female , Housing , Insect Vectors/physiology , Male , MexicoABSTRACT
Dengue is an important public health problem in the Amazon area of Peru, resulting in significant morbidity each year. As in other areas of the world, ultra-low volume (ULV) application of insecticides is the main strategy to reduce adult populations of the dengue vector Aedes aegypti, despite growing evidence of its limitations as a single control method. This study investigated the efficacy of deltamethrin S.C. applied through indoor residual spraying (IRS) of dwellings in reducing A. aegypti populations. The residual effect of the insecticide was tested by monthly bioassays on the three most common indoor surfaces found in the Amazon area: painted wood, unpainted wood and brick. The results showed that in an area with moderate levels of A. aegypti infestation, IRS dramatically reduced all immature indices the first week after deltamethrin IRS application and the adult index from 18.5 to 3.1, four weeks after intervention (p<0.05). Even though housing conditions facilitated reinfestation with A. aegypti (100% of the houses have open roof eaves, 31.5% lack sewage systems, and 60.4% collected rain in open containers), indices remained low compared to baseline 16 weeks after insecticide application. Bioassays showed that deltamethrin S.C. caused mortalities >80% 8 weeks after application on all types of surfaces. The residual effect of the insecticide was greater on brick than on wooden walls (p<0.05). Our results demonstrate that IRS can have both an immediate and sustained effect on reducing adult and immature A. aegypti populations and should be considered as an adult mosquito control strategy by dengue vector control programs.
Subject(s)
Aedes/drug effects , Construction Materials , Housing , Insect Vectors/drug effects , Insecticides/pharmacology , Mosquito Control/methods , Nitriles/pharmacology , Pyrethrins/pharmacology , Animals , Biological Assay , Dengue/prevention & control , Dengue Virus , Humans , Peru , Public HealthABSTRACT
Neste artigo, revisei o estado do dicloro-difenil-tricloroetano (DDT) utilizado no controle de doenças causadas por vetores, e seus benefícios e riscos em relação às alternativas disponíveis. Dados atuais sobre o uso de DDT foram obtidos através de questionários e relatórios, assim como uma busca Scopus para resgatar artigos publicados. Quase 14 países utilizam DDT para controle de doenças, e diversos outros o estão reintroduzindo. A preocupação sobre o uso contínuo de DDT é abastecida por relatórios recentes dos altos níveis de exposição humana associada com a pulverização em recintos fechados, acumulando evidências sobre efeitos crônicos a saúde. Existem sinais de que mais vetores da malária estão se tornando resistentes à ação tóxica do DDT. Métodos químicos efetivos estão disponíveis como alternativas imediatas ao DDT, mas o desenvolvimento da resistência está diminuindo a eficácia das ferramentas de insetização. Métodos não químicos são potencialmente importantes, mas sua efetividade no programa necessita de estudos urgentes. O controle integrado de vetores fornece uma estrutura para o desenvolvimento e a implementação de tecnologias e estratégias efetivas como alternativas sustentáveis à dependência ao DDT.
In this article I reviewed the status of dichlorodiphenyltrichloroethane (DDT), used for disease vector control, and its benefits and risks in relation to the available alternatives. Contemporary data on DDT use were obtained from questionnaires and reports as well as a Scopus search to retrieve published articles. Nearly 14 countries use DDT for disease control, and several others are reintroducing DDT. Concerns about the continued use of DDT are fueled by recent reports of high levels of human exposure associated with indoor spraying amid accumulating evidence on chronic health effects. There are signs that more malaria vectors are becoming resistant to the toxic action of DDT. Effective chemical methods are available as immediate alternatives to DDT, but the development of resistance is undermining the efficacy of insecticidal tools. Nonchemical methods are potentially important, but their effectiveness at program level needs urgent study. To reduce reliance on DDT, support is needed for integrated and multipartner strategies of vector control. Integrated vector management provides a framework for developing and implementing effective technologies and strategies as sustainable alternatives to reliance on DDT.