Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 390
Filter
1.
Cell Commun Signal ; 22(1): 469, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39354587

ABSTRACT

BACKGROUND: Human interleukin-22 (IL-22) is known as a "dual function" cytokine that acts as a master regulator to maintain homeostasis, structural integrity of the intestinal epithelial barrier, and shielding against bacterial pathogens. On the other hand, the overexpression of IL-22 is associated with hyper-proliferation and recruitment of pathologic effector cells, leading to tissue damage and chronic inflammation in specific diseases including inflammatory bowel disease (IBD). To study a role of IL-22-mediated signaling axis during intestinal inflammation, we generated a set of small protein blockers of IL-22R1 and verified their inhibitory potential on murine model of colitis. METHODS: We used directed evolution of proteins to identify binders of human IL-22 receptor alpha (IL-22R1), designated as ABR ligands. This approach combines the assembly of a highly complex combinatorial protein library derived from small albumin-binding domain scaffold and selection of promising protein variants using ribosome display followed by large-scale ELISA screening. The binding affinity and specificity of ABR variants were analyzed on transfected HEK293T cells by flow cytometry and LigandTracer. Inhibitory function was further verified by competition ELISA, HEK-Blue IL-22 reporter cells, and murine dextran sulfate sodium (DSS)-induced colitis. RESULTS: We demonstrate that ABR specifically recognizes transgenic IL-22R1 expressed on HEK293T cells and IL-22R1 on TNFα/IFNγ-activated HaCaT cells. Moreover, some ABR binders compete with the IL-22 cytokine and function as IL-22R1 antagonists in HEK-Blue IL22 reporter cells. In a murine model of DSS-induced acute intestinal inflammation, daily intraperitoneal administration of the best IL-22R1 antagonist, ABR167, suppressed the development of clinical and histological markers of colitis including prevention of mucosal inflammation and architecture deterioration. In addition, ABR167 reduces the DSS-induced increase in mRNA transcript levels of inflammatory cytokines such as IL-1ß, IL-6, IL-10, and IL-17A. CONCLUSIONS: We developed small anti-human IL-22R1 blockers with antagonistic properties that ascertain a substantial role of IL-22-mediated signaling in the development of intestinal inflammation. The developed ABR blockers can be useful as a molecular clue for further IBD drug development.


Subject(s)
Colitis , Dextran Sulfate , Receptors, Interleukin , Animals , Humans , Colitis/chemically induced , Colitis/pathology , Colitis/metabolism , Receptors, Interleukin/metabolism , Receptors, Interleukin/genetics , Mice , HEK293 Cells , Mice, Inbred C57BL , Interleukin-22 , Disease Models, Animal , Interleukins/genetics , Interleukins/metabolism
2.
Clin Liver Dis ; 28(4): 747-760, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39362719

ABSTRACT

Several treatments have shown efficacy in preliminary alcohol-associated hepatitis trials. Interleukin-22 improved Model of End-stage Liver Disease score and aminotransferases in a phase II trial. The endogenous cholesterol derivative, larsucosterol, improved outcomes in a multi-center United States or European phase II trial. The antioxidants N-acetylcysteine and metadoxine improved survival in large trials. Trials from India report improved survival with granulocyte-colony stimulating factor, as well as improved outcome among patients receiving fecal microbiota transfer. Translational studies suggest that phage treatment of cytolytic Enterococcus faecalis may reduce liver injury.


Subject(s)
Hepatitis, Alcoholic , Humans , Hepatitis, Alcoholic/drug therapy , Hepatitis, Alcoholic/therapy , Antioxidants/therapeutic use , Interleukin-22 , Acetylcysteine/therapeutic use , Fecal Microbiota Transplantation , Granulocyte Colony-Stimulating Factor/therapeutic use
3.
Stem Cell Rev Rep ; 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39264501

ABSTRACT

Impaired tissue regeneration negatively impacts on left ventricular (LV) function and remodeling after acute myocardial infarction (AMI). Little is known about the intrinsic regulatory machinery of ischemia-induced endogenous cardiac stem cells (eCSCs) self-renewing divisions after AMI. The interleukin 22 (IL-22)/IL-22 receptor 1 (IL-22R1) pathway has emerged as an important regulator of several cellular processes, including the self-renewal and proliferation of stem cells. However, whether the hypoxic environment could trigger the self-renewal of eCSCs via IL-22/IL-22R1 activation remains unknown. In this study, the upregulation of IL-22R1 occurred due to activation of hypoxia-inducible factor-1α (HIF-1α) under hypoxic and ischemic conditions. Systemic IL-22 administration not only attenuated cardiac remodeling, inflammatory responses, but also promoted eCSC-mediated cardiac repair after AMI. Unbiased RNA microarray analysis showed that the downstream mediator Bmi1 regulated the activation of CSCs. Therefore, the HIF-1α-induced IL-22/IL-22R1/Bmi1 cascade can modulate the proliferation and activation of eCSCs in vitro and in vivo. Collectively, investigating the HIF-1α-activated IL-22/IL-22R1/Bmi1 signaling pathway might offer a new therapeutic strategy for AMI via eCSC-induced cardiac repair.

4.
Gut Microbes ; 16(1): 2409220, 2024.
Article in English | MEDLINE | ID: mdl-39349385

ABSTRACT

Enhanced mortality, relapse rates, and increased prevalence of Clostridioides difficile infection (CDI) emphasize the need for better therapies and management approaches. Modulating host immune response to ameliorate CDI-associated immunopathology may provide new advantages to currently inadequate antibiotic therapies. Here, we identified progranulin (PGRN) as an important immune target upregulated in response to CDI. PGRN-deficient mice displayed dramatically higher mortality and aggravated epithelial barrier disruption compared with wild type (WT) mice after CDI despite equivalent levels of bacterial burden or toxin in the large intestine. Mechanistically, PGRN protection was mediated by IL-22 production from CD4+ T helper cells, as demonstrated by a decrease in colonic IL-22-producing CD4+ T helper cells in the intestine of PGRN-deficient mice upon CDI and a boost of IL-22-producing CD4+ T helper cells activated by PGRN ex vivo. Clinical evidence suggests that CDI patients had significantly higher serum levels of PGRN compared with healthy controls, which was significantly and positively correlated with IL-22. Our findings thus indicate a critical role for PGRN-promoted CD4+ T cell IL-22 production in shaping gut immunity and reestablishing the intestinal barrier during CDI. As an alternative to pathogen-targeted therapy, this study may provide a new host-directed therapeutic strategy to attenuate severe, refractory CDI.


Subject(s)
Clostridioides difficile , Clostridium Infections , Interleukin-22 , Interleukins , Mice, Inbred C57BL , Progranulins , Animals , Interleukins/metabolism , Progranulins/metabolism , Progranulins/genetics , Clostridium Infections/immunology , Clostridium Infections/microbiology , Clostridium Infections/prevention & control , Mice , Humans , Mice, Knockout , Female , Male , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Helper-Inducer/metabolism
5.
Med Oncol ; 41(10): 240, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39231878

ABSTRACT

Interleukin-22, discovered in the year of 2000, is a pleiotropic Th17 cytokine from the IL-10 family of cytokines. IL-22 signals through the type 2 cytokine receptor complex IL-22R and predominantly activates STAT3. This pathway leads to the transcription of several different types of genes, giving IL-22 context-specific functions ranging from inducing antimicrobial peptide expression to target cell proliferation. In recent years, it has been shown that IL-22 is involved in the pathogenesis of neoplasia in some cancers through its pro-proliferative and anti-apoptotic effects. This review highlights studies with recent discoveries and conclusions drawn on IL-22 and its involvement and function in various cancers. Such a study may be helpful to better understand the role of IL-22 in cancer so that new treatment could be developed targeting IL-22.


Subject(s)
Interleukin-22 , Interleukins , Neoplasms , Humans , Interleukins/metabolism , Neoplasms/metabolism , Neoplasms/immunology , Neoplasms/pathology , Animals , Signal Transduction , STAT3 Transcription Factor/metabolism , Receptors, Interleukin/metabolism , Receptors, Interleukin/genetics
6.
World J Clin Cases ; 12(27): 6045-6056, 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39328855

ABSTRACT

Liver failure (LF) is prevalent in China and is characterized by complex pathogenesis, challenging clinical management, poor prognosis, and rising incidence and mortality rates. The immune status is an important factor affecting LF prognosis. Interleukins (Ils) are a type of cytokine that act and interact with multiple cells, including immune cells. These signaling molecules play important roles in intercellular information transmission, including the regulation of immune cells; mediation of the activation, proliferation, and differentiation of T and B cells; and orchestration of the inflammatory response. To date, many studies have explored the correlation between IL expression and liver disease prognosis, but few studies have evaluated Ils as the prognostic biomarkers of LF. This article reviews the potential use of Ils as the prognostic biomarkers of LF. Particularly, it evaluates the predictive values of IL-21, IL-22, and IL-31, the three often overlooked yet promising prognostic biomarkers, in predicting susceptibility to LF. Harnessing biomarkers for early prognostic insights can facilitate tailored treatment strategies and enhance patient survival. Thus, this article focuses on the identification of IL-21, IL-22, and IL-33 as biomarkers in preclinical and clinical studies on LF and reviews their role as biomarkers in the pathogenesis and diagnosis of LF.

7.
Front Immunol ; 15: 1444045, 2024.
Article in English | MEDLINE | ID: mdl-39229279

ABSTRACT

Introduction: Colitis is an inflammatory bowel disease (IBD) characterized by immune cell dysregulation and alterations in the gut microbiome. In our previous report, we showed a natural product in cruciferous vegetables and ligand of the aryl hydrocarbon receptor (AhR), indole-3-carbinol (I3C), was able to reduce colitis-induced disease severity and microbial dysbiosis in an interleukin-22 (IL-22) dependent manner. Methods: In the current study, we performed single-cell RNA sequencing (scRNAseq) from colonocytes during colitis induction and supplementation with I3C and show how this treatment alters expression of genes involved in IL-22 signaling. To further define the role of IL-22 signaling in I3C-mediated protection during colitis and disease-associated microbial dysbiosis, we generated mice with AhR deficiency in RAR-related orphan receptor c (Rorc)-expressing cells (AhR ΔRorc ) which depletes this receptor in immune cells involved in production of IL-22. Colitis was induced in wildtype (WT), AhR ΔRorc , and littermate (LM) mice with or without I3C treatment. Results: Results showed AhR ΔRorc mice lost the efficacy effects of I3C treatment which correlated with a loss of ability to increase IL-22 by innate lymphoid type 3 (ILC3s), not T helper 22 (Th22) cells. 16S rRNA microbiome profiling studies showed AhR ΔRorc mice were unable to regulate disease-associated increases in Bacteroides, which differed between males and females. Lastly, inoculation with a specific disease-associated Bacteroides species, Bacteroides acidifaciens (B. acidifaciens), was shown to exacerbate colitis in females, but not males. Discussion: Collectively, this report highlights the cell and sex-specific role of AhR in regulating microbes that can impact colitis disease.


Subject(s)
Bacteroides , Colitis , Interleukin-22 , Interleukins , Receptors, Aryl Hydrocarbon , Receptors, Aryl Hydrocarbon/metabolism , Receptors, Aryl Hydrocarbon/genetics , Animals , Interleukins/metabolism , Colitis/immunology , Colitis/microbiology , Female , Mice , Male , Bacteroides/immunology , Gastrointestinal Microbiome/immunology , Dysbiosis/immunology , Mice, Inbred C57BL , Indoles/pharmacology , Disease Models, Animal , Sex Factors , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Mice, Knockout
8.
Cells ; 13(16)2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39195286

ABSTRACT

Atopic dermatitis (AD) is a prevalent and chronic inflammatory skin condition characterized by a multifaceted pathophysiology that gives rise to diverse clinical manifestations. The management of AD remains challenging due to the suboptimal efficacy of existing treatment options. Nonetheless, recent progress in elucidating the underlying mechanisms of the disease has facilitated the identification of new potential therapeutic targets and promising drug candidates. In this review, we summarize the newest data, considering multiple connections between IL-22 and AD. The presence of circulating IL-22 has been found to correlate with the severity of AD and is identified as a critical factor driving the inflammatory response associated with the condition. Elevated levels of IL-22 in patients with AD are correlated with increased proliferation of keratinocytes, alterations in the skin microbiota, and impaired epidermal barrier function. Collectively, these factors contribute to the manifestation of the characteristic symptoms observed in AD.


Subject(s)
Dermatitis, Atopic , Interleukin-22 , Interleukins , Dermatitis, Atopic/pathology , Dermatitis, Atopic/drug therapy , Dermatitis, Atopic/immunology , Humans , Interleukins/metabolism , Animals , Keratinocytes/metabolism , Skin/pathology , Skin/metabolism , Microbiota
9.
Front Immunol ; 15: 1447431, 2024.
Article in English | MEDLINE | ID: mdl-39211040

ABSTRACT

Mammalian interleukin-22 (IL-22) attenuates organismal injury by inhibiting reactive oxygen species (ROS) and impeding the NLRP3 inflammasome activation. However, the role of fish IL-22 in this process remains unclear. We characterized MaIL-22, an IL-22 homolog in blunt snout bream (Megalobrama amblycephala). Despite its low sequence identity, it shares conserved structures and close evolutionary relationships with other teleost IL-22s. Furthermore, Aeromonas hydrophila (A. hydrophila) infection leads to tissue injury in M. amblycephala immune organs and concomitantly altered Mail-22 mRNA expression, suggesting that MaIL-22 was involved in the antimicrobial immune response. To explore MaIL-22's biological functions, we produced recombinant MaIL-22 (rMaIL-22) protein and demonstrated it significantly enhanced the survival of M. amblycephala post-A. hydrophila infection. To unravel its protective mechanisms, we explored the ROS/NLRP3 inflammasome axis and its downstream signaling responses. The results showed that rMaIL-22 treatment significantly elevated antioxidant enzyme (T-SOD, CAT and GSH-PX) activities to inhibit MDA activity and scavenge ROS in visceral tissues. Meanwhile, rMaIL-22 impeded the activation of NLRP3 inflammasome by suppressing NLRP3 protein and mRNA expression. This indicated that rMaIL-22 contributed to inhibit A. hydrophila-induced activation of the ROS/NLRP3 inflammasome axis. Consistent with these findings, rMaIL-22 treatment attenuated the expression of proinflammatory cytokines (il-1ß, tnf-α and il-6) and proapoptotic genes (caspase-3 and caspase-8) while promoting antiapoptotic genes (bcl-2b and mcl-1a) expression, ultimately mitigating tissue injury in visceral tissues. In conclusion, our research underscores MaIL-22's key role in microbial immune regulation, offering insights for developing IL-22-targeted therapies and breeding programs.


Subject(s)
Aeromonas hydrophila , Apoptosis , Fish Diseases , Gram-Negative Bacterial Infections , Inflammasomes , Inflammation , Interleukin-22 , Interleukins , NLR Family, Pyrin Domain-Containing 3 Protein , Reactive Oxygen Species , Animals , Aeromonas hydrophila/immunology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Inflammasomes/metabolism , Inflammasomes/immunology , Apoptosis/drug effects , Gram-Negative Bacterial Infections/immunology , Reactive Oxygen Species/metabolism , Interleukins/metabolism , Interleukins/immunology , Fish Diseases/immunology , Fish Diseases/microbiology , Inflammation/immunology , Fish Proteins/metabolism , Fish Proteins/immunology , Fish Proteins/genetics , Cyprinidae/immunology , Cyprinidae/metabolism , Signal Transduction
10.
J Interferon Cytokine Res ; 44(10): 438-452, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39076109

ABSTRACT

Interferon lambdas (IFN-λs) are crucial to control virus infections at mucosal surfaces. Interleukin-22 (IL-22) was reported to help IFN-λ control rotavirus infection in the intestinal epithelium of mice either by aiding in the induction of interferon-stimulated genes (ISGs) or by increasing cell proliferation thereby clearing virally infected cells. We investigated whether IL-22 and IFN-λs exhibit similar synergistic effects in human intestinal epithelial cells (IECs) models. Our results showed that co-treatment of IL-22 and IFN-λ induced more phosphorylation of STAT1 than either cytokine used alone. However, this increased STAT1 activation did not translate to increased ISGs production or antiviral protection. Transcriptomics analysis revealed that despite sharing a common subunit (IL-10Rb) within their heterodimeric receptors and activating similar STATs, the signaling generated by IL-22 and IFN-λs is independent, with IFN-λ signaling inducing ISGs and IL-22 signaling inducing cell proliferation genes. Using human intestinal organoids, we confirmed that IL-22 increased the size of the organoids through increased cell proliferation and expression of the stem cell marker (OLFM4). These findings suggest that in human intestinal cells, IFN-λs and IL-22 act independently to clear virus infections. IFN-λs induce ISGs to control virus replication and spread, whereas IL-22 increases cell proliferation to eliminate infected cells and repair the damage epithelium. Although these two cytokines do not act synergistically, each plays a key function in the protection of human IECs.


Subject(s)
Cell Proliferation , Epithelial Cells , Interleukin-22 , Interleukins , Intestinal Mucosa , Humans , Interleukins/metabolism , Interleukins/pharmacology , Cell Proliferation/drug effects , Intestinal Mucosa/virology , Intestinal Mucosa/metabolism , Epithelial Cells/virology , Epithelial Cells/metabolism , STAT1 Transcription Factor/metabolism , Signal Transduction , Organoids/virology , Organoids/metabolism , Interferons/metabolism , Rotavirus , Animals
11.
Discov Oncol ; 15(1): 317, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39073546

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) is a prevalent malignancy with high morbidity and mortality rates. Previous studies have demonstrated that interleukin (IL)-22 is involved in CRC progression; however, the exact mechanism remains unclear. This study aimed to investigate the effects of IL-22 on CRC cell proliferation and metastasis. METHODS: IL-22 levels in the serum and tissues of CRC patients were measured using enzyme-linked immunosorbent assay (ELISA). Cell counting kit-8 (CCK-8) assay was used to detect the viability of CRC (HCT116) cells treated with different IL-22 concentrations. Colony formation, Transwell invasion, and scratch assays were employed to assess the effects of IL-22 on cell proliferation, invasion, and migration. Western blotting was performed to measure the expression levels of phosphatidylinositol 3-kinase (PI3K), protein kinase B (AKT), p-PI3K, p-AKT, E-cadherin, matrix metalloproteinase (MMP)-2, MMP-9, SNAI1, and TWIST1 in HCT116 cells treated with IL-22 or a PI3K inhibitor. RESULTS: ELISA results showed that the expression of IL-22 was significantly increased in the serum and tissues of CRC patients compared to controls. IL-22 treatment increased cell viability and colony formation in a concentration-dependent manner and enhanced cell invasion and migration. Western blotting analysis revealed that IL-22 stimulation upregulated p-PI3K and p-AKT expression, while total PI3K and AKT levels remained unchanged. Additionally, IL-22 also decreased E-cadherin expression and increased the expression of MMP-2, MMP-9, SNAI1, and TWIST1. CONCLUSIONS: IL-22 activates the PI3K-AKT pathway and promotes HCT116 cell proliferation and metastasis. Targeting the regulation of the PI3K/AKT pathway may be a potential therapeutic strategy for CRC.

12.
Iran J Immunol ; 21(3): 225-233, 2024 06 26.
Article in English | MEDLINE | ID: mdl-38920022

ABSTRACT

Background: The development of a cytokine storm in Coronavirus Disease 2019 (COVID-19) infection can make the disease fatal. We hypothesize that this excessive cytokine production impairs mucosal healing. IL-17 and IL-22 are cytokines that play a key role in protecting and regenerating mucosal tissues.IL-17 and IL-22 support each other and the imbalance between them plays a role in the pathogenesis of many rheumatologic diseases. Objective: To investigate whether COVID-19 severity is related to IL17, IL-22, and the IL-17/IL-22 ratio. Methods: The study was planned prospectively and included 69 patients with active COVID-19 infection.Three groups were created: patients with upper respiratory tract infection, pneumonia, and cytokine storm. Blood samples were taken from the patients upon their first admission and serum levels of IL-17 and IL-22 were measured using the enzyme-linked immunosorbent assay (ELISA). We assessed the relationship between IL17, IL22, IL17/IL22 ratio, clinical and lung involvement by comparing them with the healthy group. Results: The levels of IL-17 were significantly higher in COVID-19 patients with upper respiratory tract infection compared to the control group (p=0.027). IL17/IL-22 ratio significantly increased in patients with cytokine storm compared to the healthy controls (p=0.027). Serum levels of IL-22 were negatively correlated with the CO-RADS score (r=-0.31, p=0.004), while IL-17/IL-22 ratio was positively correlated with the CO-RADS score (r= 0.29, p=0.008). Conclusion: Levels of IL-17, IL-22 and IL-17/IL-22 may provide valuable insights into the progression of COVID-19.

14.
Mol Metab ; 86: 101965, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38871178

ABSTRACT

OBJECTIVE: Interleukin (IL)-22 is a potential therapeutic protein for the treatment of metabolic diseases such as obesity, type 2 diabetes, and metabolic dysfunction-associated steatotic liver disease due to its involvement in multiple cellular pathways and observed hepatoprotective effects. The short serum half-life of IL-22 has previously limited its use in clinical applications; however, the development of mRNA-lipid nanoparticle (LNP) technology offers a novel therapeutic approach that uses a host-generated IL-22 fusion protein. In the present study, the effects of administration of an mRNA-LNP encoding IL-22 on metabolic disease parameters was investigated in various mouse models. METHODS: C57BL/6NCrl mice were used to confirm mouse serum albumin (MSA)-IL-22 protein expression prior to assessments in C57BL/6NTac and CETP/ApoB transgenic mouse models of metabolic disease. Mice were fed either regular chow or a modified amylin liver nonalcoholic steatohepatitis-inducing diet prior to receiving either LNP-encapsulated MSA-IL-22 or MSA mRNA via intravenous or intramuscular injection. Metabolic markers were monitored for the duration of the experiments, and postmortem histology assessment and analysis of metabolic gene expression pathways were performed. RESULTS: MSA-IL-22 was detectable for ≥8 days following administration. Improvements in body weight, lipid metabolism, glucose metabolism, and lipogenic and fibrotic marker gene expression in the liver were observed in the MSA-IL-22-treated mice, and these effects were shown to be durable. CONCLUSIONS: These results support the application of mRNA-encoded IL-22 as a promising treatment strategy for metabolic syndrome and associated comorbidities in human populations.


Subject(s)
Interleukin-22 , Interleukins , Metabolic Diseases , Mice, Inbred C57BL , RNA, Messenger , Animals , Mice , Interleukins/metabolism , Interleukins/genetics , RNA, Messenger/metabolism , RNA, Messenger/genetics , Male , Metabolic Diseases/metabolism , Metabolic Diseases/genetics , Nanoparticles , Half-Life , Mice, Transgenic , Liver/metabolism , Disease Models, Animal , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/genetics , Lipids/blood , Liposomes
15.
Acupunct Med ; 42(3): 146-154, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38702866

ABSTRACT

BACKGROUND: Cervical spondylosis (CS) is a prevalent disorder that can have a major negative impact on quality of life. Traditional conservative treatment has limited efficacy, and electroacupuncture (EA) is a novel treatment option. We investigated the application and molecular mechanism of EA treatment in a rat model of cervical intervertebral disk degeneration (CIDD). METHODS: The CIDD rat model was established, following which rats in the electroacupuncture (EA) group received EA. For overexpression of IL-22 or inhibition of JAK2-STAT3 signaling, the rats were injected intraperitoneally with recombinant IL-22 protein (p-IL-22) or the JAK2-STAT3 (Janus kinase 2-signal transducer and activator of transcription protein 3) inhibitor AG490 after model establishment. Rat nucleus pulposus (NP) cells were isolated and cultured. Cell counting kit-8 and flow cytometry were used to analyze the viability and apoptosis of the NP cells. Expression of IL-22, JAK2 and STAT3 was determined using RT-qPCR. Expression of IL-22/JAK2-STAT3 pathway and apoptosis related proteins was detected by Western blotting (WB). RESULTS: EA protected the NP tissues of CIDD rats by regulating the IL-22/JAK2-STAT3 pathway. Overexpression of IL-22 significantly promoted the expression of tumor necrosis factor (TNF)-α, IL-6, IL-1ß, matrix metalloproteinase (MMP)3 and MMP13 compared with the EA group. WB demonstrated that the expression of IL-22, p-JAK2, p-STAT3, caspase-3 and Bax in NP cells of the EA group was significantly reduced and Bcl-2 elevated compared with the model group. EA regulated cytokines and MMP through activation of IL-22/JAK2-STAT3 signaling in CIDD rat NP cells. CONCLUSION: We demonstrated that EA affected apoptosis by regulating the IL-22/JAK2-STAT3 pathway in NP cells and reducing inflammatory factors in the CIDD rat model. The results extend our knowledge of the mechanisms of action underlying the effects of EA as a potential treatment approach for CS in clinical practice.


Subject(s)
Apoptosis , Disease Models, Animal , Electroacupuncture , Interleukin-22 , Interleukins , Intervertebral Disc Degeneration , Janus Kinase 2 , Nucleus Pulposus , Rats, Sprague-Dawley , STAT3 Transcription Factor , Signal Transduction , Animals , Intervertebral Disc Degeneration/therapy , Intervertebral Disc Degeneration/metabolism , Intervertebral Disc Degeneration/genetics , Nucleus Pulposus/metabolism , Nucleus Pulposus/cytology , Janus Kinase 2/metabolism , Janus Kinase 2/genetics , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Rats , Interleukins/metabolism , Interleukins/genetics , Male , Humans , Cervical Vertebrae
16.
Int Immunopharmacol ; 134: 112173, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38728884

ABSTRACT

Rheumatoid arthritis-associated interstitial lung disease (RA-ILD) is characterized by a high incidence and mortality rate, highlighting the need for biomarkers to detect ILD early in RA patients. Previous studies have shown the protective effects of Interleukin-22 (IL-22) in pulmonary fibrosis using mouse models. This study aims to assess IL-22 expression in RA-ILD to validate foundational experiments and explore its diagnostic value. The study included 66 newly diagnosed RA patients (33 with ILD, 33 without ILD) and 14 healthy controls (HC). ELISA was utilized to measure IL-22 levels and perform intergroup comparisons. The correlation between IL-22 levels and the severity of RA-ILD was examined. Logistic regression analysis was employed to screen potential predictive factors for RA-ILD risk and establish a predictive nomogram. The diagnostic value of IL-22 in RA-ILD was assessed using ROC. Subsequently, the data were subjected to 30-fold cross-validation. IL-22 levels in the RA-ILD group were lower than in the RA-No-ILD group and were inversely correlated with the severity of RA-ILD. Logistic regression analysis identified IL-22, age, smoking history, anti-mutated citrullinated vimentin antibody (MCV-Ab), and mean corpuscular hemoglobin concentration (MCHC) as independent factors for distinguishing between the groups. The diagnostic value of IL-22 in RA-ILD was moderate (AUC = 0.75) and improved when combined with age, smoking history, MCV-Ab and MCHC (AUC = 0.97). After 30-fold cross-validation, the average AUC was 0.886. IL-22 expression is dysregulated in the pathogenesis of RA-ILD. This study highlights the potential of IL-22, along with other factors, as a valuable biomarker for assessing RA-ILD occurrence and progression.


Subject(s)
Arthritis, Rheumatoid , Biomarkers , Interleukin-22 , Interleukins , Lung Diseases, Interstitial , Adult , Aged , Female , Humans , Male , Middle Aged , Arthritis, Rheumatoid/diagnosis , Arthritis, Rheumatoid/complications , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/blood , Biomarkers/blood , Interleukins/blood , Interleukins/metabolism , Lung Diseases, Interstitial/diagnosis , Lung Diseases, Interstitial/immunology
17.
Immunity ; 57(5): 1005-1018.e7, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38697116

ABSTRACT

Cytokine expression during T cell differentiation is a highly regulated process that involves long-range promoter-enhancer and CTCF-CTCF contacts at cytokine loci. Here, we investigated the impact of dynamic chromatin loop formation within the topologically associating domain (TAD) in regulating the expression of interferon gamma (IFN-γ) and interleukin-22 (IL-22); these cytokine loci are closely located in the genome and are associated with complex enhancer landscapes, which are selectively active in type 1 and type 3 lymphocytes. In situ Hi-C analyses revealed inducible TADs that insulated Ifng and Il22 enhancers during Th1 cell differentiation. Targeted deletion of a 17 bp boundary motif of these TADs imbalanced Th1- and Th17-associated immunity, both in vitro and in vivo, upon Toxoplasma gondii infection. In contrast, this boundary element was dispensable for cytokine regulation in natural killer cells. Our findings suggest that precise cytokine regulation relies on lineage- and developmental stage-specific interactions of 3D chromatin architectures and enhancer landscapes.


Subject(s)
CCCTC-Binding Factor , Cell Differentiation , Interferon-gamma , Interleukin-22 , Interleukins , Th1 Cells , Animals , CCCTC-Binding Factor/metabolism , CCCTC-Binding Factor/genetics , Th1 Cells/immunology , Mice , Cell Differentiation/immunology , Interferon-gamma/metabolism , Binding Sites , Interleukins/metabolism , Interleukins/genetics , Enhancer Elements, Genetic/genetics , Mice, Inbred C57BL , Chromatin/metabolism , Toxoplasmosis/immunology , Toxoplasmosis/parasitology , Toxoplasmosis/genetics , Gene Expression Regulation , Toxoplasma/immunology , Cytokines/metabolism , Cell Lineage , Th17 Cells/immunology
18.
Am J Physiol Gastrointest Liver Physiol ; 327(2): G123-G139, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38771154

ABSTRACT

Microtubule-associated serine-threonine kinase-like (MASTL) has recently been identified as an oncogenic kinase given its overexpression in numerous cancers. Our group has shown that MASTL expression is upregulated in mouse models of sporadic colorectal cancer and colitis-associated cancer (CAC). CAC is one of the most severe complications of chronic inflammatory bowel disease (IBD), but a limited understanding of the mechanisms governing the switch from normal healing to neoplasia in IBD underscores the need for increased research in this area. However, MASTL levels in patients with IBD and its molecular regulation in IBD and CAC have not been studied. This study reveals that MASTL is upregulated by the cytokine interleukin (IL)-22, which promotes proliferation and has important functions in colitis recovery; however, IL-22 can also promote tumorigenesis when chronically elevated. Upon reviewing the publicly available data, we found significantly elevated MASTL and IL-22 levels in the biopsies from patients with late-stage ulcerative colitis compared with controls, and that MASTL upregulation was associated with high IL-22 expression. Our subsequent in vitro studies found that IL-22 increases MASTL expression in intestinal epithelial cell lines, which facilitates IL-22-mediated cell proliferation and downstream survival signaling. Inhibition of AKT activation abrogated IL-22-induced MASTL upregulation. We further found an increased association of carbonic anhydrase IX (CAIX) with MASTL in IL-22-treated cells, which stabilized MASTL expression. Inhibition of CAIX prevented IL-22-induced MASTL expression and cell survival. Overall, we show that IL-22/AKT signaling increases MASTL expression to promote cell survival and proliferation. Furthermore, CAIX associates with and stabilizes MASTL in response to IL-22 stimulation.NEW & NOTEWORTHY MASTL is upregulated in colorectal cancer; however, its role in colitis and colitis-associated cancer is poorly understood. This study is the first to draw a link between MASTL and IL-22, a proinflammatory/intestinal epithelial recovery-promoting cytokine that is also implicated in colon tumorigenesis. We propose that IL-22 increases MASTL protein stability by promoting its association with CAIX potentially via AKT signaling to promote cell survival and proliferation.


Subject(s)
Interleukin-22 , Interleukins , Intestinal Mucosa , Interleukins/metabolism , Humans , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Intestinal Mucosa/pathology , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Animals , Cell Proliferation , Signal Transduction , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/pathology , Mice , Up-Regulation , Proto-Oncogene Proteins c-akt/metabolism , Carbonic Anhydrase IX/metabolism , Carbonic Anhydrase IX/genetics , Antigens, Neoplasm
19.
Front Pediatr ; 12: 1376706, 2024.
Article in English | MEDLINE | ID: mdl-38606371

ABSTRACT

Background: The occurrence of eczema is related to helper T 22 (Th22) cytokine disorder, and Th22 mainly secretes interleukin-22 (IL-22). This study aims to investigate the predictive value of umbilical cord blood IL-22 levels on the onset of eczema in infants within 42 days. Study design: The study selected 157 full-term healthy neonates born between September 2020 and May 2021. Cord blood was collected immediately after birth to determine IL-22 levels, and the infants were followed up for 42 days to assess the incidence of eczema. Results: Among the 157 infants who completed the 42-day follow-up, 86 developed eczema and 71 did not. The level of IL-22 in the umbilical cord blood of the eczema group was lower than that of the non-eczema group (p < 0.05). Additionally, the incidence of eczema in children whose Family history of allergy was significantly higher than in the group without eczema (p < 0.05). Logistic regression analysis indicated that low cord blood IL-22 levels and a family history of allergies were independent risk factors for eczema (p < 0.05). The ROC curve of cord blood IL-22 levels and infant eczema showed that the cut-off value is 36.362 pg/ml, the area under the curve (AUC) is 0.613, the standard error is 0.045, the 95% CI is 0.526-0.701, the sensitivity is 63.4%, and the specificity is 57.0%. Therefore, there is a certain correlation between cord blood IL-22 levels and the incidence of infant eczema. Conclusions: Low IL-22 levels in umbilical cord blood may be linked to the development of infant eczema within 42 days, indicating a potential predictive value, although this value appears to be limited.

20.
Pathol Res Pract ; 256: 155256, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38492359

ABSTRACT

Cardiac fibrosis, a significant characteristic of cardiovascular diseases, leads to ventricular remodeling and impaired cardiac function. In this study, we aimed to investigate the role of Interleukin-22 (IL-22) in myocardial fibrosis following myocardial infarction (MI) and to explore the underlying metabolic mechanisms. Here we analyzed the single-cell sequencing data and found that the level of aerobic glycolysis was significantly higher in cardiac fibrosis in MI patient, which we validated through in vivo experiments. Utilizing MI mouse model, these experiments revealed decreased serum IL-22 levels and increased levels of AngII and TGF-ß1. However, treatment with exogenous IL-22 reversed these changes, reduced infarct size, and fibrosis. In vitro experiments demonstrated that IL-22 inhibited AngII-induced fibroblast-to-myofibroblast transition (FMT) by suppressing the expression of α-SMA, Cola1, and Cola3. Metabolic analysis indicated that IL-22 decreased the expression of glycolytic enzymes and reduced lactate production in cardiac fibroblasts. Further in vivo experiments confirmed the inhibitory effect of IL-22 on Pyruvate kinase isoform M2 (PKM2) levels in heart tissue. Additionally, IL-22 activated the c-Jun N-terminal kinase (JNK) pathway, while inhibition of JNK partially reversed IL-22's effect on PKM2 activity. These findings suggest that IL-22 mitigates cardiac fibrosis and FMT by inhibiting aerobic glycolysis by activating the JNK/PKM2 pathway. Our study highlights IL-22 as a potential therapeutic target for myocardial fibrosis and cardiovascular diseases, providing insights into its role in regulating fibrosis and glycolysis. These findings pave the way for developing targeted therapies and investigating additional metabolic pathways for improved treatment outcomes in the field of cardiovascular diseases.


Subject(s)
Interleukin-22 , Myocardial Infarction , Animals , Humans , Mice , Fibroblasts , Fibrosis , Metabolic Reprogramming , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardium/pathology , Transforming Growth Factor beta1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL