Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters











Publication year range
1.
Phytomedicine ; 135: 156022, 2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39284270

ABSTRACT

BACKGROUND: Intrahepatic cholangiocarcinoma (ICC) is an aggressive and highly lethal cancer with an increasing incidence worldwide that lacks effective treatment regimens. Hypocrellin A (HA), a natural small compound isolated from S. bambusicola, has multiple biomedical activities, including antitumor activity. PURPOSE: We intended to investigate the therapeutic effects of HA on ICC and its potential mechanisms. METHODS: RBE and HuccT1 cell lines were utilized for in vitro experiments. CCK8 assay, colony formation analysis, RTCA, and immunofluorescence staining of ki67 were employed to evaluate the suppression effects of HA on proliferation. The inhibitory effects of HA on cell migration and invasion were evaluate through transwell and wound healing assays, and Hoechst 33,258 staining was performed to evaluate apoptosis. Additionally, we performed transcriptome sequencing and molecular docking for targeting identification, and immunoblotting and immunofluorescence of key molecules for validation. Two in vivo models, HuccT1 xenografts, and the primary ICC model (KRAS/P19/SB) established via hydrodynamic tail-vein injection were implemented. Multiplex immunohistochemistry (mIHC) was used to illustrate the multi-target inhibitory effects of HA. RESULTS: The IC50 values of HA against RBE and HuccT1 cells were 4.612 µM and 10.01 µM for 24 h, as determined through the CCK8 assay. Our results confirmed that HA significantly repressed the proliferation, migration, invasion, and promoted the apoptosis of ICC cells at low concentrations. Moreover, HA exerted its anti-cancer effects through multi-target inhibition of the PI3K-AKT-mTOR, MAPK, and STAT3 signaling pathways. This inhibitory effect was rescued by Recilisib, an activator of the PI3K-AKT-mTOR pathway. Bioinformatics analysis of a multi-center RNA-Seq cohort (n = 90) demonstrated significant associations between these target pathways and the occurrence and poor prognosis of ICC. Animal studies suggested that HA strongly inhibited tumor growth in xenograft ICC models, and repressed the tumor number and size in the liver of primary ICC models by suppressing these three crucial pathways. CONCLUSION: HA, a novel natural small molecule, demonstrated promising therapeutic efficacy against ICC through its multi-target inhibitory effects on the PI3K-AKT-mTOR, MAPK, and STAT3 signaling pathways. Moreover, it exhibited notable therapeutic benefits in a primary ICC model (KRAS/P19/SB), positioning it as a novel therapeutic agent for ICC.

2.
Int J Pharm ; 661: 124408, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38969264

ABSTRACT

This paper presents a numerical investigation to understand the transport and deposition of sprays emitted by an impinging-jet inhaler in the human respiratory tract under different inhalation flow rates. An injection model is used for the numerical simulations considering the spreading angles of the spray in the two directions, which are measured from experiments. The model parameter is adjusted to match the mean droplet size measured in the previous experiment. A time-varying sinusoidal inhalation flow rate is utilized as airflow conditions, which is closer to the actual situation when using an inhaler. The results demonstrate that the inhalation airflow rate significantly affects the spray's transport behavior and deposition results in the respiratory tract. Both excessively high and low inhalation flow rates lead to an increase in deposition in the mouth-throat. A moderate inhalation flow rate reduces throat deposition while maximizing lung deposition. Higher inhalation flow rates enable faster delivery of the droplets to the lungs, whereas lower inhalation flow rates achieve a more uniform deposition over time in the lungs. The amount of deposition in different parts of the lung lobes follows a fixed order. This study provides valuable insights for optimizing the inhalation flow rate conditions of the impinging-jet inhaler for clinical applications.


Subject(s)
Nebulizers and Vaporizers , Humans , Administration, Inhalation , Respiratory System/metabolism , Aerosols , Lung/metabolism , Particle Size , Equipment Design , Models, Biological , Computer Simulation
3.
Heliyon ; 9(10): e20443, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37810824

ABSTRACT

Wireless communication has become a preferred direction for the development of layered water injection tools due to its low cost and high reliability. However, the wireless system relies on the underground battery for power supply,and each communication will consume a significant amount of energy. In order to save energy consumption, the wireless system adopts the intermittent sleep communication mode, with intervals of usually more than one month. During the idle time of communication, the downhole parameters such as pressure and flowrate will change as the pressure and flowrate at the wellhead. Therefore, it is crucial to predict downhole parameters based on the wellhead pressure and flowrate. In this study, a downhole parameter prediction method based on multi-layer water injection model is proposed. A multilayer injection prediction model was established based on the hydraulic analysis of the tubing string, and the model parameters were identified and updated using the historical data uploaded each time. The pressure and flow rate measured at the wellhead were used as inputs to the model, and the recursive relationship between layers in the multilayer model was utilized to predict downhole parameters for each layer. A model parameter optimization method based on time-weighting is proposed in order to address the gradual changes in model parameters during water injection. This method assigns greater weight to more recent historical data, resulting in optimized model parameters. Experimental results show that the proposed method can effectively predict the flowrate and pressure of each layer, with a prediction deviation of less than 5% F.S., which provides technical support for the application and popularization of the wireless layered water injection system.

4.
Extreme Mech Lett ; 612023 Jun.
Article in English | MEDLINE | ID: mdl-37304308

ABSTRACT

Subcutaneous (SQ) injection is an effective delivery route for various biologics, including proteins, antibodies, and vaccines. However, pain and discomfort induced during SQ injection pose a notable challenge for the broader and routine use of biologics. Understanding the underlying mechanism and quantification of injection-induced pain and discomfort (IPD) are urgently needed. A crucial knowledge gap is what changes in the skin tissue microenvironment are induced by the SQ injection, which may ultimately cause the IPD. In this study, thus, a hypothesis is postulated that the injection of biologics solution through the skin tissue microenvironment induces spatiotemporal mechanical changes. Specifically, the injection leads to tissue swelling and subsequent increases in the interstitial fluid pressure (IFP) and matrix stress around the injection site, which ultimately causes the IPD. To test this hypothesis, an engineered SQ injection model is developed capable of measuring tissue swelling during SQ injection. The injection model consists of a skin equivalent with quantum dot-labeled fibroblasts, which enables the measurement of injection-induced spatiotemporal deformation. The IFP and matrix stress are further estimated by computational analysis approximating the skin equivalent as a nonlinear poroelastic material. The result confirms significant injection-induced tissue swelling and increases in IFP and matrix stress. The extent of deformation is correlated to the injection rate. The results also suggest that the size of biologics particulates significantly affects the pattern and extent of the deformation. The results are further discussed to propose a quantitative understanding of the injection-induced changes in the skin microenvironment.

5.
Front Neurosci ; 16: 847074, 2022.
Article in English | MEDLINE | ID: mdl-35368260

ABSTRACT

Positron emission tomography (PET) has become an essential clinical tool for diagnosing neurodegenerative diseases with abnormal accumulation of proteins like amyloid-ß or tau. Despite many attempts, it has not been possible to develop an appropriate radioligand for imaging aggregated α-synuclein in the brain for diagnosing, e.g., Parkinson's Disease. Access to a large animal model with α-synuclein pathology would critically enable a more translationally appropriate evaluation of novel radioligands. We here establish a pig model with cerebral injections of α-synuclein preformed fibrils or brain homogenate from postmortem human brain tissue from individuals with Alzheimer's disease (AD) or dementia with Lewy body (DLB) into the pig's brain, using minimally invasive surgery and validated against saline injections. In the absence of a suitable α-synuclein radioligand, we validated the model with the unselective amyloid-ß tracer [11C]PIB, which has a high affinity for ß-sheet structures in aggregates. Gadolinium-enhanced MRI confirmed that the blood-brain barrier was intact. A few hours post-injection, pigs were PET scanned with [11C]PIB. Quantification was done with Logan invasive graphical analysis and simplified reference tissue model 2 using the occipital cortex as a reference region. After the scan, we retrieved the brains to confirm successful injection using autoradiography and immunohistochemistry. We found four times higher [11C]PIB uptake in AD-homogenate-injected regions and two times higher uptake in regions injected with α-synuclein-preformed-fibrils compared to saline. The [11C]PIB uptake was the same in non-injected (occipital cortex, cerebellum) and injected (DLB-homogenate, saline) regions. With its large brain and ability to undergo repeated PET scans as well as neurosurgical procedures, the pig provides a robust, cost-effective, and good translational model for assessment of novel radioligands including, but not limited to, proteinopathies.

6.
Prostate ; 80(14): 1263-1269, 2020 10.
Article in English | MEDLINE | ID: mdl-32761950

ABSTRACT

BACKGROUND: Liver metastasis is not uncommon in men with metastatic castration-resistant prostate cancer (mCRPC), estimated at ~20% to 60% of advanced late-stage patients. Liver and other visceral metastases are associated with worse overall survival. Recent evidence suggests the frequency of visceral metastases may be increasing for reasons that are unclear but may be related to selective pressures induced by modern therapies, including second-generation antiandrogen receptor signaling inhibitors such as enzalutamide and abiraterone. Consequently, robust models to study the pathobiology of prostate cancer liver metastases and their response to therapy are urgently needed. METHODS: Hemi-spleen injection of human (LN95, PC3, VCaP, and MDA-PCa-2b) or syngeneic (Myc-CaP) prostate cancer cells (1 × 106 ) was performed to seed liver metastases via the splenic vessels. Plasma levels of prostate-specific antigen (PSA) were monitored longitudinally in human androgen receptor-positive (AR+) models. Immunohistochemical staining of AR and HoxB13 was performed to document the prostatic origin of hepatic lesions. RESULTS: LN95, PC3, and Myc-CaP produced distinct liver micrometastases that progressed to macrometastases by ~2 to 4 weeks postinoculation, while inoculation of MDA-PCa-2b and VCaP only produced occasional micrometastases and seeding of individual cells adjacent to blood vessels, respectively, at the time points analyzed. All lesions are characterized by positive staining for nuclear AR and/or the prostate-specific differentiation marker HoxB13 depending on the model. Circulating PSA levels are strongly correlated with overall tumor burden in mice seeded with LN95. Histologic micrometastases and low levels of circulating PSA are detected in mice seeded with MDA-PCa-2b at ~60 days postinoculation, but no circulating PSA was detected in animals inoculated with VCaP up to ~75 days despite the presence of rare AR+ cells in the liver. CONCLUSION: The studies reported herein establish intrasplenic injection as a robust model of mCRPC liver metastasis. In addition, circulating PSA was validated as a noninvasive biomarker to longitudinally monitor overall tumor burden when using PSA+ models. Therefore, this model can be used to interrogate the pathophysiology of prostate cancer liver metastases, the microenvironmental factors permissive to such growth, immunologic variables, and the response of hepatic lesions to therapy.


Subject(s)
Liver Neoplasms/secondary , Prostatic Neoplasms, Castration-Resistant/pathology , Spleen/pathology , Animals , Cell Line, Tumor , Heterografts , Humans , Kallikreins/blood , Male , Mice , Mice, Inbred NOD , Mice, SCID , Neoplasm Transplantation/methods , Prostate-Specific Antigen/blood , Prostatic Neoplasms, Castration-Resistant/blood , Transplantation, Heterologous
7.
J Orthop Surg Res ; 14(1): 297, 2019 Sep 05.
Article in English | MEDLINE | ID: mdl-31488155

ABSTRACT

BACKGROUND: Due to our aging population, an increase in proximal femur fractures can be expected, which is associated with impaired activities of daily living and a high risk of mortality. These patients are also at a high risk to suffer a secondary osteoporosis-related fracture on the contralateral hip. In this context, growth factors could open the field for regenerative approaches, as it is known that, i.e., the growth factor BMP-7 (bone morphogenetic protein 7) is a potent stimulator of osteogenesis. Local prophylactic augmentation of the proximal femur with a BMP-7 loaded thermoresponsive hydrogel during index surgery of an osteoporotic fracture could be suitable to reduce the risk of further osteoporosis-associated secondary fractures. The present study therefore aims to test the hypothesis if a BMP-7 augmented hydrogel is an applicable carrier for the augmentation of non-fractured proximal femurs. Furthermore, it needs to be shown that the minimally invasive injection of a hydrogel into the mouse femur is technically feasible. METHODS: In this study, male C57BL/6 mice (n = 36) received a unilateral femoral intramedullary injection of either 100 µl saline, 100 µl 1,4 Butan-Diisocyanat (BDI)-hydrogel, or 100 µl hydrogel loaded with 1 µg of bone morphogenetic protein 7. Mice were sacrificed 4 and 12 weeks later. The femora were submitted to high-resolution X-ray tomography and subsequent histological examination. RESULTS: Analysis of normalized CtBMD (Cortical bone mineral density) as obtained by X-ray micro-computed tomography analysis revealed significant differences depending on the duration of treatment (4 vs 12 weeks; p < 0.05). Furthermore, within different anatomically defined regions of interest, significant associations between normalized TbN (trabecular number) and BV/TV (percent bone volume) were noted. Histology indicated no signs of inflammation and no signs of necrosis and there were no cartilage damages, no new bone formations, or new cartilage tissues, while BMP-7 was readily detectable in all of the samples. CONCLUSIONS: In conclusion, the murine femoral intramedullary injection model appears to be feasible and worth to be used in subsequent studies that are directed to examine the therapeutic potential of BMP-7 loaded BDI-hydrogel. Although we were unable to detect any significant osseous effects arising from the mode or duration of treatment in the present trial, the effect of different concentrations and duration of treatment in an osteoporotic model appears of interest for further experiments to reach translation into clinic and open new strategies of growth factor-mediated augmentation.


Subject(s)
Bone Morphogenetic Protein 7/administration & dosage , Femoral Fractures/prevention & control , Femur/drug effects , Hydrogels/administration & dosage , Animals , Bone Morphogenetic Protein 7/analysis , Drug Evaluation, Preclinical/methods , Femoral Fractures/pathology , Femur/chemistry , Femur/pathology , Fracture Fixation, Intramedullary/methods , Hydrogels/analysis , Male , Mice , Mice, Inbred C57BL
8.
J Biophotonics ; 12(9): e201800408, 2019 09.
Article in English | MEDLINE | ID: mdl-30983133

ABSTRACT

Aneurysmal subarachnoid hemorrhage (aSAH) is a severe medical condition associated with a significant cause of mortality throughout the world. Cisterna magna injection model is accepted widely to mimic clinical aSAH and is performed on small animal models to study aSAH during neurosurgery. Coherent light scattered from the surface of the rat brain is used to infer information about the variations in blood flow during this condition. We obtained speckle images from the exposed cortex during the entire experiment using an external tissue imaging system. Contrast and fractal analyses are carried out for the recorded speckle pattern time series. Correlation analysis based on Hurst exponent for these images is found to be a more sensitive tool in studying aSAH as compared to routinely used laser speckle contrast analysis for assessing the changes in blood flow velocity. Additionally, our studies provide improved blood flow detection sensitivity with image Hurst exponent in combination with computed fractal dimension, during an event of aSAH.


Subject(s)
Brain/diagnostic imaging , Hemodynamics , Neurosurgical Procedures , Subarachnoid Hemorrhage/diagnostic imaging , Animals , Brain Ischemia , Fractals , Lasers , Light , Male , Rats , Rats, Wistar
9.
Oncotarget ; 8(57): 97231-97245, 2017 Nov 14.
Article in English | MEDLINE | ID: mdl-29228606

ABSTRACT

Tumor-associated fibroblasts (TAFs) are often essential for solid tumor growth. However, few genetic or epigenetic alterations have been found in TAFs during the progression of solid tumors. Employing a tumor-stromal cell co-injection model, we adapted here retroviral-insertional mutagenesis to stromal cells to identify novel tumor-associated genes in TAFs. We successfully identified 20 gene candidates that might modulate tumor growth if altered in TAFs at genomic level. To validate our finding, the function of one of the candidate genes, tubulin tyrosine ligase (Ttl), was further studied in TAFs from fibrosarcoma, colon, breast and hepatocarcinoma. We demonstrated that down-regulated TTL expression in TAFs indeed promoted tumor growth in mice. Interestingly, decreased expression of TTL in tumor stromal cells also correlated with poor outcome in human colon carcinoma. Thus, the co-injection model of tumor cells with retrovirus-modified fibroblasts proved a valid method to identify tumor-modulating genes in TAFs, allowing for a deeper insight into the role of the stroma for tumor development.

10.
Behav Brain Res ; 323: 154-161, 2017 04 14.
Article in English | MEDLINE | ID: mdl-28174030

ABSTRACT

BACKGROUND: The applicability of various neurological scores has not been sufficiently characterized in the anterior injection model of subarachnoid hemorrhage (SAH). Therefore this study was performed to evaluate different behavioral tests for quantifying disease severity. METHODS: Different volumes of autologous blood were injected stereotaxically into the prechiasmatic cistern of mice. Sham controls underwent the same procedure without blood injection. The following seven days after surgery, mice were evaluated for behavioral deficits by the SHIRPA score, beam balance and flex field analyses. Brains were further processed for histological analyses. RESULTS: Flex field analysis of SAH animals showed a significant reduction of locomotor activity compared to controls in the first two days after SAH. This reduction was more intense in animals with a higher amount of injected blood. The SHIRPA score revealed a significant reduction in motor behavior in SAH animals two days after surgery. A significant increase of GFAP expression, Fluoro Jade C and TUNEL positive cells as well as microthrombi was observed in SAH animals compared to sham controls in the early phase of SAH. There was a significant negative correlation between flex field righting and the number of degenerative neurons or microthrombi in the first two days after SAH. CONCLUSION: The results of flex field analysis and SHIRPA single test show behavioral and functional deficits in the first two days after SAH in parallel to histological alterations indicating neuronal damage. In summary these tests can be used as functional outcome parameters in the anterior injection model of SAH.


Subject(s)
Behavior, Animal , Disease Models, Animal , Subarachnoid Hemorrhage/psychology , Animals , Astrocytes/pathology , Brain/pathology , Mice, Inbred C57BL , Motor Activity , Neurons/pathology , Subarachnoid Hemorrhage/pathology
11.
Neurocrit Care ; 25(2): 293-305, 2016 10.
Article in English | MEDLINE | ID: mdl-26896093

ABSTRACT

BACKGROUND: Cognitive dysfunction can be a long-term complication following subarachnoid hemorrhage (SAH). Preclinical models have been variously characterized to emulate this disorder. This study was designed to directly compare long-term cognitive deficits in the context of similar levels of insult severity in the cisterna magna double-blood (DB) injection versus prechiasmatic blood (PB) injection SAH models. METHODS: Pilot work identified blood injectate volumes necessary to provide similar mortality rates (20-25 %). Rats were then randomly assigned to DB or PB insults. Saline injection and naïve rats were used as controls. Functional and cognitive outcome was assessed over 35 days. RESULTS: DB and PB caused similar transient rotarod deficits. PB rats exhibited decreased anxiety behavior on the elevated plus maze, while anxiety was increased in DB. DB and PB caused differential deficits in the novel object recognition and novel object location tasks. Morris water maze performance was similarly altered in both models (decreased escape latency and increased swimming speed). SAH caused histologic damage in the medial prefrontal cortex, perirhinal cortex, and hippocampal CA1, although severity of injury in the respective regions differed between DB and PB. CONCLUSION: Both SAH models caused long-term cognitive deficits in the context of similar insult severity. Cognitive deficits differed between the two models, as did distribution of histologic injury. Each model offers unique properties and both models may be useful for study of SAH-induced cognitive deficits.


Subject(s)
Cognitive Dysfunction/physiopathology , Subarachnoid Hemorrhage/complications , Animals , Behavior, Animal/physiology , Cognitive Dysfunction/etiology , Disease Models, Animal , Male , Maze Learning/physiology , Rats , Rats, Wistar
12.
Surg Neurol Int ; 2: 99, 2011.
Article in English | MEDLINE | ID: mdl-21811705

ABSTRACT

BACKGROUND: Double-injection models of subarachnoid hemorrhage (SAH) in rats are the most effective in producing vasospasm, delayed neurological deficits and infarctions. However, they require two large surgeries to expose the femoral artery and the atlanto-occipital membrane. We have developed a minimally-invasive modification that prevents confounding effects of surgical procedures, leakage of blood from the subarachnoid space and minimizes risk of infection. METHODS: Rats are anesthetized and the ventral tail artery is exposed through a small (5 mm), midline incision, 0.2 mL of blood is taken from the artery and gentle pressure is applied for hemostasis. The rat is flipped prone, and with the head flexed to 90 degrees in a stereotactic frame, a 27G angiocath is advanced in a vertical trajectory, level with the external auditory canals. Upon puncturing the atlanto-occipital membrane, the needle is slowly advanced and observed for cerebrospinal fluid (CSF). A syringe withdraws 0.1 mL of CSF and the blood is injected into the subarachnoid space. The procedure is repeated 24 hours later by re-opening the tail incision. At 8 days, the rats are euthanized and their brains harvested, sectioned, and incubated with triphenyltetrazolium chloride (TTC). RESULTS: Rats develop neurological deficits consistent with vasospasm and infarction as previously described in double-injection models. Cortical and deep infarctions were demonstrated by TTC staining and on histopathology. CONCLUSIONS: A minimally invasive, double-injection rat model of SAH and vasospasm is feasible and produces neurological deficits and infarction. This model can be used to study neuroprotective treatments for vasospasm and delayed neurological deficits following SAH, reducing the confounding effects of surgical interventions.

SELECTION OF CITATIONS
SEARCH DETAIL