Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.396
Filter
1.
Article in English | MEDLINE | ID: mdl-39140973

ABSTRACT

Ketogenic diets (KDs) are very high in fat and low in carbohydrates. Evidence supports that KDs improve glucose metabolism in humans and rodents that are obese and/or insulin resistant. Conversely, findings in healthy rodents suggest that KDs may impair glucose homeostasis. Additionally, most experimental KDs are composed of saturated and monounsaturated fatty acids, with almost no omega-3 long-chain polyunsaturated fatty acids (n-3 LCPUFA). Evidence supports a beneficial role for n-3 LCPUFA on glucose homeostasis in the context of a metabolic challenge. To our knowledge, no study has examined whether the inclusion of n-3 LCPUFA affects the impact of a KD on glucose homeostasis. The objective of this study was to examine the impact of a KD on whole-body glucose tolerance and skeletal muscle insulin response in rats, and to determine if increasing the n-3 LCPUFA content in a KD with menhaden oil could improve metabolic outcomes. Male Sprague Dawley rats were pair-fed one of a low-fat diet, high-fat diet, KD, or a KD supplemented with menhaden oil (KDn-3) for 8 weeks. No significant differences in whole-body glucose tolerance, skeletal muscle insulin signaling, or skeletal muscle insulin-stimulated glucose uptake were detected between the dietary groups. Our findings suggest that KD feeding, with or without supplementation of n-3 LCPUFA, does not affect whole-body glucose homeostasis or skeletal muscle insulin response under pair-feeding conditions.

2.
Int J Mol Sci ; 25(15)2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39125938

ABSTRACT

Insulin signaling is vital for regulating cellular metabolism, growth, and survival pathways, particularly in tissues such as adipose, skeletal muscle, liver, and brain. Its role in the heart, however, is less well-explored. The heart, requiring significant ATP to fuel its contractile machinery, relies on insulin signaling to manage myocardial substrate supply and directly affect cardiac muscle metabolism. This review investigates the insulin-heart axis, focusing on insulin's multifaceted influence on cardiac function, from metabolic regulation to the development of physiological cardiac hypertrophy. A central theme of this review is the pathophysiology of insulin resistance and its profound implications for cardiac health. We discuss the intricate molecular mechanisms by which insulin signaling modulates glucose and fatty acid metabolism in cardiomyocytes, emphasizing its pivotal role in maintaining cardiac energy homeostasis. Insulin resistance disrupts these processes, leading to significant cardiac metabolic disturbances, autonomic dysfunction, subcellular signaling abnormalities, and activation of the renin-angiotensin-aldosterone system. These factors collectively contribute to the progression of diabetic cardiomyopathy and other cardiovascular diseases. Insulin resistance is linked to hypertrophy, fibrosis, diastolic dysfunction, and systolic heart failure, exacerbating the risk of coronary artery disease and heart failure. Understanding the insulin-heart axis is crucial for developing therapeutic strategies to mitigate the cardiovascular complications associated with insulin resistance and diabetes.


Subject(s)
Insulin Resistance , Insulin , Signal Transduction , Humans , Animals , Insulin/metabolism , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Heart/physiology , Heart/physiopathology , Renin-Angiotensin System/physiology
3.
Biochem Pharmacol ; : 116491, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39147331

ABSTRACT

The pathogenesis of type 1 diabetes mellitus (T1DM) involves oxidative stress and inflammation. Curcumin, a natural polyphenolic compound found in turmeric, known to exhibit antioxidative and anti-inflammatory properties, is characterized by poor chemical stability, low bioavailability, and rapid metabolism. Monocarbonyl analogs of curcumin (MACs) with a structural absence of ß-diketone and enhanced stability and bioavailability present a potential solution to the challenges associated with the use of curcumin. This study aimed to evaluate the effect of two MACs, C66 and B2BrBC, on oxidative stress markers, antioxidant enzyme activity, expression of diabetes-associated genes, and signaling pathway proteins in the context of T1DM. Streptozotocin (STZ)-induced male Wistar rats or rat pancreatic RIN-m cells were used for in vivo and in vitro experiments, respectively. C66 or B2BrBC were given either before or after STZ treatment. Oxidative stress markers and antioxidant enzyme activities were determined in various tissues. Expression of diabetes-associated genes was assessed using RT-qPCR, and the activity of signaling pathway proteins in the pancreas was determined through Western blot analysis. Treatment with C66 and B2BrBC significantly reduced oxidative stress markers and positively influenced antioxidant enzyme activities. Moreover, both compounds inhibited JNK activity in the pancreas while enhancing the expression of genes crucial for ß-cell survival and glucose and redox homeostasis. The findings highlight the multifaceted potential of C66 and B2BrBC in ameliorating oxidative stress, influencing gene expression patterns linked to diabetes, and modulating key signaling pathways in the pancreas. The findings suggest that these compounds can potentially address diabetes-related pathological processes.

4.
Pharmacol Ther ; : 108699, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39111411

ABSTRACT

The incidence of obesity is rapidly increasing worldwide. Obesity-associated insulin resistance has long been established as a significant risk factor for obesity-related disorders such as type 2 diabetes and atherosclerosis. Insulin plays a key role in systemic glucose metabolism, with the liver, skeletal muscle, and adipose tissue as the major acting tissues. Insulin receptors and the downstream insulin signaling-related molecules are expressed in various tissues, including vascular endothelial cells, vascular smooth muscle cells, and monocytes/macrophages. In obesity, decreased insulin action is considered a driver for associated disorders. However, whether insulin action has a positive or negative effect on obesity-related disorders depends on the tissue in which it acts. While an enhancement of insulin signaling in the liver increases hepatic fat accumulation and exacerbates dyslipidemia, enhancement of insulin signaling in adipose tissue protects against obesity-related dysfunction of various organs by increasing the capacity for fat accumulation in the adipose tissue and inhibiting ectopic fat accumulation. Thus, this "healthy adipose tissue expansion" by enhancing insulin sensitivity in adipose tissue, but not in the liver, may be an effective therapeutic strategy for obesity-related disorders. To effectively address obesity-related metabolic disorders, the mechanisms of insulin resistance in various tissues of obese patients must be understood and drugs that enhance insulin action must be developed. In this article, we review the potential of interventions that enhance insulin signaling as a therapeutic strategy for obesity-related disorders, focusing on the molecular mechanisms of insulin action in each tissue.

5.
Endocr J ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38987195

ABSTRACT

Insulin is an essential hormone for animal activity and survival, and it controls the metabolic functions of the entire body. Throughout the evolution of metazoan animals and the development of their brains, a sustainable energy supply has been essential to overcoming the competition for survival under various environmental stresses. Managing energy for metabolism, preservation, and consumption inevitably involves high oxidative stress, causing tissue damage in various organs. In both mice and humans, excessive dietary intake can lead to insulin resistance in various organs, ultimately displaying metabolic syndrome and type 2 diabetes. Insulin signals require thorough regulation to maintain metabolism across diverse environments. Recent studies demonstrated that two types of forkhead-box family transcription factors, FOXOs and FOXKs, are related to the switching of insulin signals during fasting and feeding states. Insulin signaling plays a role in supporting higher activity during periods of sufficient food supply and in promoting survival during times of insufficient food supply. The insulin receptor depends on the tyrosine phosphatase feedback of insulin signaling to maintain adipocyte insulin responsiveness. α4, a regulatory subunit of protein phosphatase 2A (PP2A), has been shown to play a crucial role in modulating insulin signaling pathways by regulating the phosphorylation status of key proteins involved in these pathways. This short review summarizes the current understanding of the molecular mechanism related to the regulation of insulin signals.

6.
Front Genet ; 15: 1414451, 2024.
Article in English | MEDLINE | ID: mdl-38978877

ABSTRACT

Background: Rabson-Mendenhall syndrome (RMS), a rare disorder characterized by severe insulin resistance due to biallelic loss-of-function variants of the insulin receptor gene (INSR), presents therapeutic challenges (OMIM: 262190). This case study explores the efficacy of adjunctive therapy with sodium-glucose cotransporter 2 inhibitors (SGLT2is) in the management of RMS in an 11-year-old male patient with compound heterozygous pathogenic variants of INSR. Methods: Despite initial efforts to regulate glycemia with insulin therapy followed by metformin treatment, achieving stable glycemic control presented a critical challenge, characterized by persistent hyperinsulinism and variable fluctuations in glucose levels. Upon the addition of empagliflozin to metformin, notable improvements in glycated hemoglobin (HbA1c) and time in range (TIR) were observed over a 10-month period. Results: After 10 months of treatment, empagliflozin therapy led to a clinically meaningful reduction in HbA1c levels, decreasing from 8.5% to 7.1%, along with an improvement in TIR from 47% to 74%. Furthermore, regular monitoring effectively averted normoglycemic ketoacidosis, a rare complication associated with SGLT2 inhibitor therapy. Conclusion: This case highlights the potential of SGLT2i as adjunctive therapy in RMS management, particularly in stabilizing glycemic variability. However, further research is warranted to elucidate the long-term efficacy and safety of this therapeutic approach in RMS and similar insulin resistance syndromes.

7.
FASEB J ; 38(13): e23800, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38979931

ABSTRACT

Insulin resistance, the hallmark of type 2 diabetes mellitus (T2DM), has emerged as a pathological feature in Alzheimer's disease (AD). Given the shared role of insulin resistance in T2DM and AD, repurposing peripheral insulin sensitizers is a promising strategy to preserve neuronal insulin sensitivity and prevent AD. 1-Deoxynojirimycin (DNJ), a bioactive iminosugar, exhibited insulin-sensitizing effects in metabolic tissues and was detected in brain tissue post-oral intake. However, its impact on brain and neuronal insulin signaling has not been described. Here, we investigated the effect of DNJ treatment on insulin signaling and AD markers in insulin-resistant human SK-N-SH neuroblastoma, a cellular model of neuronal insulin resistance. Our findings show that DNJ increased the expression of insulin signaling genes and the phosphorylation status of key molecules implicated in insulin resistance (Y1146-pIRß, S473-pAKT, S9-GSK3B) while also elevating the expression of glucose transporters Glut3 and Glut4, resulting in higher glucose uptake upon insulin stimuli. DNJ appeared to mitigate the insulin resistance-driven increase in phosphorylated tau and Aß1-42 levels by promoting insulin-induced phosphorylation of GSK3B (a major tau kinase) and enhancing mRNA expression of the insulin-degrading enzyme (IDE) pivotal for insulin and Aß clearance. Overall, our study unveils probable mechanisms underlying the potential benefits of DNJ for AD, wherein DNJ attenuates tau and amyloid pathologies by reversing neuronal insulin resistance. This provides a scientific basis for expanding the use of DNJ-containing products for neuroprotective purposes and prompts further research into compounds with similar mechanisms of action.


Subject(s)
1-Deoxynojirimycin , Alzheimer Disease , Insulin Resistance , Neurons , Alzheimer Disease/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/pathology , Humans , 1-Deoxynojirimycin/pharmacology , 1-Deoxynojirimycin/analogs & derivatives , Neurons/metabolism , Neurons/drug effects , Cell Line, Tumor , Amyloid beta-Peptides/metabolism , tau Proteins/metabolism , Glucose Transporter Type 3/metabolism , Glucose Transporter Type 3/genetics , Insulin/metabolism , Signal Transduction/drug effects , Glucose Transporter Type 4/metabolism , Glucose Transporter Type 4/genetics , Glycogen Synthase Kinase 3 beta/metabolism , Phosphorylation/drug effects , Biomarkers/metabolism
8.
Cell Rep ; 43(7): 114491, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39002127

ABSTRACT

Tissues release microRNAs (miRNAs) in small extracellular vesicles (sEVs) including exosomes, which can regulate gene expression in distal cells, thus acting as modulators of local and systemic metabolism. Here, we show that insulin regulates miRNA secretion into sEVs from 3T3-L1 adipocytes and that this process is differentially regulated from cellular expression. Thus, of the 53 miRNAs upregulated and 66 miRNAs downregulated by insulin in 3T3-L1 sEVs, only 12 were regulated in parallel in cells. Insulin regulated this process in part by phosphorylating hnRNPA1, causing it to bind to AU-rich motifs in miRNAs, mediating their secretion into sEVs. Importantly, 43% of insulin-regulated sEV-miRNAs are implicated in obesity and insulin resistance. These include let-7 and miR-103, which we show regulate insulin signaling in AML12 hepatocytes. Together, these findings demonstrate an important layer to insulin's regulation of adipose biology and provide a mechanism of tissue crosstalk in obesity and other hyperinsulinemic states.


Subject(s)
Extracellular Vesicles , Insulin , MicroRNAs , Animals , Humans , Mice , 3T3-L1 Cells , Adipocytes/metabolism , Adipocytes/drug effects , Extracellular Vesicles/metabolism , Gene Expression Regulation , Hepatocytes/metabolism , Heterogeneous Nuclear Ribonucleoprotein A1/metabolism , Heterogeneous Nuclear Ribonucleoprotein A1/genetics , Insulin/metabolism , Insulin Resistance , MicroRNAs/metabolism , MicroRNAs/genetics , Obesity/metabolism , Obesity/genetics , Phosphorylation , Signal Transduction
9.
Cardiovasc Diabetol ; 23(1): 258, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39026321

ABSTRACT

BACKGROUND: Insulin signaling regulates cardiac substrate utilization and is implicated in physiological adaptations of the heart. Alterations in the signaling response within the heart are believed to contribute to pathological conditions such as type-2 diabetes and heart failure. While extensively investigated in several metabolic organs using phosphoproteomic strategies, the signaling response elicited in cardiac tissue in general, and specifically in the specialized cardiomyocytes, has not yet been investigated to the same extent. METHODS: Insulin or vehicle was administered to male C57BL6/JRj mice via intravenous injection into the vena cava. Ventricular tissue was extracted and subjected to quantitative phosphoproteomics analysis to evaluate the insulin signaling response. To delineate the cardiomyocyte-specific response and investigate the role of Tbc1d4 in insulin signal transduction, cardiomyocytes from the hearts of cardiac and skeletal muscle-specific Tbc1d4 knockout mice, as well as from wildtype littermates, were studied. The phosphoproteomic studies involved isobaric peptide labeling with Tandem Mass Tags (TMT), enrichment for phosphorylated peptides, fractionation via micro-flow reversed-phase liquid chromatography, and high-resolution mass spectrometry measurements. RESULTS: We quantified 10,399 phosphorylated peptides from ventricular tissue and 12,739 from isolated cardiomyocytes, localizing to 3,232 and 3,128 unique proteins, respectively. In cardiac tissue, we identified 84 insulin-regulated phosphorylation events, including sites on the Insulin Receptor (InsrY1351, Y1175, Y1179, Y1180) itself as well as the Insulin receptor substrate protein 1 (Irs1S522, S526). Predicted kinases with increased activity in response to insulin stimulation included Rps6kb1, Akt1 and Mtor. Tbc1d4 emerged as a major phosphorylation target in cardiomyocytes. Despite limited impact on the global phosphorylation landscape, Tbc1d4 deficiency in cardiomyocytes attenuated insulin-induced Glut4 translocation and induced protein remodeling. We observed 15 proteins significantly regulated upon knockout of Tbc1d4. While Glut4 exhibited decreased protein abundance consequent to Tbc1d4-deficiency, Txnip levels were notably increased. Stimulation of wildtype cardiomyocytes with insulin led to the regulation of 262 significant phosphorylation events, predicted to be regulated by kinases such as Akt1, Mtor, Akt2, and Insr. In cardiomyocytes, the canonical insulin signaling response is elicited in addition to regulation on specialized cardiomyocyte proteins, such as Kcnj11Y12 and DspS2597. Details of all phosphorylation sites are provided. CONCLUSION: We present a first global outline of the insulin-induced phosphorylation signaling response in heart tissue and in isolated adult cardiomyocytes, detailing the specific residues with changed phosphorylation abundances. Our study marks an important step towards understanding the role of insulin signaling in cardiac diseases linked to insulin resistance.


Subject(s)
Insulin , Mice, Inbred C57BL , Mice, Knockout , Myocytes, Cardiac , Phosphoproteins , Proteomics , Signal Transduction , Animals , Myocytes, Cardiac/metabolism , Male , Insulin/metabolism , Phosphorylation , Phosphoproteins/metabolism , GTPase-Activating Proteins/metabolism , GTPase-Activating Proteins/genetics , Receptor, Insulin/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Mice
10.
Mol Metab ; 88: 102000, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39074536

ABSTRACT

OBJECTIVE: The skeleton is one of the largest organs in the body, wherein metabolism is integrated with systemic energy metabolism. However, the bioenergetic programming of osteocytes, the most abundant bone cells coordinating bone metabolism, is not well defined. Here, using a mouse model with partial penetration of an osteocyte-specific PPARG deletion, we demonstrate that PPARG controls osteocyte bioenergetics and their contribution to systemic energy metabolism independently of circulating sclerostin levels, which were previously correlated with metabolic status of extramedullary fat depots. METHODS: In vivo and in vitro models of osteocyte-specific PPARG deletion, i.e. Dmp1CrePparγflfl male and female mice (γOTKO) and MLO-Y4 osteocyte-like cells with either siRNA-silenced or CRISPR/Cas9-edited Pparγ. As applicable, the models were analyzed for levels of energy metabolism, glucose metabolism, and metabolic profile of extramedullary adipose tissue, as well as the osteocyte transcriptome, mitochondrial function, bioenergetics, insulin signaling, and oxidative stress. RESULTS: Circulating sclerostin levels of γOTKO male and female mice were not different from control mice. Male γOTKO mice exhibited a high energy phenotype characterized by increased respiration, heat production, locomotion and food intake. This high energy phenotype in males did not correlate with "beiging" of peripheral adipose depots. However, both sexes showed a trend for reduced fat mass and apparent insulin resistance without changes in glucose tolerance, which correlated with decreased osteocytic responsiveness to insulin measured by AKT activation. The transcriptome of osteocytes isolated from γOTKO males suggested profound changes in cellular metabolism, fuel transport, mitochondria dysfunction, insulin signaling and increased oxidative stress. In MLO-Y4 osteocytes, PPARG deficiency correlated with highly active mitochondria, increased ATP production, and accumulation of reactive oxygen species (ROS). CONCLUSIONS: PPARG in male osteocytes acts as a molecular break on mitochondrial function, and protection against oxidative stress and ROS accumulation. It also regulates osteocyte insulin signaling and fuel usage to produce energy. These data provide insight into the connection between osteocyte bioenergetics and their sex-specific contribution to the balance of systemic energy metabolism. These findings support the concept that the skeleton controls systemic energy expenditure via osteocyte metabolism.

11.
Reprod Biol ; 24(3): 100924, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39013209

ABSTRACT

Gestational Diabetes Mellitus (GDM) presents a significant health concern globally, necessitating a comprehensive understanding of its metabolic intricacies for effective management. MicroRNAs (miRNAs) have emerged as pivotal regulators in GDM pathogenesis, influencing glucose metabolism, insulin signaling, and lipid homeostasis during pregnancy. Dysregulated miRNA expression, both upregulated and downregulated, contributes to GDM-associated metabolic abnormalities. Ethnic and temporal variations in miRNA expression underscore the multifaceted nature of GDM susceptibility. This review examines the dysregulation of miRNAs in GDM and their regulatory functions in metabolic disorders. We discuss the involvement of specific miRNAs in modulating key pathways implicated in GDM pathogenesis, such as glucose metabolism, insulin signaling, and lipid homeostasis. Furthermore, we explore the potential diagnostic and therapeutic implications of miRNAs in GDM management, highlighting the promise of miRNA-based interventions for mitigating the adverse consequences of GDM on maternal and offspring health.

12.
PeerJ ; 12: e17628, 2024.
Article in English | MEDLINE | ID: mdl-38952983

ABSTRACT

Background: Ovarian cancer is an aggressive malignancy with high mortality known for its considerable metastatic potential. This study aimed to explore the expression and functional role of Unc-51 like autophagy activating kinase 2 (ULK2) in the progression of ovarian cancer. Methods: ULK2 expression patterns in ovarian cancer tissues as well as benign tumor control samples obtained from our institution were evaluated using immunohistochemistry. Cell counting kit 8 and Transwell assays were applied to assess the effects of ULK2 overexpression on cell proliferation, migration and invasion, respectively. RNA sequencing was performed to explore potential mechanisms of action of ULK2 beyond its classical autophagy modulation. Results: Our experiments showed significant downregulation of ULK2 in ovarian cancer tissues. Importantly, low expression of ULK2 was markedly correlated with decreased overall survival. In vitro functional studies further demonstrated that overexpression of ULK2 significantly suppressed tumor cell proliferation, migration, and invasion. RNA sequencing analysis revealed a potential regulatory role of ULK2 in the insulin signaling pathway through upregulation of insulin-like growth factor binding protein-3 (IGFBP3) in ovarian cancer cells. Conclusions: In summary, the collective data indicated that ULK2 acted as a tumor suppressor in ovarian cancer by upregulating the expression of IGFBP3. Our study underscores the potential utility of ULK2 as a valuable prognostic marker for ovarian cancer.


Subject(s)
Cell Movement , Cell Proliferation , Insulin-Like Growth Factor Binding Protein 3 , Neoplasm Invasiveness , Ovarian Neoplasms , Humans , Female , Cell Movement/genetics , Ovarian Neoplasms/pathology , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/mortality , Cell Line, Tumor , Neoplasm Invasiveness/genetics , Cell Proliferation/genetics , Insulin-Like Growth Factor Binding Protein 3/metabolism , Insulin-Like Growth Factor Binding Protein 3/genetics , Autophagy-Related Protein-1 Homolog/metabolism , Autophagy-Related Protein-1 Homolog/genetics , Gene Expression Regulation, Neoplastic , Up-Regulation , Signal Transduction , Protein Serine-Threonine Kinases
13.
J Insect Sci ; 24(4)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38958928

ABSTRACT

Insulin receptor substrate (IRS) proteins are key mediators in insulin signaling pathway. In social insect lives, IRS proteins played important roles in caste differentiation and foraging, but there function in disease defenses such as active immunization has not been reported yet. To investigate the issue, we successfully suppressed the IRS gene 3 days after dsRNA injection. Suppressing IRS gene increased the contents of glucose, trehalose, glycogen, and triglyceride and decreased the content of pyruvate in termites, and led to the metabolic disorder of glucose and lipids. IRS suppressing significantly enhanced grooming behaviors of nestmates of fungus-contaminated termites and hence increased the conidial load in the guts of the nestmates. Additionally, IRS suppressing led to significant downregulation of the immune genes Gram-negative bacteria-binding protein2 (GNBP2) and termicin and upregulation of the apoptotic gene caspase8, and hence diminished antifungal activity of nestmates of fungus-contaminated termites. The above abnormal behavioral and physiological responses significantly decreased the survival rate of dsIRS-injected nestmates of the fungus-contaminated termites. These findings suggest that IRS is involved in regulation of active immunization in termites, providing a better understanding of the link between insulin signaling and the social immunity of termites.


Subject(s)
Insulin Receptor Substrate Proteins , Isoptera , Animals , Isoptera/immunology , Insulin Receptor Substrate Proteins/metabolism , Insulin Receptor Substrate Proteins/genetics , Insect Proteins/metabolism , Insect Proteins/genetics
15.
Alzheimers Res Ther ; 16(1): 173, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39085976

ABSTRACT

Targeting brain insulin resistance (BIR) has become an attractive alternative to traditional therapeutic treatments for Alzheimer's disease (AD). Incretin receptor agonists (IRAs), targeting either or both of the glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) receptors, have proven to reverse BIR and improve cognition in mouse models of AD. We previously showed that many, but not all, IRAs can cross the blood-brain barrier (BBB) after intravenous (IV) delivery. Here we determined if widespread brain uptake of IRAs could be achieved by circumventing the BBB using intranasal (IN) delivery, which has the added advantage of minimizing adverse gastrointestinal effects of systemically delivered IRAs. Of the 5 radiolabeled IRAs tested (exenatide, dulaglutide, semaglutide, DA4-JC, and DA5-CH) in CD-1 mice, exenatide, dulaglutide, and DA4-JC were successfully distributed throughout the brain following IN delivery. We observed significant sex differences in uptake for DA4-JC. Dulaglutide and DA4-JC exhibited high uptake by the hippocampus and multiple neocortical areas. We further tested and found the presence of AD-associated Aß pathology minimally affected uptake of dulaglutide and DA4-JC. Of the 5 tested IRAs, dulaglutide and DA4-JC are best capable of accessing brain regions most vulnerable in AD (neocortex and hippocampus) after IN administration. Future studies will need to be performed to determine if IN IRA delivery can reduce BIR in AD or animal models of that disorder.


Subject(s)
Alzheimer Disease , Brain , Glucagon-Like Peptide-1 Receptor Agonists , Animals , Female , Humans , Male , Mice , Administration, Intranasal , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Amyloid beta-Protein Precursor/genetics , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , Brain/metabolism , Brain/drug effects , Disease Models, Animal , Exenatide , Immunoglobulin Fc Fragments/administration & dosage , Incretins , Mice, Transgenic , Presenilin-1/genetics , Recombinant Fusion Proteins/administration & dosage , Recombinant Fusion Proteins/pharmacokinetics , Glucagon-Like Peptide-1 Receptor Agonists/pharmacokinetics
16.
Front Endocrinol (Lausanne) ; 15: 1375771, 2024.
Article in English | MEDLINE | ID: mdl-38883605

ABSTRACT

Introduction: The incidence of infertility is significantly higher in women with diseases linked to impaired glucose homeostasis, such as insulin resistance. Defective glucose metabolism interferes with fertilization; however, the molecular mechanism underlying this interference is unclear. Smoothelin-like protein 1 (SMTNL1) was isolated from muscle and steroid hormone-responsive tissues and regulates the contractile functions of various cell types through the inhibition of myosin phosphatase (MP) holoenzyme. In addition, SMTNL-1 after phosphorylation at Ser301 by protein kinase A translocates to the nucleus and functions as a transcriptional co-activator of the progesterone receptor-B. SMTNL1 null mice exhibit reduced reproductive fitness and are more prone to type 2 diabetes mellitus. However, the role of SMTNL1 in endometrial epithelial cells is not known. Methods: The effect of SMTNL1 overexpression was investigated in pregnancy and in gestational diabetic endometrial epithelial cell models by immunofluorescent staining, cell migration, and semi quantitative Western blot analysis and glucose uptake assay. Results: We show that SMTNL1 promotes the differentiation of endometrial epithelial cells in a progesterone-dependent manner to attenuate insulin resistance. Furthermore, SMTNL1 hampers the migration capacity of epithelial cells in a gestational diabetes model by inhibiting the expression of MYPT1, the regulatory subunit of MP, and the activity of the holoenzyme, resulting in increased phosphorylation of the 20 kDa regulatory myosin light chain. SMTNL1 also acts as an insulin-sensitizing agent by increasing the gene expression of PP2A and DUPS9 protein phosphatases, resulting in decreased ERK1/2 activity and, hence, decreasing the phosphorylation of IRS-1 at Ser612 under gestational diabetes conditions. Conclusion: SMTNL1 may have therapeutic relevance to the progesterone-dependent inhibition of endometrial epithelial cell migration under hyperglycemic conditions and insulin sensitivity in the endometrium in gestational diabetes or other metabolic disorders.


Subject(s)
Endometrium , Epithelial Cells , Insulin Resistance , Muscle Proteins , Female , Endometrium/metabolism , Humans , Epithelial Cells/metabolism , Muscle Proteins/metabolism , Muscle Proteins/genetics , Pregnancy , Animals , Diabetes, Gestational/metabolism , Mice , Phosphorylation , Cell Movement , Intracellular Signaling Peptides and Proteins
17.
bioRxiv ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38895253

ABSTRACT

Rab4 GTPase organizes endosomal sorting essential for maintaining the balance between recycling and degradative pathways. Rab4 localizes to many cargos whose transport in neurons is critical for regulating neurotransmission and neuronal health. Furthermore, elevated Rab4 levels in the CNS are associated with synaptic atrophy and neurodegeneration in Drosophila and humans, respectively. However, how the transport of Rab4-associated vesicles is regulated in neurons remains unknown. Using in vivo time-lapse imaging of Drosophila larvae, we show that activation of insulin signaling via Dilp2 and dInR increases the anterograde velocity, run length, and flux of Rab4 vesicles in the axons. Molecularly, we show that activation of neuronal insulin signaling further activates Vps34, elevates the levels of PI(3)P on Rab4-associated vesicles, recruits Klp98A (a PI(3)P-binding kinesin-3 motor) and activates their anterograde transport. Together, these observations delineate the role of insulin signaling in regulating axonal transport and synaptic homeostasis.

18.
Int J Mol Sci ; 25(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38892230

ABSTRACT

Marine natural products constitute a great source of potential new antidiabetic drugs. The aim of this study was to evaluate the role of phosphoeleganin (PE), a polyketide purified from the Mediterranean ascidian Sidnyum elegans, and its derivatives PE/2 and PE/3 on insulin sensitivity in human hepatocellular carcinoma (HepG2) cells. In our experiments, insulin stimulates the phosphorylation of its receptor (INSR) and AKT by 1.5- and 3.5-fold, respectively, whereas in the presence of PE, PE/2, and PE/3, the insulin induced INSR phosphorylation is increased by 2.1-, 2-, and 1.5-fold and AKT phosphorylation by 7.1-, 6.0-, and 5.1-fold, respectively. Interestingly, PE and PE/2 have an additive effect on insulin-mediated reduction of phosphoenolpyruvate carboxykinase (PEPCK) expression. Finally, PE and PE/2, but not PE/3, decrease interleukin 6 (IL6) secretion and expression before and after palmitic acid incubation, while in the presence of high glucose (HG), only PE reduces IL6. Levels of other cytokines are not significantly affected by PE and its derivates. All these data suggest that PE and its synthetic-derived compound, PE/2, significantly decrease IL6 and improve hepatic insulin signaling. As IL6 impairs insulin action, it could be hypothesized that PE and PE/2, by inhibiting IL6, may improve the hepatic insulin pathway.


Subject(s)
Carcinoma, Hepatocellular , Insulin , Interleukin-6 , Liver Neoplasms , Signal Transduction , Humans , Interleukin-6/metabolism , Insulin/metabolism , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Liver Neoplasms/drug therapy , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/drug therapy , Signal Transduction/drug effects , Hep G2 Cells , Animals , Receptor, Insulin/metabolism , Phosphorylation/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Insulin Resistance , Antigens, CD
19.
Eur J Pharmacol ; 978: 176789, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38945287

ABSTRACT

The increased incidence of obesity, which become a global health problem, requires more functional food products with minor side and excellent effects. Calebin A (CbA) is a non-curcuminoid compound, which is reported to be an effective treatment for lipid metabolism and thermogenesis. However, its ability and mechanism of action in improving obesity-associated hyperglycemia remain unclear. This study was designed to explore the effect and mechanism of CbA in hyperglycemia via improvement of inflammation and glucose metabolism in the adipose tissue and liver in high-fat diet (HFD)-fed mice. After 10 weeks fed HFD, obese mice supplemented with CbA (25 and 100 mg/kg) for another 10 weeks showed a remarkable reducing adiposity and blood glucose. CbA modulated M1/M2 macrophage polarization, ameliorated inflammatory cytokines, and restored adiponectin as well as Glut 4 expression in the adipose tissue. In the in vitro study, CbA attenuated pro-inflammatory markers while upregulated anti-inflammatory IL-10 in LPS + IFNγ-generated M1 phenotype macrophages. In the liver, CbA attenuated steatosis, inflammatory infiltration, and protein levels of inflammatory TNF-α and IL-6. Moreover, CbA markedly upregulated Adiponectin receptor 1, AMPK, and insulin downstream Akt signaling to improve glycogen content and increase Glut2 protein. These findings indicated that CbA may be a novel therapeutic approach to treat obesity and hyperglycemia phenotype targeting on adipose inflammation and hepatic insulin signaling.


Subject(s)
Adipose Tissue , Diet, High-Fat , Glucose , Hyperglycemia , Inflammation , Liver , Macrophages , Obesity , Animals , Diet, High-Fat/adverse effects , Mice , Hyperglycemia/drug therapy , Hyperglycemia/metabolism , Adipose Tissue/drug effects , Adipose Tissue/metabolism , Liver/drug effects , Liver/metabolism , Liver/pathology , Male , Glucose/metabolism , Obesity/drug therapy , Obesity/metabolism , Macrophages/drug effects , Macrophages/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/pathology , RAW 264.7 Cells , Mice, Obese , Mice, Inbred C57BL , Signal Transduction/drug effects , Cytokines/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Blood Glucose/metabolism , Blood Glucose/drug effects , Proto-Oncogene Proteins c-akt/metabolism
20.
Biochem Pharmacol ; 226: 116362, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38871335

ABSTRACT

AKT, also known as protein kinase B (PKB), serves as a crucial regulator of numerous biological functions, including cell growth, metabolism, and tumorigenesis. Increasing evidence suggests that the kinase activity of AKT is regulated via ubiquitination by various E3 ligase enzymes in response to different stimuli. However, the molecular mechanisms underlying insulin-induced AKT ubiquitination are not yet fully understood. Here, we show that activation of the insulin receptor (IR) leads to enhanced ubiquitination of AKT1 at K8 and K14 residues, facilitated by the cytosolic E3 ubiquitin ligase enzyme, TRAF6. Further investigation using AKT1 mutants with modified nucleocytoplasmic shuttling properties reveals that TRAF6-mediated AKT1 ubiquitination occurs within the nucleus in a ß-Arr2-dependent manner. The nuclear entry of TRAF6 depends on importin ß1, while ß-Arr2 regulates this process by facilitating the interaction between TRAF6 and importin ß1. Additionally, the ubiquitination of AKT1 is essential for its translocation to the activated IR on the plasma membrane, where it plays a functional role in recruiting Glut4 and facilitating glucose uptake. This study uncovers the cellular components and processes involved in insulin-induced ubiquitination and activation of AKT1, providing insights and detailed strategies for manipulating AKT1.


Subject(s)
Cell Nucleus , Insulin , Proto-Oncogene Proteins c-akt , TNF Receptor-Associated Factor 6 , Ubiquitination , beta-Arrestin 2 , Proto-Oncogene Proteins c-akt/metabolism , Ubiquitination/physiology , Ubiquitination/drug effects , Insulin/metabolism , Insulin/pharmacology , Animals , TNF Receptor-Associated Factor 6/metabolism , Cell Nucleus/metabolism , Mice , Humans , beta-Arrestin 2/metabolism , beta-Arrestin 2/genetics , HEK293 Cells
SELECTION OF CITATIONS
SEARCH DETAIL