Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 191
Filter
2.
Int J Hyg Environ Health ; 262: 114442, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39151320

ABSTRACT

BACKGROUND: The mortality of type 2 diabetes mellitus (T2DM) can be affected by environmental factors. However, few studies have explored the effects of environmental factors across diverse regions over time. Given the vulnerability observed in the elderly group in previous research, this research applied Bayesian spatiotemporal models to assess the associations in the elderly group. METHODS: Data on T2DM death in the elderly group (aged over 60 years old) at the county level were collected from the National Death Surveillance System between 1st January 2013 and 31st December 2019 in Shandong Province, China. A Bayesian spatiotemporal model was employed with the integrated Nested Laplace Approach to explore the associations between socio-environmental factors (i.e., temperatures, relative humidity, the Normalized Difference Vegetation Index (NDVI), particulate matter with a diameter of 2.5 µm or less (PM2.5) and gross domestic product (GDP)) and T2DM mortality. RESULTS: T2DM mortality in the elderly group was found to be associated with temperature and relative humidity (i.e., temperature: Relative Risk (RR) = 1.41, 95% Credible Interval (CI): 1.27-1.56; relative humidity: RR = 1.05, 95% CI:1.03-1.06), while no significant associations were found with NDVI, PM2.5 and GDP. In winter, significant impacts from temperature (RR = 1.18, 95% CI: 1.06-1.32) and relative humidity (RR = 0.94, 95% CI: 0.89-0.99) were found. Structured and unstructured spatial effects, temporal trends and space-time interactions were considered in the model. CONCLUSIONS: Higher mean temperatures and relative humidities increased the risk of elderly T2DM mortality in Shandong Province. However, a higher humidity level decreased the T2DM mortality risk in winter in Shandong Province. This research indicated that the spatiotemporal method could be a useful tool to assess the impact of socio-environmental factors on health by combining the spatial and temporal effects.


Subject(s)
Diabetes Mellitus, Type 2 , Humidity , Spatio-Temporal Analysis , Temperature , Humans , Diabetes Mellitus, Type 2/mortality , China/epidemiology , Aged , Middle Aged , Male , Female , Bayes Theorem , Aged, 80 and over , Particulate Matter/analysis , Air Pollutants/analysis
3.
medRxiv ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38946988

ABSTRACT

Previous research in India has identified urbanisation, human mobility and population demographics as key variables associated with higher district level COVID-19 incidence. However, the spatiotemporal dynamics of mobility patterns in rural and urban areas in India, in conjunction with other drivers of COVID-19 transmission, have not been fully investigated. We explored travel networks within India during two pandemic waves using aggregated and anonymized weekly human movement datasets obtained from Google, and quantified changes in mobility before and during the pandemic compared with the mean baseline mobility for the 8-week time period at the beginning of 2020. We fit Bayesian spatiotemporal hierarchical models coupled with distributed lag non-linear models (DLNM) within the integrated nested Laplace approximate (INLA) package in R to examine the lag-response associations of drivers of COVID-19 transmission in urban, suburban, and rural districts in India during two pandemic waves in 2020-2021. Model results demonstrate that recovery of mobility to 99% that of pre-pandemic levels was associated with an increase in relative risk of COVID-19 transmission during the Delta wave of transmission. This increased mobility, coupled with reduced stringency in public intervention policy and the emergence of the Delta variant, were the main contributors to the high COVID-19 transmission peak in India in April 2021. During both pandemic waves in India, reduction in human mobility, higher stringency of interventions, and climate factors (temperature and precipitation) had 2-week lag-response impacts on the R t of COVID-19 transmission, with variations in drivers of COVID-19 transmission observed across urban, rural and suburban areas. With the increased likelihood of emergent novel infections and disease outbreaks under a changing global climate, providing a framework for understanding the lagged impact of spatiotemporal drivers of infection transmission will be crucial for informing interventions.

4.
Sci Total Environ ; 949: 174989, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39053553

ABSTRACT

Queensland is the main coal mining state in Australia where populations in coal mining areas have been historically exposed to coal mining emissions. Although a higher risk of chronic circulatory and respiratory diseases has been associated with coal mining globally, few studies have investigated these associations in the Queensland general population. This study estimates the association of coal production with hospitalisations for chronic circulatory and respiratory diseases in Queensland considering spatial and temporal variations during 1997-2014. An ecological analysis used a Bayesian hierarchical spatiotemporal model to estimate the association of coal production with standardised rates of each, chronic circulatory and respiratory diseases, adjusting for sociodemographic factors and considering the spatial structure of Queensland's statistical areas (SA2) in the 18-year period. Two specifications; with and without a space-time interaction effect were compared using the integrated nested Laplace approximation -INLA approach. The posterior mean of the best fit model was used to map the spatial, temporal and spatiotemporal trends of risk. The analysis considered 2,831,121 hospitalisation records. Coal mining was associated with a 4 % (2.4-5.5) higher risk of hospitalisation for chronic respiratory diseases in the model with a space-time interaction effect which had the best fit. An emerging higher risk of either chronic circulatory and respiratory diseases was identified in eastern areas and some coal-mining areas in central and southeast Queensland. There were important disparities in the spatiotemporal trend of risk between coal -and non-coal mining areas for each, chronic circulatory and respiratory diseases. Coal mining is associated with an increased risk of chronic respiratory diseases in the Queensland general population. Bayesian spatiotemporal analyses are robust methods to identify environmental determinants of morbidity in exposed populations. This methodology helps identifying at-risk populations which can be useful to support decision-making in health. Future research is required to investigate the causality links between coal mining and these diseases.


Subject(s)
Bayes Theorem , Cardiovascular Diseases , Coal Mining , Hospitalization , Respiratory Tract Diseases , Queensland/epidemiology , Hospitalization/statistics & numerical data , Respiratory Tract Diseases/epidemiology , Humans , Cardiovascular Diseases/epidemiology , Environmental Exposure/statistics & numerical data , Chronic Disease/epidemiology , Respiration Disorders/epidemiology
5.
Stat Med ; 43(20): 3975-4010, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-38922936

ABSTRACT

This tutorial shows how various Bayesian survival models can be fitted using the integrated nested Laplace approximation in a clear, legible, and comprehensible manner using the INLA and INLAjoint R-packages. Such models include accelerated failure time, proportional hazards, mixture cure, competing risks, multi-state, frailty, and joint models of longitudinal and survival data, originally presented in the article "Bayesian survival analysis with BUGS." In addition, we illustrate the implementation of a new joint model for a longitudinal semicontinuous marker, recurrent events, and a terminal event. Our proposal aims to provide the reader with syntax examples for implementing survival models using a fast and accurate approximate Bayesian inferential approach.


Subject(s)
Bayes Theorem , Models, Statistical , Humans , Survival Analysis , Proportional Hazards Models , Computer Simulation , Longitudinal Studies , Software
6.
Spat Spatiotemporal Epidemiol ; 49: 100651, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38876564

ABSTRACT

The aim of this study is to analyze the spatiotemporal risk of congenital syphilis (CS) in high-prevalence areas in the city of São Paulo, SP, Brazil, and to evaluate its relationship with socioeconomic, demographic, and environmental variables. An ecological study was conducted based on secondary CS data with spatiotemporal components collected from 310 areas between 2010 and 2016. The data were modeled in a Bayesian context using the integrated nested Laplace approximation (INLA) method. Risk maps showed an increasing CS trend over time and highlighted the areas that presented the highest and lowest risk in each year. The model showed that the factors positively associated with a higher risk of CS were the Gini index and the proportion of women aged 18-24 years without education or with incomplete primary education, while the factors negatively associated were the proportion of women of childbearing age and the mean per capita income.


Subject(s)
Bayes Theorem , Spatio-Temporal Analysis , Syphilis, Congenital , Humans , Brazil/epidemiology , Syphilis, Congenital/epidemiology , Female , Adolescent , Young Adult , Adult , Risk Factors , Pregnancy , Socioeconomic Factors , Prevalence , Infant, Newborn , Pregnancy Complications, Infectious/epidemiology
7.
Heliyon ; 10(9): e30182, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38707376

ABSTRACT

Introduction: The pandemic had a profound impact on the provision of health services in Cúcuta, Colombia where the neighbourhood-level risk of Covid-19 has not been investigated. Identifying the sociodemographic and environmental risk factors of Covid-19 in large cities is key to better estimate its morbidity risk and support health strategies targeting specific suburban areas. This study aims to identify the risk factors associated with the risk of Covid-19 in Cúcuta considering inter -spatial and temporal variations of the disease in the city's neighbourhoods between 2020 and 2022. Methods: Age-adjusted rate of Covid-19 were calculated in each Cúcuta neighbourhood and each quarter between 2020 and 2022. A hierarchical spatial Bayesian model was used to estimate the risk of Covid-19 adjusting for socioenvironmental factors per neighbourhood across the study period. Two spatiotemporal specifications were compared (a nonparametric temporal trend; with and without space-time interaction). The posterior mean of the spatial and spatiotemporal effects was used to map the Covid-19 risk. Results: There were 65,949 Covid-19 cases in the study period with a varying standardized Covid-19 rate that peaked in October-December 2020 and April-June 2021. Both models identified an association of the poverty and stringency indexes, education level and PM10 with Covid-19 although the best fit model with a space-time interaction estimated a strong association with the number of high-traffic roads only. The highest risk of Covid-19 was found in neighbourhoods in west, central, and east Cúcuta. Conclusions: The number of high-traffic roads is the most important risk factor of Covid-19 infection in Cucuta. This indicator of mobility and connectivity overrules other socioenvironmental factors when Bayesian models include a space-time interaction. Bayesian spatial models are important tools to identify significant determinants of Covid-19 and identifying at-risk neighbourhoods in large cities. Further research is needed to establish causal links between these factors and Covid-19.

8.
Sci Rep ; 14(1): 8256, 2024 04 08.
Article in English | MEDLINE | ID: mdl-38589552

ABSTRACT

Yellowfin tuna, Thunnus albacares, represents an important component of commercial and recreational fisheries in the Gulf of Mexico (GoM). We investigated the influence of environmental conditions on the spatiotemporal distribution of yellowfin tuna using fisheries' catch data spanning 2012-2019 within Mexican waters. We implemented hierarchical Bayesian regression models with spatial and temporal random effects and fixed effects of several environmental covariates to predict habitat suitability (HS) for the species. The best model included spatial and interannual anomalies of the absolute dynamic topography of the ocean surface (ADTSA and ADTIA, respectively), bottom depth, and a seasonal cyclical random effect. High catches occurred mainly towards anticyclonic features at bottom depths > 1000 m. The spatial extent of HS was higher in years with positive ADTIA, which implies more anticyclonic activity. The highest values of HS (> 0.7) generally occurred at positive ADTSA in oceanic waters of the central and northern GoM. However, high HS values (> 0.6) were observed in the southern GoM, in waters with cyclonic activity during summer. Our results highlight the importance of mesoscale features for the spatiotemporal distribution of yellowfin tunas and could help to develop dynamic fisheries management strategies in Mexico and the U.S. for this valuable resource.


Subject(s)
Ecosystem , Tuna , Animals , Gulf of Mexico , Bayes Theorem , Oceans and Seas
9.
Malar J ; 23(1): 102, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594716

ABSTRACT

BACKGROUND: Ghana is among the top 10 highest malaria burden countries, with about 20,000 children dying annually, 25% of which were under five years. This study aimed to produce interactive web-based disease spatial maps and identify the high-burden malaria districts in Ghana. METHODS: The study used 2016-2021 data extracted from the routine health service nationally representative and comprehensive District Health Information Management System II (DHIMS2) implemented by the Ghana Health Service. Bayesian geospatial modelling and interactive web-based spatial disease mapping methods were employed to quantify spatial variations and clustering in malaria risk across 260 districts. For each district, the study simultaneously mapped the observed malaria counts, district name, standardized incidence rate, and predicted relative risk and their associated standard errors using interactive web-based visualization methods. RESULTS: A total of 32,659,240 malaria cases were reported among children < 5 years from 2016 to 2021. For every 10% increase in the number of children, malaria risk increased by 0.039 (log-mean 0.95, 95% credible interval = - 13.82-15.73) and for every 10% increase in the number of males, malaria risk decreased by 0.075, albeit not statistically significant (log-mean - 1.82, 95% credible interval = - 16.59-12.95). The study found substantial spatial and temporal differences in malaria risk across the 260 districts. The predicted national relative risk was 1.25 (95% credible interval = 1.23, 1.27). The malaria risk is relatively the same over the entire year. However, a slightly higher relative risk was recorded in 2019 while in 2021, residing in Keta, Abuakwa South, Jomoro, Ahafo Ano South East, Tain, Nanumba North, and Tatale Sanguli districts was associated with the highest malaria risk ranging from a relative risk of 3.00 to 4.83. The district-level spatial patterns of malaria risks changed over time. CONCLUSION: This study identified high malaria risk districts in Ghana where urgent and targeted control efforts are required. Noticeable changes were also observed in malaria risk for certain districts over some periods in the study. The findings provide an effective, actionable tool to arm policymakers and programme managers in their efforts to reduce malaria risk and its associated morbidity and mortality in line with the Sustainable Development Goals (SDG) 3.2 for limited public health resource settings, where universal intervention across all districts is practically impossible.


Subject(s)
Malaria , Male , Child , Humans , Ghana/epidemiology , Bayes Theorem , Malaria/epidemiology , Health Services , Risk
10.
Curr Oncol ; 31(3): 1129-1144, 2024 02 20.
Article in English | MEDLINE | ID: mdl-38534917

ABSTRACT

BACKGROUND: Examining lung cancer (LC) cases in Virginia (VA) is essential due to its significant public health implications. By studying demographic, environmental, and socioeconomic variables, this paper aims to provide insights into the underlying drivers of LC prevalence in the state adjusted for spatial associations at the zipcode level. METHODS: We model the available VA zipcode-level LC counts via (spatial) Poisson and negative binomial regression models, taking into account missing covariate data, zipcode-level spatial association and allow for overdispersion. Under latent Gaussian Markov Random Field (GMRF) assumptions, our Bayesian hierarchical model powered by Integrated Nested Laplace Approximation (INLA) considers simultaneous (spatial) imputation of all missing covariates through elegant prediction. The spatial random effect across zip codes follows a Conditional Autoregressive (CAR) prior. RESULTS: Zip codes with elevated smoking indices demonstrated a corresponding increase in LC counts, underscoring the well-established connection between smoking and LC. Additionally, we observed a notable correlation between higher Social Deprivation Index (SDI) scores and increased LC counts, aligning with the prevalent pattern of heightened LC prevalence in regions characterized by lower income and education levels. On the demographic level, our findings indicated higher LC counts in zip codes with larger White and Black populations (with Whites having higher prevalence than Blacks), lower counts in zip codes with higher Hispanic populations (compared to non-Hispanics), and higher prevalence among women compared to men. Furthermore, zip codes with a larger population of elderly people (age ≥ 65 years) exhibited higher LC prevalence, consistent with established national patterns. CONCLUSIONS: This comprehensive analysis contributes to our understanding of the complex interplay of demographic and socioeconomic factors influencing LC disparities in VA at the zip code level, providing valuable information for targeted public health interventions and resource allocation. Implementation code is available at GitHub.


Subject(s)
Lung Neoplasms , Male , Humans , Female , Aged , Virginia , Prevalence , Bayes Theorem , Socioeconomic Factors
11.
Microorganisms ; 12(3)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38543536

ABSTRACT

Listeria monocytogenes (L. monocytogenes) is a pathogen that is transmitted through contaminated food and causes the illness known as listeriosis. The virulence factor InlA plays a crucial role in the invasion of L. monocytogenes into the human intestinal epithelium. In addition, InlA enhances the pathogenicity of host strains, and different strains of L. monocytogenes contain varying variations of InlA. Our study analyzed a total of 4393 published L. monocytogenes genomes from 511 sequence types (STs) of diverse origins. We identified 300 unique InlA protein sequence types (PSTs) and revealed 45 highly mutated amino acid sites. The leucine-rich repeat (LRR) region was found to be the most conserved among the InlA, while the protein A (PA) region experienced the highest mutation rate. Two new types of mutations were identified in the B-repeat region of InlA. Correspondence analysis (CA) was used to analyze correlations between the lineages or 10 most common sequence types (STs) and amino acid (aa) sites. ST8 was strongly correlated with site 192_F, 454_T. ST7 exhibited a strong correlation with site 51_A, 573_E, 648_S, and 664_A, and it was also associated with ST6 and site 544_N, 671_A, 738_B, 739_B, 740_B, and 774_Y. Additionally, a strong correlation between ST1 and site 142_S, 738_N, ST2 and site 2_K, 142_S, 738_N, as well as ST87 and site2_K, 738_N was demonstrated. Our findings contribute significantly to the understanding of the distribution, composition, and conservation of InlA in L. monocytogenes. These findings also suggest a potential role of InlA in supporting molecular epidemiological tracing efforts.

12.
mBio ; 15(3): e0282123, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38376160

ABSTRACT

The cellular junctional architecture remodeling by Listeria adhesion protein-heat shock protein 60 (LAP-Hsp60) interaction for Listeria monocytogenes (Lm) passage through the epithelial barrier is incompletely understood. Here, using the gerbil model, permissive to internalin (Inl) A/B-mediated pathways like in humans, we demonstrate that Lm crosses the intestinal villi at 48 h post-infection. In contrast, the single isogenic (lap- or ΔinlA) or double (lap-ΔinlA) mutant strains show significant defects. LAP promotes Lm translocation via endocytosis of cell-cell junctional complex in enterocytes that do not display luminal E-cadherin. In comparison, InlA facilitates Lm translocation at cells displaying apical E-cadherin during cell extrusion and mucus expulsion from goblet cells. LAP hijacks caveolar endocytosis to traffic integral junctional proteins to the early and recycling endosomes. Pharmacological inhibition in a cell line and genetic knockout of caveolin-1 in mice prevents LAP-induced intestinal permeability, junctional endocytosis, and Lm translocation. Furthermore, LAP-Hsp60-dependent tight junction remodeling is also necessary for InlA access to E-cadherin for Lm intestinal barrier crossing in InlA-permissive hosts. IMPORTANCE: Listeria monocytogenes (Lm) is a foodborne pathogen with high mortality (20%-30%) and hospitalization rates (94%), particularly affecting vulnerable groups such as pregnant women, fetuses, newborns, seniors, and immunocompromised individuals. Invasive listeriosis involves Lm's internalin (InlA) protein binding to E-cadherin to breach the intestinal barrier. However, non-functional InlA variants have been identified in Lm isolates, suggesting InlA-independent pathways for translocation. Our study reveals that Listeria adhesion protein (LAP) and InlA cooperatively assist Lm entry into the gut lamina propria in a gerbil model, mimicking human listeriosis in early infection stages. LAP triggers caveolin-1-mediated endocytosis of critical junctional proteins, transporting them to early and recycling endosomes, facilitating Lm passage through enterocytes. Furthermore, LAP-Hsp60-mediated junctional protein endocytosis precedes InlA's interaction with basolateral E-cadherin, emphasizing LAP and InlA's cooperation in enhancing Lm intestinal translocation. This understanding is vital in combating the severe consequences of Lm infection, including sepsis, meningitis, encephalitis, and brain abscess.


Subject(s)
Listeria monocytogenes , Listeria , Listeriosis , Infant, Newborn , Female , Mice , Pregnancy , Humans , Animals , Listeria monocytogenes/genetics , Caveolin 1/metabolism , Caveolae/metabolism , Gerbillinae , Bacterial Proteins/metabolism , Listeriosis/metabolism , Cadherins/genetics
13.
Malar J ; 23(1): 57, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38395876

ABSTRACT

BACKGROUND: Gabon still bears significant malaria burden despite numerous efforts. To reduce this burden, policy-makers need strategies to design effective interventions. Besides, malaria distribution is well known to be related to the meteorological conditions. In Gabon, there is limited knowledge of the spatio-temporal effect or the environmental factors on this distribution. This study aimed to investigate on the spatio-temporal effects and environmental factors on the distribution of malaria prevalence among children 2-10 years of age in Gabon. METHODS: The study used cross-sectional data from the Demographic Health Survey (DHS) carried out in 2000, 2005, 2010, and 2015. The malaria prevalence was obtained by considering the weighting scheme and using the space-time smoothing model. Spatial autocorrelation was inferred using the Moran's I index, and hotspots were identified with the local statistic Getis-Ord General Gi. For the effect of covariates on the prevalence, several spatial methods implemented in the Integrated Nested Laplace Approximation (INLA) approach using Stochastic Partial Differential Equations (SPDE) were compared. RESULTS: The study considered 336 clusters, with 153 (46%) in rural and 183 (54%) in urban areas. The prevalence was highest in the Estuaire province in 2000, reaching 46%. It decreased until 2010, exhibiting strong spatial correlation (P < 0.001), decreasing slowly with distance. Hotspots were identified in north-western and western Gabon. Using the Spatial Durbin Error Model (SDEM), the relationship between the prevalence and insecticide-treated bed nets (ITNs) coverage was decreasing after 20% of coverage. The prevalence in a cluster decreased significantly with the increase per percentage of ITNs coverage in the nearby clusters, and per degree Celsius of day land surface temperature in the same cluster. It slightly increased with the number of wet days and mean temperature per month in neighbouring clusters. CONCLUSIONS: In summary, this study showed evidence of strong spatial effect influencing malaria prevalence in household clusters. Increasing ITN coverage by 20% and prioritizing hotspots are essential policy recommendations. The effects of environmental factors should be considered, and collaboration with the national meteorological department (DGM) for early warning systems is needed.


Subject(s)
Insecticide-Treated Bednets , Malaria , Child , Humans , Gabon/epidemiology , Prevalence , Cross-Sectional Studies , Bayes Theorem , Malaria/epidemiology , Spatio-Temporal Analysis
14.
Mov Ecol ; 12(1): 11, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38303081

ABSTRACT

Understanding drivers of space use by African elephants is critical to their conservation and management, particularly given their large home-ranges, extensive resource requirements, ecological role as ecosystem engineers, involvement in human-elephant conflict and as a target species for ivory poaching. In this study we investigated resource selection by elephants inhabiting the Greater Mara Ecosystem in Southwestern Kenya in relation to three distinct but spatially contiguous management zones: (i) the government protected Maasai Mara National Reserve (ii) community-owned wildlife conservancies, and (iii) elephant range outside any formal wildlife protected area. We combined GPS tracking data from 49 elephants with spatial covariate information to compare elephant selection across these management zones using a hierarchical Bayesian framework, providing insight regarding how human activities structure elephant spatial behavior. We also contrasted differences in selection by zone across several data strata: sex, season and time-of-day. Our results showed that the strongest selection by elephants was for closed-canopy forest and the strongest avoidance was for open-cover, but that selection behavior varied significantly by management zone and selection for cover was accentuated in human-dominated areas. When contrasting selection parameters according to strata, variability in selection parameter values reduced along a protection gradient whereby elephants tended to behave more similarly (limited plasticity) in the human dominated, unprotected zone and more variably (greater plasticity) in the protected reserve. However, avoidance of slope was consistent across all zones. Differences in selection behavior was greatest between sexes, followed by time-of-day, then management zone and finally season (where seasonal selection showed the least differentiation of the contrasts assessed). By contrasting selection coefficients across strata, our analysis quantifies behavioural switching related to human presence and impact displayed by a cognitively advanced megaherbivore. Our study broadens the knowledge base about the movement ecology of African elephants and builds our capacity for both management and conservation.

15.
Chemosphere ; 349: 140986, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38109973

ABSTRACT

Knowledge of precipitation composition is important, among other things, to reveal changes in atmospheric chemistry. Here we present the long-term time trends in ratios of major ions in precipitation, namely nitrate to sulphate (NO3-/SO42-), ammonium to sulphate (NH4+/SO42-) and ammonium to nitrate (NH4+/NO3-). For this we explore the long-term time series recorded by the Czech Hydrometeorological Institute at eight monitoring sites situated in urban, rural and mountain regions of the Czech Republic between 1980 and 2020. To that end, we use innovative Bayesian inference with the Integrated Nested Laplace Approximation (INLA) computational method appropriate for investigating complicated large-scale data. Our results indicated: (i) increasing NO3-/SO42- ratio in precipitation over time and distinct seasonal behaviour with higher values in winter and lower values in summer, (ii) increasing NH4+/SO42- ratio in precipitation and distinct seasonal behaviour with higher values in summer and lower values in winter and (iii) relatively stable NH4+/NO3- ratio in precipitation with a mild recent increase and distinct seasonal behaviour with higher values in summer and lower values in winter. This behaviour pattern holds true for all the sites analysed, irrespective of their geographical position, altitude or environment. Though explored in detail rarely, the ion ratios are important to study as they reflect changes in atmospheric chemistry, mirroring changes in emissions and meteorology and suggesting changing impacts on ecosystems and the environment.


Subject(s)
Air Pollutants , Ammonium Compounds , Nitrates/analysis , Bayes Theorem , Ecosystem , Environmental Monitoring , Ions/chemistry , Seasons , Sulfates/analysis , Air Pollutants/analysis
16.
Spat Spatiotemporal Epidemiol ; 47: 100616, 2023 11.
Article in English | MEDLINE | ID: mdl-38042535

ABSTRACT

Mosquito-borne diseases such as dengue and chikungunya have been co-circulating in the Americas, causing great damage to the population. In 2021, for instance, almost 1.5 million cases were reported on the continent, being Brazil the responsible for most of them. Even though they are transmitted by the same mosquito, it remains unclear whether there exists a relationship between both diseases. In this paper, we model the geographic distributions of dengue and chikungunya over the years 2016 to 2021 in the Brazilian state of Ceará. We use a Bayesian hierarchical spatial model for the joint analysis of two arboviruses that includes spatial covariates as well as specific and shared spatial effects that take into account the potential autocorrelation between the two diseases. Our findings allow us to identify areas with high risk of one or both diseases. Only 7% of the areas present high relative risk for both diseases, which suggests a competition between viruses. This study advances the understanding of the geographic patterns and the identification of risk factors of dengue and chikungunya being able to help health decision-making.


Subject(s)
Chikungunya Fever , Dengue , Zika Virus Infection , Animals , Humans , Chikungunya Fever/epidemiology , Dengue/epidemiology , Brazil/epidemiology , Zika Virus Infection/epidemiology , Bayes Theorem
17.
J Appl Stat ; 50(16): 3229-3250, 2023.
Article in English | MEDLINE | ID: mdl-37969892

ABSTRACT

Traffic deaths and injuries are one of the major global public health concerns. The present study considers accident records in an urban environment to explore and analyze spatial and temporal in the incidence of road traffic accidents. We propose a spatio-temporal model to provide predictions of the number of traffic collisions on any given road segment, to further generate a risk map of the entire road network. A Bayesian methodology using Integrated nested Laplace approximations with stochastic partial differential equations (SPDE) has been applied in the modeling process. As a novelty, we have introduced SPDE network triangulation to estimate the spatial autocorrelation restricted to the linear network. The resulting risk maps provide information to identify safe routes between source and destination points, and can be useful for accident prevention and multi-disciplinary road safety measures.

18.
J Biol Chem ; 299(10): 105254, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37716701

ABSTRACT

Listeriosis, caused by infection with Listeria monocytogenes, is a severe disease with a high mortality rate. The L. monocytogenes virulence factor, internalin family protein InlA, which binds to the host receptor E-cadherin, is necessary to invade host cells. Here, we isolated two single-domain antibodies (VHHs) that bind to InlA with picomolar affinities from an alpaca immune library using the phage display method. These InlA-specific VHHs inhibited the binding of InlA to the extracellular domains of E-cadherin in vitro as shown by biophysical interaction analysis. Furthermore, we determined that the VHHs inhibited the invasion of L. monocytogenes into host cells in culture. High-resolution X-ray structure analyses of the complexes of VHHs with InlA revealed that the VHHs bind to the same binding site as E-cadherin against InlA. We conclude that these VHHs have the potential for use as drugs to treat listeriosis.

19.
Article in English | MEDLINE | ID: mdl-37569037

ABSTRACT

Malaria is a prevalent disease in several tropical and subtropical regions, including Brazil, where it remains a significant public health concern. Even though there have been substantial efforts to decrease the number of cases, the reoccurrence of epidemics in regions that have been free of cases for many years presents a significant challenge. Due to the multifaceted factors that influence the spread of malaria, influencing malaria risk factors were analyzed through regional outbreak cluster analysis and spatio-temporal models in the Brazilian Amazon, incorporating climate, land use/cover interactions, species richness, and number of endemic birds and amphibians. Results showed that high amphibian and bird richness and endemism correlated with a reduction in malaria risk. The presence of forest had a risk-increasing effect, but it depended on its juxtaposition with anthropic land uses. Biodiversity and landscape composition, rather than forest formation presence alone, modulated malaria risk in the period. Areas with low endemic species diversity and high human activity, predominantly anthropogenic landscapes, posed high malaria risk. This study underscores the importance of considering the broader ecological context in malaria control efforts.


Subject(s)
Biodiversity , Malaria , Animals , Humans , Brazil/epidemiology , Forests , Malaria/epidemiology , Birds , Ecosystem
20.
Lancet Reg Health Southeast Asia ; 15: 100209, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37614350

ABSTRACT

Background: Human mobility and climate conditions are recognised key drivers of dengue transmission, but their combined and individual role in the local spatiotemporal clustering of dengue cases is not well understood. This study investigated the effects of human mobility and weather conditions on dengue risk in an urban area in Yogyakarta, Indonesia. Methods: We established a Bayesian spatiotemporal model for neighbourhood outbreak prediction and evaluated the performances of two different approaches for constructing an adjacency matrix: one based on geographical proximity and the other based on human mobility patterns. We used population, weather conditions, and past dengue cases as predictors using a flexible distributed lag approach. The human mobility data were estimated based on proxies from social media. Unseen data from February 2017 to January 2020 were used to estimate the one-month ahead prediction accuracy of the model. Findings: When human mobility proxies were included in the spatial covariance structure, the model fit improved in terms of the log score (from 1.748 to 1.561) and the mean absolute error (from 0.676 to 0.522) based on the validation data. Additionally, showed only few observations outside the credible interval of predictions (1.48%) and weather conditions were not found to contribute additionally to the clustering of cases at this scale. Interpretation: The study shows that it is possible to make highly accurate predictions of the within-city cluster dynamics of dengue using mobility proxies from social media combined with disease surveillance data. These insights are important for proactive and timely outbreak management of dengue. Funding: Swedish Research Council Formas, Umeå Centre for Global Health Research, Swedish Council for Working Life and Social Research, Swedish research council VINNOVA and Alexander von Humboldt Foundation (Germany).

SELECTION OF CITATIONS
SEARCH DETAIL