Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters











Publication year range
1.
Plant Biotechnol J ; 20(10): 1940-1955, 2022 10.
Article in English | MEDLINE | ID: mdl-35718938

ABSTRACT

Interspecific breeding in cotton takes advantage of genetic recombination among desirable genes from different parental lines. However, the expression new alleles (ENAs) from crossovers within genic regions and their significance in fibre length (FL) improvement are currently not understood. Here, we generated resequencing genomes of 191 interspecific backcross inbred lines derived from CRI36 (Gossypium hirsutum) × Hai7124 (Gossypium barbadense) and 277 dynamic fibre transcriptomes to identify the ENAs and extremely expressed genes (eGenes) potentially influencing FL, and uncovered the dynamic regulatory network of fibre elongation. Of 35 420 eGenes in developing fibres, 10 366 ENAs were identified and preferentially distributed in chromosomes subtelomeric regions. In total, 1056-1255 ENAs showed transgressive expression in fibres at 5-15 dpa (days post-anthesis) of some BILs, 520 of which were located in FL-quantitative trait locus (QTLs) and GhFLA9 (recombination allele) was identified with a larger effect for FL than GhFLA9 of CRI36 allele. Using ENAs as a type of markers, we identified three novel FL-QTLs. Additionally, 456 extremely eGenes were identified that were preferentially distributed in recombination hotspots. Importantly, 34 of them were significantly associated with FL. Gene expression quantitative trait locus analysis identified 1286, 1089 and 1059 eGenes that were colocalized with the FL trait at 5, 10 and 15 dpa, respectively. Finally, we verified the Ghir_D10G011050 gene linked to fibre elongation by the CRISPR-cas9 system. This study provides the first glimpse into the occurrence, distribution and expression of the developing fibres genes (especially ENAs) in an introgression population, and their possible biological significance in FL.


Subject(s)
Cotton Fiber , Gossypium , Alleles , Gossypium/genetics , Gossypium/metabolism , Plant Breeding , Quantitative Trait Loci/genetics
2.
J Gen Virol ; 103(2)2022 02.
Article in English | MEDLINE | ID: mdl-35175914

ABSTRACT

Rotavirus C (RVC) is a major cause of diarrhoea in swine, cattle, and humans worldwide. RVC exhibits sequence diversity in all 11 genes, especially in VP4 and VP7, and all segment-based genotyping has been performed similar to rotavirus A. To date, recombination events have been reported in rotavirus A and B. However, there are no reports describing gene recombination of RVC, except for recombination in NSP3 between RVC and rotavirus H. In this study, nine porcine RVC strains identified in Japanese pigs were completely sequenced and analysed together with RVC sequences from the GenBank database. The analyses showed that sequences of the VP4, VP2, and NSP1 of several porcine RVC strains did not branch with any of those of the RVC strains in the GenBank database, suggesting new genotypes. Several homologous recombination events, between or within genotypes, were identified in the VP4, VP7, VP2, NSP1, and NSP3 genes. Of these, nine, one, and one intergenotypic recombination events in the VP4, VP2, and NSP3 genes, respectively, were supported with sufficient statistical values. Although these findings suggest occurrences of the intragenic recombination events in the RVC genome, potential sequence errors and poor sequence assemblies in the databases should be watched with care. The results in this study present data about the important recombination events of the RVCs, which influence evolution of the virus by aiding them to gain genetic diversity and plasticity, although further sequence data will be necessary to obtain more comprehensive understanding of such mechanisms.


Subject(s)
Rotavirus Infections , Rotavirus/genetics , Swine Diseases/virology , Animals , Cattle , Genetic Variation , Genome, Viral , Humans , Rotavirus Infections/veterinary , Rotavirus Infections/virology , Swine
3.
J Fungi (Basel) ; 7(10)2021 Sep 23.
Article in English | MEDLINE | ID: mdl-34682211

ABSTRACT

Effectors, a group of small proteins secreted by pathogens, play a central role in antagonistic interactions between plant hosts and pathogens. The evolution of effector genes threatens plant disease management and sustainable food production, but population genetic analyses to understand evolutionary mechanisms of effector genes are limited compared to molecular and functional studies. Here we investigated the evolution of the Avr1 effector gene from 111 Phytophthora infestans isolates collected from six areas covering three potato cropping regions in China using a population genetic approach. High genetic variation of the effector gene resulted from diverse mechanisms including base substitution, pre-termination, intragenic recombination and diversifying selection. Nearly 80% of the 111 sequences had a point mutation in the 512th nucleotide (T512G), which generated a pre-termination stop codon truncating 38 amino acids in the C-terminal, suggesting that the C-terminal may not be essential to ecological and biological functions of P. infestans. A significant correlation between the frequency of Avr1 sequences with the pre-termination and annual mean temperature in the collection sites suggests that thermal heterogeneity might be one of contributors to the diversifying selection, although biological and biochemical mechanisms of the likely thermal adaptation are not known currently. Our results highlight the risk of rapid adaptation of P. infestans and possibly other pathogens as well to host resistance, and the application of eco-evolutionary principles is necessary for sustainable disease management in agricultural ecosystems.

4.
PeerJ ; 9: e12000, 2021.
Article in English | MEDLINE | ID: mdl-34458026

ABSTRACT

Effector proteins translocated by the Dot/Icm type IV secretion system determine the virulence of Legionella pneumophila (L. pneumophila). Among these effectors, members of the SidE family (SidEs) regulate several cellular processes through a unique phosphoribosyl ubiquitination mechanism mediated by another effector, SidJ. Host-cell calmodulin (CaM) activates SidJ to glutamylate the SidEs of ubiquitin (Ub) ligases and to make a balanced Ub ligase activity. Given the central role of SidJ in this regulatory process, studying the nature of evolution of sidJ is important to understand the virulence of L. pneumophila and the interaction between the bacteria and its hosts. By studying sidJ from a large number of L. pneumophila strains and using various molecular evolution algorithms, we demonstrated that intragenic recombination drove the evolution of sidJ and contributed to sidJ diversification. Additionally, we showed that four codons of sidJ which are located in the N-terminal (NTD) (codons 58 and 200) and C-terminal (CTD) (codons 868 and 869) domains, but not in the kinase domain (KD) had been subjected to strong positive selection pressure, and variable mutation profiles of these codons were identified. Protein structural modeling of SidJ provided possible explanations for these mutations. Codons 868 and 869 mutations might engage in regulating the interactions of SidJ with CaM through hydrogen bonds and affect the CaM docking to SidJ. Mutation in codon 58 of SidJ might affect the distribution of main-chain atoms that are associated with the interaction with CaM. In contrast, mutations in codon 200 might influence the α-helix stability in the NTD. These mutations might be important to balance Ub ligase activity for different L. pneumophila hosts. This study first reported that intragenic recombination and positive Darwinian selection both shaped the genetic plasticity of sidJ, contributing to a deeper understanding of the adaptive mechanisms of this intracellular bacterium to different hosts.

5.
J Integr Plant Biol ; 63(5): 878-888, 2021 May.
Article in English | MEDLINE | ID: mdl-32886450

ABSTRACT

Appearance and taste are important factors in rice (Oryza sativa) grain quality. Here, we investigated the taste scores and related eating-quality traits of 533 diverse cultivars to assess the relationships between-and genetic basis of-rice taste and eating-quality. A genome-wide association study highlighted the Wx gene as the major factor underlying variation in taste and eating quality. Notably, a novel waxy (Wx) allele, Wxla , which combined two mutations from Wxb and Wxin , exhibited a unique phenotype. Reduced GBSSI activity conferred Wxla rice with both a transparent appearance and good eating quality. Haplotype analysis revealed that Wxla was derived from intragenic recombination. In fact, the recombination rate at the Wx locus was estimated to be 3.34 kb/cM, which was about 75-fold higher than the genome-wide mean, indicating that intragenic recombination is a major force driving diversity at the Wx locus. Based on our results, we propose a new network for Wx evolution, noting that new Wx alleles could easily be generated by crossing genotypes with different Wx alleles. This study thus provides insights into the evolution of the Wx locus and facilitates molecular breeding for quality in rice.


Subject(s)
Oryza/genetics , Plant Proteins/metabolism , Alleles , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Genome-Wide Association Study , Plant Proteins/genetics
6.
J Plant Physiol ; 248: 153141, 2020 May.
Article in English | MEDLINE | ID: mdl-32143117

ABSTRACT

The "Green Revolution" that dramatically reduced cultivar heights and sharply boosted rice production mid-century was achieved in large part through introgression of defective alleles of Semi-Dwarf 1 (SD1), which encodes a GA20ox oxidase involved in the final steps of the synthesis of bioactive gibberellin in rice. Here, we ask whether converting the defective sd1 version in a modern semi-dwarf cultivar back to wild-type SD1 in situ recovers ancestral plant traits, and more broadly, what it reveals about pleiotropic effects of this gene. We assess these effects of SD1 restoration in three independent recombinant lines recovered from F2 progeny of a cross between 93-11 and PA64s. We then used RNA-seq to dissect gene network changes that accompanied SD1 restoration. We report that this in situ restoration of wild-type SD1 nearly doubles plant height, increases total grain yield per panicle, and elongates the second-leaf length. Comparison of expression profiles reveals changes in key nodes of the gibberellin pathway, such as OsKO1 and OsGA2ox3, and more broadly in genes related to metabolic networks, defense response, and catabolic processes. Two JA-induced genes, RIR1b and OsPR1b, are extremely down-regulated after SD1 restoration, suggesting that SD1 restoration alters the balance between GA and JA to plant growth, at the cost of degrading the defense response. This in situ approach at the SD1 locus also provides a model example that is applicable to other systems and will further understanding of gene networks underlying high-yield traits in crops.


Subject(s)
Gene Regulatory Networks , Genetic Pleiotropy , Oryza/genetics , Plant Breeding , Plant Proteins/genetics , Oryza/growth & development , Plant Proteins/metabolism , RNA-Seq
7.
Mol Plant Microbe Interact ; 33(7): 921-931, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32212906

ABSTRACT

Intrinsic disorder is a common structural characteristic of proteins and a central player in the biochemical processes of species. However, the role of intrinsic disorder in the evolution of plant-pathogen interactions is rarely investigated. Here, we explored the role of intrinsic disorder in the development of the pathogenicity in the RXLR AVR2 effector of Phytophthora infestans. We found AVR2 exhibited high nucleotide diversity generated by point mutation, early-termination, altered start codon, deletion/insertion, and intragenic recombination and is predicted to be an intrinsically disordered protein. AVR2 amino acid sequences conferring a virulent phenotype had a higher disorder tendency in both the N- and C-terminal regions compared with sequences conferring an avirulent phenotype. In addition, we also found virulent AVR2 mutants gained one or two short linear interaction motifs, the critical components of disordered proteins required for protein-protein interactions. Furthermore, virulent AVR2 mutants were predicted to be unstable and have a short protein half-life. Taken together, these results support the notion that intrinsic disorder is important for the effector function of pathogens and demonstrate that SLiM-mediated protein-protein interaction in the C-terminal effector domain might contribute greatly to the evasion of resistance-protein detection in P. infestans.


Subject(s)
Intrinsically Disordered Proteins/genetics , Phytophthora infestans/genetics , Plant Diseases/parasitology , Amino Acid Sequence , Intrinsically Disordered Proteins/chemistry , Phytophthora infestans/pathogenicity , Virulence
8.
Animals (Basel) ; 9(5)2019 May 13.
Article in English | MEDLINE | ID: mdl-31086002

ABSTRACT

Aquaporins (Aqps) are a class of water channel proteins that play key roles in many physiological functions and cellular processes. Here, we analyzed 166 putative Aqp genes in 12 fish species and divided them into four groups. Gene organization and motif distribution analyses suggested potentially conserved functions in each group. Several recombination events were identified in some members, which accelerate their divergence in evolution. Furthermore, a few positive selection sites were identified, and mutations at these sites could alter the stability of Aqp proteins. In addition, expression profiles of some Aqp genes under pathogen infection and organophosphorus pesticide stress were also investigated. The result implied that several Aqp genes may affect different immune responses and osmoregulation. This study provides a comparative analysis of the fish Aqp gene family to facilitate further functional analyses.

9.
Mol Plant Pathol ; 2018 Jan 24.
Article in English | MEDLINE | ID: mdl-29363872

ABSTRACT

We analysed the population genetic diversity of AvrStb6, the first avirulence gene cloned from the wheat pathogen Zymoseptoria tritici, using 142 Z. tritici strains sampled from four wheat fields growing on three continents. Although AvrStb6 was located in a recombination hotspot, it was found in every strain, with 71 polymorphic sites that produced 41 distinct DNA haplotypes encoding 30 AvrStb6 protein isoforms. An AvrStb6 homologue was found in the closest known relative, Z. pseudotritici, but not in three other closely related Zymoseptoria species, indicating that this gene has emerged in Zymoseptoria quite recently. Two AvrStb6 homologues with nucleotide similarities greater than 70% were identified on chromosome 10 in all Z. tritici isolates, suggesting that AvrStb6 belongs to a multigene family of candidate effectors that has expanded recently through gene duplication. The AvrStb6 sequences exhibited strong evidence for non-neutral evolution, including a large number of non-synonymous mutations, with significant positive diversifying selection operating on nine of the 82 codons. It appears that balancing selection is operating across the entire gene in natural field populations. There was also evidence for co-evolving codons within the gene that may reflect compensatory mutations associated with the evasion of recognition by Stb6. Intragenic recombination also appears to have affected the diversity of AvrStb6.

10.
New Phytol ; 210(3): 1083-94, 2016 May.
Article in English | MEDLINE | ID: mdl-26720856

ABSTRACT

Meiotic recombination is a major driver of genetic diversity, species evolution, and agricultural improvement. Thus, an understanding of the genetic recombination landscape across the maize (Zea mays) genome will provide insight and tools for further study of maize evolution and improvement. Here, we used c. 50 000 single nucleotide polymorphisms to precisely map recombination events in 12 artificial maize segregating populations. We observed substantial variation in the recombination frequency and distribution along the ten maize chromosomes among the 12 populations and identified 143 recombination hot regions. Recombination breakpoints were partitioned into intragenic and intergenic events. Interestingly, an increase in the number of genes containing recombination events was accompanied by a decrease in the number of recombination events per gene. This kept the overall number of intragenic recombination events nearly invariable in a given population, suggesting that the recombination variation observed among populations was largely attributed to intergenic recombination. However, significant associations between intragenic recombination events and variation in gene expression and agronomic traits were observed, suggesting potential roles for intragenic recombination in plant phenotypic diversity. Our results provide a comprehensive view of the maize recombination landscape, and show an association between recombination, gene expression and phenotypic variation, which may enhance crop genetic improvement.


Subject(s)
Genome, Plant , Recombination, Genetic , Zea mays/anatomy & histology , Zea mays/genetics , Chromosome Mapping , Gene Expression Regulation, Plant , Genetic Loci , Genotype , Phenotype
11.
Phytopathology ; 106(4): 355-61, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26623995

ABSTRACT

CYP51 encodes the target site of the azole class of fungicides widely used in plant protection. Some ascomycete pathogens carry two CYP51 paralogs called CYP51A and CYP51B. A recent analysis of CYP51 sequences in 14 European isolates of the barley scald pathogen Rhynchosporium commune revealed three CYP51 paralogs, CYP51A, CYP51B, and a pseudogene called CYP51A-p. The same analysis showed that CYP51A exhibits a presence/absence polymorphism, with lower sensitivity to azole fungicides associated with the presence of a functional CYP51A. We analyzed a global collection of nearly 400 R. commune isolates to determine if these findings could be extended beyond Europe. Our results strongly support the hypothesis that CYP51A played a key role in the emergence of azole resistance globally and provide new evidence that the CYP51A gene in R. commune has further evolved, presumably in response to azole exposure. We also present evidence for recent long-distance movement of evolved CYP51A alleles, highlighting the risk associated with movement of fungicide resistance alleles among international trading partners.


Subject(s)
Ascomycota/enzymology , Azoles/pharmacology , Cytochrome P-450 Enzyme System/genetics , Genetic Variation , Hordeum/microbiology , Plant Diseases/microbiology , Alleles , Ascomycota/drug effects , Ascomycota/genetics , Drug Resistance, Fungal/genetics , Europe , Fungal Proteins/genetics , Fungicides, Industrial/pharmacology , Sequence Analysis, DNA
12.
Infect Genet Evol ; 32: 354-60, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25847696

ABSTRACT

Rotavirus is a genetically diverse pathogen with an eleven-segmented, double-stranded RNA genome. Intrasegmental recombination has been proposed as a potential mechanism to generate antigenic diversity and a possible route of escape from vaccine-imposed selective pressure. Here intrasegmental recombination was studied by performing a genome-wide scan across the eleven genome segments of 797 publically available rotavirus strains. Sixty-two sequences, or 0.7% of sequences analyzed, have evidence of intrasegmental homologous recombination. None of the specific recombination events is seen in more than one sequence. This uniqueness is consistent with either a spurious finding of recombination or the possibility that recombinant sequences arise naturally but are rapidly purged from the rotavirus population through selection. Arguments for the former explanation are presented. This analysis finds no evidence that intrasegmental recombination leads to ongoing transmission or plays a constructive role in rotavirus evolution. These results have practical implications for phylogenetic analyses and suggest a fundamental constraint that may have shaped rotavirus genome structure and evolution.


Subject(s)
Evolution, Molecular , Genome, Viral , Recombination, Genetic , Rotavirus/genetics , Genetic Variation , Genotype , Phylogeny , RNA, Double-Stranded , Sequence Analysis, DNA
13.
Infect Genet Evol ; 31: 198-208, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25660041

ABSTRACT

Benznidazole (BZ) is one of the two drugs for Chagas disease treatment. In a previous study we showed that the Trypanosoma cruzi ABCG-like transporter gene, named TcABCG1, is over-expressed in parasite strains naturally resistant to BZ and that the gene of TcI BZ-resistant strains exhibited several single nucleotide polymorphisms (SNPs) as compared to the gene of CL Brener BZ-susceptible strain. Here we report the sequence of TcABCG1 gene of fourteen T. cruzi strains, with diverse degrees of BZ sensitivity and belonging to different discrete typing units (DTUs) and Tcbat group. Although DTU-specific SNPs and amino acid changes were identified, no direct correlation with BZ-resistance phenotype was found. Thus, it is plausible that the transporter abundance is a determinant factor for drug resistance, as pointed out above. Sequence data were used for Bayesian phylogenies and network genealogy analysis. The network showed a high degree of reticulation suggesting genetic exchange between the parasites. TcI and TcII clades were clearly separated. Tcbat sequences were close to TcI. A fourth clade clustered TcABCG1 haplotypes of TcV, TcVI and TcIII strains, with closer proximity to TcI. Analysis of the recombination patterns indicated that hybrid strains contain haplotypes that are mosaics most likely derived by intragenic recombination of parental sequences. The data confirm that TcII and TcIII as the parentals of TcV and TcVI DTUs. Since genetic fingerprint of TcI was found in TcIII, we sustain the previously proposed "Two Hybridization model" for the origin of hybrid strains. Among the twenty best BLASTP hits in databases, orthologues of TcABCG1 transporter were found in Leishmania spp. and African trypanosomes, though their function remains undescribed.


Subject(s)
ATP-Binding Cassette Transporters/genetics , Drug Resistance , Genes, Protozoan , Nitroimidazoles/pharmacology , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Trypanosoma cruzi/genetics , Amino Acid Sequence , Cloning, Molecular , Genetic Variation , Molecular Sequence Data , Parasitic Sensitivity Tests , Phylogeny , Polymorphism, Genetic , Recombination, Genetic , Sequence Analysis, DNA
14.
Vet Microbiol ; 172(3-4): 359-66, 2014 Aug 27.
Article in English | MEDLINE | ID: mdl-24970362

ABSTRACT

Rotavirus B (RVB) has been identified as a causative agent of diarrhea in rats, humans, cattle, lambs, and swine. Recently, 20 RVB VP7 genotypes were determined based on an 80% nucleotide percent cut-off value. In this study, we sequenced the RVB VP6 gene segment from 80 RVB positive swine samples from the United States and Japan. Phylogenetic analyses, using the 30 available RVB VP6 sequences from GenBank and our 80 novel RVB VP6 sequences, revealed a large genetic diversity of RVB strains, mainly in pigs. For classification purposes, pairwise identity frequency analyses suggested an 81% nucleotide percent cut-off value, resulting in 13 RVB VP6 (I) genotypes. In addition, an intragenic recombinant RVB VP6 segment was identified from Japan. Furthermore, the data indicates frequent reassortment events occurred between the porcine RVB VP7 and VP6 gene segments.


Subject(s)
Genetic Variation , Reassortant Viruses/genetics , Rotavirus Infections/veterinary , Rotavirus/classification , Swine Diseases/virology , Animals , Base Sequence , Diarrhea/genetics , Diarrhea/veterinary , Diarrhea/virology , Genotype , Japan/epidemiology , Phylogeny , Recombination, Genetic , Rotavirus/genetics , Rotavirus Infections/epidemiology , Swine , Swine Diseases/epidemiology , United States/epidemiology
15.
Insect Sci ; 20(3): 329-44, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23955885

ABSTRACT

Wolbachia and Cardinium are widely distributed and are considered important for their ability to disturb reproduction and affect other fitness-related traits of their hosts. By using multilocus sequence typing (MLST), RFLP (restriction fragment length polymorphism) and 16S ribosomal DNA gene sequencing methods, we extensively surveyed Wolbachia and Cardinium infection status of four predominant rice planthoppers and one kind of leafhopper in different rice fields. The results demonstrated that Sogatella furcifera (Horváth) and Laodelphax striatellus (Fallén) were infected with the same Wolbachia strain (wStri), while Nilaparvata lugens (Stål) and its closely related species Nilaparvata muiri China were infected with two phylogeneticlly distant strains, wLug and wMui, respectively. Three new Wolbachia strains (provisionally named wMfas1, wMfas2 and wMfas3) were detected in the leafhopper Macrosteles fascifrons (Stål). Only S. furcifera was co-infected with Cardinium, which indicated that the distribution of Cardinium in these rice planthoppers was narrower than that of Wolbachia. Unambiguous intragenic recombination events among these Wolbachia strains and incongruent phylogenetic relationships show that the connections between different Wolbachia strains and hosts were more complex than we expected. These results suggest that horizontal transmission and host associated specialization are two factors affecting Wolbachia and Cardinium infections among planthoppers and their related species.


Subject(s)
Hemiptera/microbiology , Wolbachia/isolation & purification , Animals , DNA, Bacterial/genetics , Gene Expression Regulation, Bacterial/physiology , Nucleic Acid Amplification Techniques , Oryza , Recombination, Genetic , Species Specificity , Wolbachia/genetics
SELECTION OF CITATIONS
SEARCH DETAIL