Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Biol Med ; 92: 90-97, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29161578

ABSTRACT

Decompression sickness (DCS) can be experienced following a reduction in ambient pressure; such as that associated with diving or ascent to high altitudes. DCS is believed to result when supersaturated inert gas dissolved in biological tissues exits solution and forms bubbles. Models to predict the probability of DCS are typically based on nitrogen and/or helium gas uptake and washout in several theoretical tissues, each represented by a single perfusion-limited compartment. It has been previously shown that coupled perfusion-diffusion compartments are better descriptors than solely perfusion-based models of nitrogen and helium uptake and elimination kinetics observed in the brain and skeletal muscle of sheep. In this work, we examine the application of these coupled pharmacokinetic structures with at least one diffusion compartment to the prediction of the incidence of decompression sickness in humans. We compare these models to LEM-NMRI98, a well-described U.S. Navy gas content model, consisting of three uncoupled perfusion-limited compartments incorporating oxygen and linear-exponential kinetics. Pharmacokinetic gas content models with a diffusion component describe the probability of DCS in human bounce dives made with air, single non-air bounce dives, and oxygen decompression dives better than LEM-NMRI98. However, for the full data set, LEM-NMRI98 remains the best descriptor of the data.


Subject(s)
Decompression Sickness/physiopathology , Models, Biological , Pharmacokinetics , Computational Biology , Diffusion , Diving , Humans , Perfusion , Pulmonary Gas Exchange/physiology
2.
Comput Biol Med ; 86: 55-64, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28505552

ABSTRACT

Decompression sickness (DCS) is a disease caused by gas bubbles forming in body tissues following a reduction in ambient pressure, such as occurs in scuba diving. Probabilistic models for quantifying the risk of DCS are typically composed of a collection of independent, perfusion-limited theoretical tissue compartments which describe gas content or bubble volume within these compartments. It has been previously shown that 'pharmacokinetic' gas content models, with compartments coupled in series, show promise as predictors of the incidence of DCS. The mechanism of coupling can be through perfusion or diffusion. This work examines the application of five novel pharmacokinetic structures with compartments coupled by perfusion to the prediction of the probability and time of onset of DCS in humans. We optimize these models against a training set of human dive trial data consisting of 4335 exposures with 223 DCS cases. Further, we examine the extrapolation quality of the models on an additional set of human dive trial data consisting of 3140 exposures with 147 DCS cases. We find that pharmacokinetic models describe the incidence of DCS for single air bounce dives better than a single-compartment, perfusion-limited model. We further find the U.S. Navy LEM-NMRI98 is a better predictor of DCS risk for the entire training set than any of our pharmacokinetic models. However, one of the pharmacokinetic models we consider, the CS2T3 model, is a better predictor of DCS risk for single air bounce dives and oxygen decompression dives. Additionally, we find that LEM-NMRI98 outperforms CS2T3 on the extrapolation data.


Subject(s)
Decompression Sickness/blood , Models, Biological , Nitrogen/pharmacokinetics , Oxygen/pharmacokinetics , Female , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL