ABSTRACT
Low back pain is a health problem that represents the greatest cause of years lived with disability. This research seeks to evaluate the bacterial composition of the intestinal microbiota of two similar groups: one with chronic low back pain (PG) and the control group (CG). Clinical data from 73 participants and bacterial genome sequencing data from stool samples were analyzed. There were 40 individuals in PG and 33 in CG, aged between 20 and 50 years and with a body mass index of up to 30 kg/m2. Thus, the intragroup alpha diversity and intergroup beta diversity were analyzed. The significant results (p < 0.05) showed greater species richness in PG compared to CG. Additionally, a greater abundance of the species Clostridium difficile in PG was found along with 52 species with significantly different average relative abundances between groups (adjusted p < 0.05), with 36 more abundant species in PG and 16 in CG. We are the first to unveil significant differences in the composition of the intestinal bacterial microbiota of individuals with chronic low back pain who are non-elderly, non-obese and without any other serious chronic diseases. It could be a reference for a possible intestinal bacterial microbiota signature in chronic low back pain.
ABSTRACT
The sea cucumber (H. glaberrima) is a species found in the shallow waters near coral reefs and seagrass beds in Puerto Rico. To characterize the microbial taxonomic composition and functional profiles present in the sea cucumber, total DNA was obtained from their intestinal system, fosmid libraries constructed, and subsequent sequencing was performed. The diversity profile displayed that the most predominant domain was Bacteria (76.56 %), followed by Viruses (23.24 %) and Archaea (0.04 %). Within the 11 phyla identified, the most abundant was Proteobacteria (73.16 %), followed by Terrabacteria group (3.20 %) and Fibrobacterota, Chlorobiota, Bacteroidota (FCB) superphylum (1.02 %). The most abundant species were Porvidencia rettgeri (21.77 %), Pseudomonas stutzeri (14.78 %), and Alcaligenes faecalis (5.00 %). The functional profile revealed that the most abundant functions are related to transporters, MISC (miscellaneous information systems), organic nitrogen, energy, and carbon utilization. The data collected in this project on the diversity and functional profiles of the intestinal system of the H. glaberrima provided a detailed view of its microbial ecology. These findings may motivate comparative studies aimed at understanding the role of the microbiome in intestinal regeneration.
ABSTRACT
Non-communicable chronic diseases (NCDs) are the most widespread cause of mortality worldwide. Intestinal microbiota balance can be altered by changes in the abundance and/or diversity of intestinal microbiota, indicating a role of intestinal microbiota in NCD development. This review discusses the findings of in vitro studies, pre-clinical studies and clinical trials on the effects of Brazilian native fruits, their by-products, as well as their bioactive compounds on human intestinal microbiota and NCD. The major bioactive compounds in Brazilian native fruits and their by-products, and the impacts of their administration on outcomes linked to intestinal microbiota modulation are discussed. Mechanisms of intestinal microbiota affecting NCD could be linked to the modulation of absorption and energy balance, immune and endocrine systems, and inflammatory response. Brazilian native fruits, such as acerola, açaí, baru, buriti, guava, jabuticaba, juçara, and passion fruit, have several bioactive compounds, soluble and insoluble fibers, and a variety of phenolic compounds, which are capable of changing these key mechanisms. Brazilian native fruits and their by-products can help to promote positive intestinal and systemic health benefits by driving alterations in the composition of the human intestinal microbiota, and increasing the production of distinct short-chain fatty acids and phenolic metabolites, thereby enhancing intestinal integrity and homeostasis. Evidence from available literature shows that the modulatory impacts of Brazilian native fruits and their by-products on the composition and metabolic activity of the intestinal microbiota could improve several clinical repercussions associated with NCD, reinforcing the influence of intestinal microbiota in extra-intestinal outcomes.
ABSTRACT
BACKGROUND: Type 1 diabetes mellitus (T1DM) is a chronic disease of clinical importance, whose prevalence has increased in Brazil and worldwide. Among the possible factors involved in the genesis and control of the disease, the intestinal microbiota (IM) deserves to be highlighted, but studies that report differences between the IM of patients with T1DM and those who are healthy are still contradictory and scarce. OBJECTIVE: The objective of this paper was to evaluate the IM profile of T1DM and healthy patients, in order to verify possible differences and to evaluate the possibility of the influence of IM on glycemic control in T1DM. METHODS: Of the 2716 articles found, nine were included in this review, and all of which were randomized, observational, cross-sectional, cohort and case-control studies that characterized the composition of IM in adults with T1DM and healthy adults. RESULTS: Studies are very diverse, which makes it difficult to associate the IM profile with T1DM etiology and control, however it was found that there was a prevalence of the phylum Firmicutes in the IM of individuals with T1DM and that there was no significant difference in the relative abundance of Bacteroidetes in both populations. CONCLUSION: It was also possible to identify an inverse relationship of the genus Bifidobacterium and a positive relationship of the genera Bacteroidetes and Prevotella with the concentration ofglycated hemoglobin. More studies are needed to contemplate the characterization of IM in healthy and T1DM individuals.
Subject(s)
Diabetes Mellitus, Type 1 , Gastrointestinal Microbiome , Humans , Adult , Diabetes Mellitus, Type 1/epidemiology , Cross-Sectional Studies , Case-Control Studies , Brazil , Randomized Controlled Trials as TopicABSTRACT
The aim of this scoping review was to determine the characteristics of studies evaluating fecal microbiota transplantation (FMT), as well as its effects and safety as a therapeutic intervention for people living with human immunodeficiency virus (HIV). We conducted a scoping review following the methodology of the Joanna Briggs Institute. We searched the following databases: PubMed, Web of Science, Scopus, Embase, Cochrane Library, and Medline until September 19, 2021. Studies that used FMT in people living with HIV and explored its effects on the health of these people were included. Two randomized and 2 uncontrolled clinical trials with a total of 55 participants were included. Participants were well-controlled HIV-infected people. Regarding microbiota changes, three studies found significant post-FMT increases in Fusobacterium, Prevotella, α-diversity, Chao index, and/or Shannon index, and/or decreases in Bacteroides. Regarding markers of intestinal damage, one study found a decrease in intestinal fatty acid binding protein post-FMT, and another study found an increase in zonulin. Other outcomes evaluated by the studies were as follows: markers of immune and inflammatory activation, markers of immunocompetence (CD4+, and CD8+ T lymphocytes), and HIV viral load; however, none showed significant changes. Clinical outcomes were not evaluated by these studies. Regarding the safety of FMT, only mild adverse events were appreciated. No serious adverse event was reported. The clinical evidence for FMT in people living with HIV is sparse. FMT appears to have good tolerability and, no serious adverse event has been reported so far. Further clinical trials and evaluation of clinically important biomedical outcomes for FMT in people living with HIV are needed.
Subject(s)
Fecal Microbiota Transplantation , HIV Infections , Fecal Microbiota Transplantation/adverse effects , Feces/microbiology , HIV , Humans , Randomized Controlled Trials as Topic , T-Lymphocytes , Treatment OutcomeABSTRACT
ABSTRACT Background Supplementation with probiotics, prebiotics and symbiotics has shown positive effects on clinical markers and risk factors for non-alcoholic fatty liver disease (NAFLD). Objective To evaluate the effect of supplementation with probiotic, prebiotic or symbiotic on intestinal microbiota in NAFLD patients. Methods Two investigators conducted independently search for articles in the Medline databases, via PubMed, Web of Science, Embase, Scopus, Lilacs, Central Cochrane Library, Clinical Trials.gov and on the Ovid platform for the gray literature search. Results A total of 3,423 papers were identified by searching the electronic databases; 1,560 of them were duplicate and they were excluded; 1,825 articles were excluded after reading the title and abstract. A total of 39 articles were select to reading, however only four articles met the eligibility criteria to include in this systematic review. Three of the included studies that used prebiotic or symbiotic supplementation showed that after the intervention there were changes in the intestinal microbiota pattern. Only in one study such changes were not observed. A high risk of bias was observed in most assessments. Conclusion Although there is a possible change in the gut microbiota of individuals with NAFLD after supplementation with symbiotics or prebiotics, a clinical indication as part of NAFLD treatment is not yet possible.
RESUMO Contexto A suplementação com probióticos, prebióticos e simbióticos mostrou efeitos positivos sobre marcadores clínicos e fatores de risco para doença hepática gordurosa não alcoólica (DHGNA). Objetivo Avaliar o efeito da suplementação com probióticos, prebióticos ou simbióticos na microbiota intestinal em pacientes com DHGNA. Métodos Dois pesquisadores realizaram buscas independentes de artigos nas bases de dados Medline, via PubMed, Web of Science, Embase, Scopus, Lilacs, Biblioteca Central Cochrane, Clinical Trials.gov e na plataforma Ovid para busca de literatura cinza. Os títulos e resumos foram lidos para excluir artigos irrelevantes. Em seguida, os artigos selecionados foram lidos na íntegra e avaliados de acordo com os critérios de elegibilidade. O risco de viés foi avaliado de acordo com a Cochrane. Resultados Um total de 3.423 artigos foram identificado por meio de busca nas bases de dados eletrônicas; 1.560 deles eram duplicados e foram excluídos; 1.825 artigos foram excluídos após a leitura do título e do resumo. Um total de 39 artigos foram selecionado para leitura, porém apenas quatro artigos atenderam aos critérios de elegibilidade para inclusão nesta revisão sistemática. Três dos estudos incluídos que utilizaram suplementação de prebióticos ou simbióticos mostraram que após a intervenção ocorreram mudanças no padrão da microbiota intestinal. Apenas em um estudo tais mudanças não foram observadas. Um elevado risco de viés foi observado na maioria das avaliações. Conclusão Embora haja uma possível alteração na microbiota intestinal de indivíduos com DHGNA após a suplementação com simbióticos ou prebióticos, uma indicação clínica como parte do tratamento da DHGNA ainda não é possível.
ABSTRACT
BACKGROUND: Early-onset neonatal sepsis (EONS) remains one of the leading causes of morbidity and mortality related to premature birth, and its diagnosis remains difficult. Our goal was to evaluate the intestinal microbiota of the first meconium of preterm newborns and ascertain whether it is associated with clinical EONS. METHODS: In a controlled, prospective cohort study, samples of the first meconium of premature infants with a gestational age (GA) ≤32 weeks was obtained at Hospital de Clínicas de Porto Alegre and DNA was isolated from the samples. 16S rDNA based microbiota composition of preterm infants with a clinical diagnosis of EONS was compared to that of a control group. RESULTS: 40 (48%) premature infants with clinical diagnosis of EONS and 44 (52%) without EONS were included in the analysis. The most abundant phylum detected in both groups, Proteobacteria, was more prevalent in the sepsis group (p = .034). 14% of variance among bacterial communities (p = .001) correlated with EONS. The genera most strongly associated with EONS were Paenibacillus, Caulobacter, Dialister, Akkermansia, Phenylobacterium, Propionibacterium, Ruminococcus, Bradyrhizobium, and Alloprevotella. A single genus, Flavobacterium, was most strongly associated with the control group. CONCLUSION: These findings suggest that the first-meconium microbiota is different in preterm neonates with and without clinical EONS.
Subject(s)
Infant, Premature, Diseases , Microbiota , Neonatal Sepsis , Premature Birth , Sepsis , Female , Humans , Infant , Infant, Newborn , Infant, Premature , Infant, Premature, Diseases/diagnosis , Meconium/microbiology , Neonatal Sepsis/diagnosis , Pregnancy , Prospective Studies , Sepsis/diagnosis , Sepsis/microbiologyABSTRACT
Spodoptera frugiperda is a polyphagous pest of several crops of economic importance. Nowadays, the insect is broadly distributed in America and, recently, in Africa, Asia, and Australia. The species has diverged into corn and rice strains. The role of the gut microbiota in insect physiology is relevant due to its participation in crucial functions. However, knowledge of seasonal variations that alter the gut microbiome in pests is limited. Gut microbiome composition between the dry and rainy seasons was analyzed with cultured and uncultured approaches in S. frugiperda corn strain larvae collected at Northwest Colombia, as seasonal microbiome changes might fluctuate due to environmental changes. On the basis of culture-dependent methods, results show well-defined microbiota with bacterial isolates belonging to Enterococcus, Klebsiella (Enterobacteriales: Enterobacteriaceae), Enterobacter (Enterobacterales: Enterobacteriaceae), and Bacillus (Bacillales: Bacillaceae) genera. The community composition displayed a low bacterial diversity across all samples. The core community detected with uncultured methods was composed of Enterococcus, Erysipelatoclostridium (Erysipelotrichales: Erysipelotrichaceae), Rasltonia (Burkholderiales: Burkholderiaceae), and Rhizobium (Hyphomicrobiales: Rhizobiaceae) genera, and Enterobacteriaceae family members. Significant differences in microbiome diversity were observed between the two seasons. The relative abundance of Erysipelatoclostridium was high in the dry season, while in the phylotype ZOR0006 (Erysipelotrichales: Erysipelotrichaceae) and Tyzzerella (Lachnospirales: Lachnospiraceae) genus, the relative abundance was high in the rainy season. The overall low gut bacterial diversity observed in the S. frugiperda corn strain suggests a strong presence of antagonist activity as a selection factor possibly arising from the host, the dominant bacterial types, or the material ingested. Targeting the stability and predominance of this core microbiome could be an additional alternative to pest control strategies, particularly in this moth.
Subject(s)
Enterococcus , Gastrointestinal Microbiome , Seasons , Spodoptera/microbiology , Animals , Colombia , Larva , Zea maysABSTRACT
This study aimed to investigate the impact of the food matrix (orange juice and yogurt) on the effects of the spore-forming probiotic microorganism Bacillus coagulans GBI-30 6086 in health parameters and gastrointestinal tract (gut) bacterial diversity in Wistar male rats. Rats (n = 48) were randomly distributed into six groups. The groups were the Control (which received sterile distilled water), Juice (which received orange juice), Yogurt (which received yogurt), Probiotic Bacillus (which received B. coagulans GBI-30 6086 in distilled water), Probiotic Juice (which received orange juice with B. coagulans GBI-30 6086), and Probiotic Yogurt (which received yogurt with B. coagulans GBI-30 6086). Each animal belonging to the different groups was treated for 21 days. The daily administration of probiotic juice or probiotic yogurt did not affect the rats' food or body weight. Rats fed with Probiotic Yogurt showed lower glucose and triglycerides levels (p < 0.05) in comparison to the control group (p < 0.05), while no changes in these parameters were observed in the rats fed with Probiotic Juice. Rats fed with Probiotic Yogurt showed a higher gut bacterial diversity than the control group (p < 0.05), and higher abundance (p < 0.05) of Vibrionales, Enterobacteriales, Burkholderiales, Erysipelotrichales, and Bifidobacteriales compared to all other groups. No changes were observed in the expression levels of antioxidant enzymes or heat shock protein 70 of rats fed with probiotic yogurt or probiotic juice. Results reveal that the consumption of yogurt containing B. coagulans GBI-30 6086 decreases triglycerides and glucose levels and positively impacts the gut bacterial ecology in healthy rats. These animal model findings indicate that the matrix also impacts the functionality of foods carrying spore-forming probiotics. Besides, this research indicates that yogurt is also a suitable food carrier of Bacillus coagulans GBI-30 6086.
ABSTRACT
In addition to its health benefits, exercise training has been noted as a modulator of the gut microbiota. However, the effects of resistance training (RT) on gut microbiota composition remain unknown. Wistar rats underwent 12â weeks of RT. Body mass, glucose tolerance, visceral body fat, triglyceride concentration and food consumption were evaluated. The gut microbiota was analyzed by 16S rRNA gene sequencing. Rats that underwent RT showed lower body mass (P=0.0005), lower fat content (P=0.02) and better glucose kinetics (P=0.047) when compared with the control. Improvements in the diversity and composition of the gut microbiota were identified in the RT group. The relative abundance of Pseudomonas, Serratia and Comamonas decreased significantly after 12â weeks of RT (P<0.001). These results suggest that RT has the potential to enhance the diversity of the gut microbiota and improve its biological functions.
Subject(s)
Gastrointestinal Microbiome , Resistance Training , Animals , Glucose , Humans , RNA, Ribosomal, 16S/genetics , Rats , Rats, WistarABSTRACT
The human gut microbiome is an important component that defines host health. Childhood is a particularly important period for the establishment and development of gut microbiota (GM). We sequenced the 16S rRNA gene from fecal samples of children between 5 and 10 years old, in two Mexican communities with contrasting lifestyles, i.e., "Westernized" (México City, n = 13) and "non-Westernized" (Me'phaa indigenous group, n = 29), in order to characterize and compare their GM. The main differences between these two communities were in bacteria associated with different types of diets (high animal protein and refined sugars vs. high fiber food, respectively). In addition, the GM of Me'phaa children showed higher total diversity and the presence of exclusive phyla, such as Deinococcus-Thermus, Chloroflexi, Elusimicrobia, Acidobacteria, and Fibrobacteres. In contrast, the children from México City showed less diversity and the presence of Saccharibacteria phylum, which was associated with the degradation of sugar compounds and was not present in the samples from Me'phaa children. This comparison provided further knowledge of the selective pressures affecting microbial ecosystemic composition over the course of human evolution and the potential consequences of pathophysiological states correlated with Westernization lifestyles.
ABSTRACT
OBJECTIVE: To ascertain the descriptive epidemiology of infant botulism, the flaccid paralysis that results when neurotoxigenic Clostridium species produce botulinum toxin (BoNT) in the infant colon, in its first 40 years following initial recognition in California in 1976. STUDY DESIGN: Cases were defined by laboratory identification of BoNT and/or neurotoxigenic Clostridium species in patients' feces. Parents were interviewed using a structured questionnaire. Descriptive epidemiologic characteristics were compared between 1976-1996 and 1997-2016. RESULTS: From 1976-2016, 1345 cases of infant botulism occurred in 45 of 58 California counties (6.5 cases/100 000 live-births/year) caused by BoNT types A, B, Ba, Bf, and F; 88% of cases were ≤6 months of age and 51% were female. Cases were white (84.2%), Asian (8.9%), other races (3.8%), and African American (2.8%); 29.4% of cases were Hispanic. More than 99% of cases were hospitalized. Case occurrence peaked in summer-fall. Of 8 designated geographic regions, the Central Coast counties had 3 times the statewide incidence in both 20-year time periods. Breast-fed patients (83%) were more than twice as old at onset as formula-fed patients (median, 4.4 vs 1.7 months, respectively; P < .001). BoNT/A cases were older at onset than BoNT/B cases (median, 3.8 vs 2.9 months, respectively; P < .001). CONCLUSIONS: Comprehensive continuous surveillance of infant botulism for 40 years in a large, diversely populated state identified fundamental epidemiologic characteristics of this uncommon illness. Unusual features included greater than 99% case hospitalization, absence of male preponderance, and a distinctive age distribution.
Subject(s)
Botulism/epidemiology , California/epidemiology , Female , Humans , Infant , Male , Time FactorsABSTRACT
PURPOSE: Gestational diabetes mellitus (GDM), the major endocrine pathology in pregnancy, has been associated with the development of an intense inflammatory process and increased insulin resistance. The maternal microbiota is involved in several metabolic functions; however, its role in GDM physiopathology remains unclear. The aim of this study was to assess the composition of the microbiota at different sites and evaluate its relationship with the occurrence of GDM. METHODS: This cross-sectional study recruited women in the third trimester of gestation with and without GDM. Oral, vaginal, and stool samples were evaluated using next-generation sequencing. We included 68 participants: 26 with and 42 without GDM. RESULTS: The analysis of the oral microbiome did not show significant differences in phyla and genus among the studied groups. In contrast, GDM patients presented a specific vaginal and intestinal microbiome composition, which was less diverse than those found in the control group, showing genera related to dysbiosis. CONCLUSIONS: Our findings suggest that changes in the composition of the vaginal and intestinal microbiome might be involved in the development of GDM. The follow-up of these patients in order to evaluate vaginal and intestinal samples after delivery may contribute to understanding the development of metabolic disease in women with previous GDM.
Subject(s)
Diabetes, Gestational/microbiology , Insulin Resistance/physiology , Microbiota , Pregnancy Trimester, Third/blood , Adult , Blood Glucose/metabolism , Cross-Sectional Studies , Diabetes, Gestational/blood , Female , Gastrointestinal Microbiome , Humans , Mouth/microbiology , Pregnancy , Vagina/microbiology , Young AdultABSTRACT
BACKGROUND: The liver is the major metabolic clearance organ for chemical agents from the human body. Pregnancy is associated with several physiological changes that may affect one or more of these factors, and also induces changes in the hepatic clearance of certain drugs. The aim of this paper was to review some of the currently available information in the field to provide some insights about the relevance of these changes on the clearance of some drugs. METHODS: A comprehensive literature search was carried out to identify eligible studies from MEDLINE/PubMed, EMBASE and SCIELO databases through 1970 first semester. RESULTS: Gestational Diabetes Mellitus (GDM) is a frequent disease commonly associated with other entities as obesity, hypertension, dyslipidemia, non-alcoholic fatty liver disease, prothrombotic conditions, changes in intestinal microbiome. These entities, together with the glycemic fluctuations associated with GDM might affect the determinants of the hepatic clearance (hepatic blood flow, the unbound fraction of drugs, and the hepatic intrinsic clearance). GDM is frequently associated with multi-drug treatments. While many of these drugs are cleared by the liver, little is known about the clinical relevance of these GDM associated pharmacokinetic changes. CONCLUSION: Considering the frequency of the disease and the effects that these pharmacokinetic changes might have on the mother and child, the need for further research seems advisable. In the meantime, cautious clinical judgment in the management of drug administration in women affected by this disease is recommended.
Subject(s)
Diabetes, Gestational/physiopathology , Liver/metabolism , Pharmaceutical Preparations/metabolism , Animals , Female , Hepatobiliary Elimination/physiology , Humans , Pharmaceutical Preparations/administration & dosage , Pharmacokinetics , PregnancyABSTRACT
OBJECTIVE: Chronic intestinal inflammation is a risk factor for colorectal cancer (CRC) initiation and development. Diets that are rich in Western style fats have been shown to promote CRC. This study was conducted to investigate the role of intestinal microbiome in American ginseng-mediated CRC chemoprevention in a mouse model. The population and diversity of enteric microbiome were evaluated after the ginseng treatment. METHODS: Using an azoxymethane (AOM)/dextran sulfate sodium (DSS)-induced gut inflammation and tumorigenesis mouse model, the effects of oral American ginseng on high fat diet-associated enteric pathology were determined. After establishment of a 16S rRNA illumina library from fecal samples, MiSeq sequencing was carried out to reveal the microbial population. The alpha and beta diversities of microbiome were analyzed. RESULTS: American ginseng significantly attenuated AOM/DSS-induced colon inflammation and tumorigenesis by reducing the colitis score and colon tumor multiplicity. The MiSeq results showed that the majority of sequences fell into three phyla: Firmicutes, Bacteroidetes and Verrucomicrobia. Further, two significant abundance shifts at the family level, Bacteroidaceae and Porphyromonadaceae, were identified to support ginseng's anti-colitis and anti-tumor effects. In addition, alpha and beta diversity data demonstrated that ginseng led to a profound recovery from the AOM/DSS-induced dysbiosis in the microbial community. CONCLUSION: Our results suggest that the CRC chemopreventive effects of American ginseng are mediated through enteric microbiome population-shift recovery and dysbiosis restoration. Ginseng's regulation of the microbiome balance contributes to the maintenance of enteric homeostasis.
Subject(s)
Carcinogenesis/drug effects , Colonic Neoplasms/pathology , Gastrointestinal Microbiome/drug effects , Panax , Plant Extracts/pharmacology , Animals , Azoxymethane/toxicity , Carcinogenesis/chemically induced , Carcinogenesis/pathology , Colitis/etiology , Colitis/microbiology , Colitis/pathology , Colonic Neoplasms/etiology , Colonic Neoplasms/microbiology , Dextran Sulfate/toxicity , Diet, High-Fat/adverse effects , Male , Mice , Plant RootsABSTRACT
Composition of the gut microbiome is influenced by diet. Milk or formula oligosaccharides act as prebiotics, bioactives that promote the growth of beneficial gut microbes. The influence of prebiotics on microbial interactions is not well understood. Here we investigated the transformation of prebiotics by a consortium of four representative species of the infant gut microbiome, and how their interactions changed with dietary substrates. First, we optimized a culture medium resembling certain infant gut parameters. A consortium containing Bifidobacterium longum subsp. infantis, Bacteroides vulgatus, Escherichia coli and Lactobacillus acidophilus was grown on fructooligosaccharides (FOS) or 2'-fucosyllactose (2FL) in mono- or co-culture. While Bi. infantis and Ba. vulgatus dominated growth on 2FL, their combined growth was reduced. Besides, interaction coefficients indicated strong competition, especially on FOS. While FOS was rapidly consumed by the consortium, B. infantis was the only microbe displaying significant consumption of 2FL. Acid production by the consortium resembled the metabolism of microorganisms dominating growth in each substrate. Finally, the consortium was tested in a bioreactor, observing similar predominance but more pronounced acid production and substrate consumption. This study indicates that the chemical nature of prebiotics modulate microbial interactions in a consortium of infant gut species.