Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
1.
Methods Mol Biol ; 2801: 97-109, 2024.
Article in English | MEDLINE | ID: mdl-38578416

ABSTRACT

Increasing evidence points to deregulated flux of ionized calcium (Ca2+) mediated by hyperactive mutant connexin (Cx) hemichannels (HCs) as a common gain-of-function etiopathogenetic mechanism for several diseases, ranging from skin disorders to nervous system defects. Furthermore, the opening of nonmutated Cx HCs is associated with an impressive list of widespread diseases including, but not limited to, ischemia/stroke, Alzheimer's disease, and epilepsy. HC inhibitors are attracting a growing attention due to their therapeutic potential for numerous pathologies. This chapter describes a quantitative method to measure Ca2+ uptake though HCs expressed in cultured cells. The assay we developed can be used to probe HC activity as wells as to test HC inhibitors. Furthermore, with minor changes it can be easily adapted to high-throughput high-content platforms and/or primary cells and microtissues.


Subject(s)
Connexin 43 , Connexins , Connexins/genetics , Connexins/metabolism , Connexin 43/metabolism , Biological Transport , Calcium/metabolism
2.
Methods Cell Biol ; 183: 51-113, 2024.
Article in English | MEDLINE | ID: mdl-38548421

ABSTRACT

Glioblastoma (GBM) remains an orphan cancer disease with poor outcome. Novel treatment strategies are needed. Immunotherapy has several modes of action. The addition of active specific immunotherapy with dendritic cell vaccines resulted in improved overall survival of patients. Integration of DC vaccination within the first-line combined treatment became a challenge, and immunogenic cell death immunotherapy during chemotherapy was introduced. We used a retrospective analysis using real world data to evaluate the complex combined treatment, which included individualized multimodal immunotherapy during and after standard of care, and which required adaptations during treatment, and found a further improvement of overall survival. We also discuss the use of real world data as evidence. Novel strategies to move the field of individualized multimodal immunotherapy forward for GBM patients are reviewed.


Subject(s)
Brain Neoplasms , Cancer Vaccines , Glioblastoma , Oncolytic Viruses , Humans , Glioblastoma/therapy , Oncolytic Viruses/genetics , Brain Neoplasms/therapy , Retrospective Studies , Cancer Vaccines/therapeutic use , Dendritic Cells/metabolism
3.
Methods Cell Biol ; 183: 355-380, 2024.
Article in English | MEDLINE | ID: mdl-38548419

ABSTRACT

Tumor-draining lymph nodes (tumor-DLNs) provide a rich source of tumor-reactive lymphocytes which can be used in adoptive immunotherapy (AIT) and that circumvent the need to resect autologous tumor, without the challenges and shortcomings associated with using autologous tumor or anti-CD3 monoclonal antibody. Bryostatin/Ionomycin (Bryo/Io) provide a useful method of activating tumor-DLNs such that they can readily be expanded to sufficient numbers to be used in AIT, and growing the tumor-DLN lymphocytes in the gamma chain cytokines IL-7 plus IL-15 is superior to IL-2 in terms of T cell numbers and phenotype. AIT with these cells induces tumor regression and provides protection against metastases and future tumor challenge. Here, we provide a stepwise protocol to sensitize tumor-DLN cells in donor mice, activate tumor-DLN T cells ex vivo using Bryo/Io, expansion of these cells in gamma chain cytokines and adoptive transfer of the expanded cells back into tumor-bearing hosts. Methods relevant to these experiments, such as injecting tumor cells intravenously and monitoring for pulmonary metastases, tumor volume measurement and resection, and use of luciferase-expressing tumor cells to monitor for metastases following resection, are described in detail. The methods outlined herein can be easily adapted to suit similar experiments across multiple tumor cell lines and syngeneic mouse models.


Subject(s)
Cytokines , Immunotherapy, Adoptive , Mice , Animals , Immunotherapy, Adoptive/methods , Bryostatins , Ionomycin/pharmacology , Lymph Nodes , Lymphocyte Activation , Mice, Inbred C57BL
4.
Front Endocrinol (Lausanne) ; 14: 1244507, 2023.
Article in English | MEDLINE | ID: mdl-37635975

ABSTRACT

Research question: Does artificial oocyte activation (AOA) by a calcium ionophore (ionomycin) improve the previous fertilization failure or poor embryo development of intracytoplasmic sperm injection (ICSI) account for male factor infertility or other infertility causes? Design: This retrospective study involved 114 patients receiving ICSI-AOA in Shanghai First Maternity and Infant Hospital with previous ICSI fertilization failure or poor embryo development. The previous ICSI cycles of the same patients without AOA served as the control group. The fertilization rates, cleavage rates, transferable embryo rates and blastocyst formation rates of the two groups were compared. Additionally, the clinical pregnancy, implantation rate and live birth rates were also compared to assess the efficiency and safety of AOA. Furthermore, two subgroup analyses were performed in this study based on the cause of infertility and the reason for AOA. The fertilization rate, embryonic development potential and clinical outcome were compared among groups. Results: Among 114 ICSI-AOA cycles, the fertilization rate, top-quality embryo rate, implantation rate, clinical pregnancy per patient and live birth rate per patient were improved significantly compared with previous ICSI cycles (p<0.05 to P< 0.001), and the miscarriage rate in the AOA group was significantly lower than that of the control group (p<0.001). In the AOA subgroups based on the cause of infertility, the fertilization rates of each subgroup were significantly improved compared with previous control cycles except for the mixed factor infertility subgroup (p<0.05 to p<0.001). In the AOA subgroups based on the reason for AOA, the fertilization rates of each subgroup were significantly increased compared with those in their previous ICSI cycle without AOA (p<0.001); however, there was no significant difference in the top-quality embryo rate. No significant improvement was found in the implantation rates and the clinical pregnancy rate in each subgroup except for the poor embryo development subgroup. In the 114 AOA cycles, 35 healthy infants (21 singletons and 7 twins) were delivered without major congenital birth defects or malformations. Conclusion: This study showed that AOA with the calcium ionophore ionomycin can improve the reproductive outcomes of patients with previous fertilization failure and poor embryo development after ICSI.


Subject(s)
Infertility, Male , Sperm Injections, Intracytoplasmic , Male , Female , Humans , Pregnancy , Ionophores , Ionomycin , Calcium Ionophores/pharmacology , Calcium Ionophores/therapeutic use , Retrospective Studies , Semen , China , Embryonic Development , Infertility, Male/therapy , Fertilization
5.
Neural Regen Res ; 18(12): 2720-2726, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37449636

ABSTRACT

The formation of axonal spheroid is a common feature following spinal cord injury. To further understand the source of Ca2+ that mediates axonal spheroid formation, we used our previously characterized ex vivo mouse spinal cord model that allows precise perturbation of extracellular Ca2+. We performed two-photon excitation imaging of spinal cords isolated from Thy1YFP+ transgenic mice and applied the lipophilic dye, Nile red, to record dynamic changes in dorsal column axons and their myelin sheaths respectively. We selectively released Ca2+ from internal stores using the Ca2+ ionophore ionomycin in the presence or absence of external Ca2+. We reported that ionomycin dose-dependently induces pathological changes in myelin and pronounced axonal spheroid formation in the presence of normal 2 mM Ca2+ artificial cerebrospinal fluid. In contrast, removal of external Ca2+ significantly decreased ionomycin-induced myelin and axonal spheroid formation at 2 hours but not at 1 hour after treatment. Using mice that express a neuron-specific Ca2+ indicator in spinal cord axons, we confirmed that ionomycin induced significant increases in intra-axonal Ca2+, but not in the absence of external Ca2+. Periaxonal swelling and the resultant disruption in the axo-myelinic interface often precedes and is negatively correlated with axonal spheroid formation. Pretreatment with YM58483 (500 nM), a well-established blocker of store-operated Ca2+ entry, significantly decreased myelin injury and axonal spheroid formation. Collectively, these data reveal that ionomycin-induced depletion of internal Ca2+ stores and subsequent external Ca2+ entry through store-operated Ca2+ entry contributes to pathological changes in myelin and axonal spheroid formation, providing new targets to protect central myelinated fibers.

6.
J Int Med Res ; 51(6): 3000605231180039, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37340721

ABSTRACT

OBJECTIVE: Oral lichen planus (OLP) is a T cell-mediated inflammatory condition in the oral cavity. Mucosal-associated invariant T (MAIT) cells are gaining more relevance in immune diseases because they can be activated by cytokines without T cell receptor stimulation. Herein, we tested the effect of interleukin-23 (IL-23) on the activation status of OLP MAIT cells. METHODS: Peripheral blood mononuclear cells (PBMCs) isolated from OLP patients were stimulated by IL-23 in the absence or presence of phorbol myristate acetate (PMA) and ionomycin. The activation status of MAIT cells was analyzed by flow cytometry after staining for CD3, CD4, CD8, CD161, TCR Vα7.2, and CD69. RESULTS: The fraction of MAIT cells in OLP peripheral blood was approximately 0.38% to 3.97%, and CD8+ subpopulations overwhelmed CD4+ cells. The mean percentages of OLP MAIT cells in PBMCs and CD8+MAIT cells in MAIT cells were approximately 40%. PMA and ionomycin significantly increased CD69 expression on OLP T cells, MAIT cells, and CD8+MAIT cells. Cells with enhanced activation had different responsiveness to exogenous IL-23, showing increased CD69 expression on OLP T cells, decreased CD69 on OLP CD8+MAIT cells, and no significant change on OLP MAIT cells. CONCLUSIONS: IL-23 showed different effects on the activation status of OLP MAIT cells and CD8+MAIT cells.


Subject(s)
Interleukin-23 , Lichen Planus, Oral , Mucosal-Associated Invariant T Cells , Humans , Interleukin-23/pharmacology , Ionomycin/pharmacology , Leukocytes, Mononuclear , Lichen Planus, Oral/metabolism , Mucosal-Associated Invariant T Cells/metabolism
7.
J Assist Reprod Genet ; 40(7): 1661-1668, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37247099

ABSTRACT

PURPOSE: Despite the success of ICSI in treating severe male factor infertile patients, total fertilization failure (FF) still occurs in around 1-3% of ICSI cycles. To overcome FF, the use of calcium ionophores has been proposed to induce oocyte activation and restore fertilization rates. However, assisted oocyte activation (AOA) protocols and ionophores vary between laboratories, and the morphokinetic development underlying AOA remains understudied. METHODS: A prospective single-center cohort study involving 81 in vitro matured metaphase-II oocytes from 66 oocyte donation cycles artificially activated by A23187 (GM508 CultActive, Gynemed) (n=42) or ionomycin (n=39). Parthenogenesis was induced, and morphokinetic parameters (tPNa, tPNf, t2-t8, tSB, and tB) were compared between the 2 study groups and a control group comprising 39 2PN-zygotes from standard ICSI cycles. RESULTS: Ionomycin treatment resulted in higher activation rates compared to A23187 (38.5% vs 23.8%, p=0.15). Importantly, none of the A23187-activated parthenotes formed blastocysts. When evaluating the morphokinetic dynamics between the two ionophores, we found that tPNa and tPNf were significantly delayed in the group treated by A23187 (11.84 vs 5.31, p=0.002 and 50.15 vs 29.69, p=0.005, respectively). t2 was significantly delayed in A23187-activated parthenotes when compared to the double heterologous control embryo group. In contrast, the morphokinetic development of ionomycin-activated parthenotes was comparable to control embryos (p>0.05). CONCLUSION: Our results suggest that A23187 leads to lower oocyte activation rates and profoundly affects morphokinetic timings and preimplantation development in parthenotes. Despite our limited sample size and low parthenote competence, standardization and further optimization of AOA protocols may allow wider use and improved outcomes for FF cycles.


Subject(s)
Oocytes , Sperm Injections, Intracytoplasmic , Male , Animals , Ionomycin/pharmacology , Ionophores/pharmacology , Calcimycin/pharmacology , Cohort Studies , Sperm Injections, Intracytoplasmic/methods
9.
Exp Anim ; 72(4): 454-459, 2023 Nov 09.
Article in English | MEDLINE | ID: mdl-37100620

ABSTRACT

Nuclear factor of activated T cells (NFAT) is a transcription factor essential for immunological and other biological responses. To develop analyzing system for NFAT activity in vitro and in vivo, we generated reporter mouse lines introduced with NFAT-driven enhanced green fluorescent protein (EGFP) expressing gene construct. Six tandem repeats of -286 to -265 of the human IL2 gene to which NFAT binds in association with its co-transcription factor, activator protein (AP)-1, was conjunct with thymidine kinase minimum promoter and following EGFP coding sequence. Upon introduction of the resulting reporter cassette into C57BL/6 fertilized eggs, the transgenic mice were obtained. Among 7 transgene-positive mice in 110 mice bone, 2 mice showed the designated reporter mouse character. Thus, the EGFP fluorescence of CD4+ and CD8+ T cells in these mice was enhanced by stimulation through CD3 and CD28. Each of phorbol 12-myristate 13-acetate (PMA) and ionomycin (IOM) stimulation weakly but their combined stimulation strongly enhanced EGFP expression. The stimulation-induced EGFP upregulation was also observed following T cell subset differentiation in a different manner. The EGFP induction by PMA + IOM stimulation was more potent than that by CD3/CD28 stimulation in helper T (Th)1, Th2, Th9, and regulatory T cells, while both stimulation conditions displayed the equivalent EGFP induction in Th17 cells. Our NFAT reporter mouse lines are useful for analyzing stimulation-induced transcriptional activation mediated by NFAT in cooperation with AP-1 in T cells.


Subject(s)
CD28 Antigens , CD8-Positive T-Lymphocytes , Mice , Humans , Animals , CD28 Antigens/genetics , CD28 Antigens/metabolism , CD8-Positive T-Lymphocytes/metabolism , Mice, Inbred C57BL , Gene Expression Regulation , Transcription Factor AP-1/genetics , Transcription Factor AP-1/metabolism , NFATC Transcription Factors/genetics , NFATC Transcription Factors/metabolism , Mice, Transgenic , Lymphocyte Activation
10.
Biomedicines ; 11(3)2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36979867

ABSTRACT

Most of the current assays directed at the investigation of HIV reactivation are based on cultures of infected cells such as Peripheral Blood Mononuclear Cells (PBMCs) or isolated CD4+ T cells, stimulated in vitro with different activator molecules. The culture media in these in vitro tests lack many age- and donor-specific immunomodulatory components normally found within the autologous plasma. This triggered our interest in understanding the impact that different matrices and cell types have on T cell transcriptional profiles following in vitro culture and stimulation. METHODS: Unstimulated or stimulated CD4+ T cells of three young adults with perinatal HIV-infection were isolated from PBMCs before or after culture in RPMI medium or autologous plasma. Transcriptomes were sequenced using Oxford Nanopore technologies. RESULTS: Transcriptional profiles revealed the activation of similar pathways upon stimulation in both media with a higher magnitude of TCR cascade activation in CD4+ lymphocytes cultured in RPMI. CONCLUSIONS: These results suggest that for studies aiming at quantifying the magnitude of biological mechanisms under T cell activation, the autologous plasma could better approximate the in vivo environment. Conversely, if the study aims at defining qualitative aspects, then RPMI culture could provide more evident results.

11.
Cancers (Basel) ; 15(3)2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36765843

ABSTRACT

Cytoskeletal remodeling in circulating tumor cells (CTCs) facilitates metastatic spread. Previous oncology studies examine sustained aberrant calcium (Ca2+) signaling and cytoskeletal remodeling scrutinizing long-term phenotypes such as tumorigenesis and metastasis. The significance of acute Ca2+ signaling in tumor cells that occur within seconds to minutes is overlooked. This study investigates rapid cytoplasmic Ca2+ elevation in suspended cells on actin and tubulin cytoskeletal rearrangements and the metastatic microtentacle (McTN) phenotype. The compounds Ionomycin and Thapsigargin acutely increase cytoplasmic Ca2+, suppressing McTNs in the metastatic breast cancer cell lines MDA-MB-231 and MDA-MB-436. Functional decreases in McTN-mediated reattachment and cell clustering during the first 24 h of treatment are not attributed to cytotoxicity. Rapid cytoplasmic Ca2+ elevation was correlated to Ca2+-induced actin cortex contraction and rearrangement via myosin light chain 2 and cofilin activity, while the inhibition of actin polymerization with Latrunculin A reversed Ca2+-mediated McTN suppression. Preclinical and phase 1 and 2 clinical trial data have established Thapsigargin derivatives as cytotoxic anticancer agents. The results from this study suggest an alternative molecular mechanism by which these compounds act, and proof-of-principle Ca2+-modulating compounds can rapidly induce morphological changes in free-floating tumor cells to reduce metastatic phenotypes.

12.
Reprod Biomed Online ; 46(1): 35-45, 2023 01.
Article in English | MEDLINE | ID: mdl-36379856

ABSTRACT

RESEARCH QUESTION: Do fertilization rates differ between intracytoplasmic sperm injection (ICSI) cycles treated with artificial oocyte activation (AOA) using 10 µmol/l ionomycin or commercial A23187 in women at risk of failed or impaired fertilization? DESIGN: This single-centre, 7-year retrospective cohort study included 157 couples with a history of total fertilization failure (TFF, 0%) or low fertilization (<30%) after ICSI, or with severe oligo-astheno-teratozoospermia (OAT) in the male partner. Couples and underwent 171 ICSI-AOA cycles using either 10 µmol/l ionomycin or commercial A23187. The embryological and clinical outcomes were compared. RESULTS: Fertilization rates in the ionomycin group were significantly higher than those in the A23187 group for all three subgroups (TFF, 46.9% versus 28.4%, P = 0.002; low fertilization, 67.7% versus 49.2%, P < 0.001; severe OAT, 66.4% versus 31.6%, P < 0.001). AOA with ionomycin significantly increased the day 3 cleavage rate (P = 0.009) when compared with A23187 in the low fertilization group, but not in the TFF or severe OAT group (both P > 0.05). The rates of day 3 good-quality embryos, clinical pregnancy, implantation and live birth, and the cumulative live birth, did not differ between the two groups (all P > 0.05). A total of 64 live births resulted in 72 healthy babies born. CONCLUSIONS: AOA with 10 µmol/l ionomycin may be more effective than commercial A23187 in improving oocyte activation in patients at risk of failed or impaired fertilization, especially in cases of sperm-related defects.


Subject(s)
Oocytes , Semen , Pregnancy , Humans , Male , Female , Ionomycin/pharmacology , Calcimycin , Retrospective Studies , Fertilization , Pregnancy Rate
13.
Reprod Domest Anim ; 58(1): 176-183, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36222380

ABSTRACT

Pre-loading bovine sperm with cholesterol prior to freezing is known to increase cryosurvival, though the timing of capacitation in these sperm has not been evaluated. The objective of this study was to determine if there is a potential delay in capacitation timing in these sperm due to the increased cholesterol content. Flow cytometric evaluation was utilized to assess viability, and stain technology to assess acrosome intactness (Propidium Iodide/FITC-PNA), intracellular calcium levels (Propidium Iodide/FLUO 3-AM) and membrane fluidity (Merocyanine 540/YO-PRO-1). Cholesterol-loaded cyclodextrin (CLC) (2 mg/mL) improved post-thaw viability to 61% from 45% in control sperm (p < .05). The addition of ionomycin (0.05 mM) induced capacitation in sperm by 1 h, resulting in increased intracellular calcium and increased acrosome reaction, and consequently viability loss by 3 h. Treatment with CLC significantly decreased membrane fluidity in sperm (p < .05). In conclusion, CLC-treated sperm required 1 h more to capacitate when compared with non-treated sperm based on percentage of live cells with high membrane disorder (p < .05). Increased cryosurvival and viability over time was observed, but longer time to capacitate may hinder fertilization capacity and/or require adjustments to timing of in vitro fertilization.


Subject(s)
Cyclodextrins , Semen Preservation , Animals , Cattle , Male , Cyclodextrins/pharmacology , Calcium/pharmacology , Propidium/pharmacology , Semen , Cryopreservation/methods , Cryopreservation/veterinary , Spermatozoa , Cholesterol/pharmacology , Sperm Capacitation , Semen Preservation/veterinary , Semen Preservation/methods
14.
FEBS J ; 289(15): 4518-4535, 2022 08.
Article in English | MEDLINE | ID: mdl-35068054

ABSTRACT

The precise regulation of the T-cell activation process is critical for overall immune homeostasis. Although protein phosphatase 2A (PP2A) is required for T-cell development and function, the role of PPP2CB, which is the catalytic subunit ß isoform of PP2A, remains unknown. In the present study, using a T cell-specific knockout mouse of PPP2CB (PPP2CBfl/fl Lck-Cre+ ), we demonstrated that PPP2CB was dispensable for T-cell development in the thymus and peripheral lymphoid organs. Furthermore, PPP2CB deletion did not affect T-cell receptor (TCR)-induced T-cell activation or cytokine-induced T-cell responses; however, it specifically enhanced phorbol myristate acetate (PMA) plus ionomycin-induced T-cell activation with increased cellular proliferation, elevated CD69 and CD25 expression, and enhanced cytokine production (inteferon-γ, interleukin-2 and tumor necrosis factor). Mechanistic analyses suggested that the PPP2CB deletion enhanced activation of the phosphoinositide 3-kinase/Akt signaling pathway and Ca2+ flux following stimulation with PMA plus ionomycin. Moreover, the specific PI3K inhibitor rescued the augmented cell activation in PPP2CB-deficient T cells. Using mass spectrometry-based phospho-peptide analysis, we identified potential substrates of PPP2CB during PMA plus ionomycin-induced T-cell activation. Collectively, our study provides evidence of the specific role of PPP2CB in controlling PMA plus ionomycin-induced T-cell activation.


Subject(s)
Lymphocyte Activation , Phosphatidylinositol 3-Kinases , Protein Phosphatase 2 , Proto-Oncogene Proteins c-akt , T-Lymphocytes , Animals , Catalytic Domain , Cytokines , Ionomycin/pharmacology , Mice , Phosphatidylinositol 3-Kinases/genetics , Protein Phosphatase 2/genetics , Proto-Oncogene Proteins c-akt/genetics , Signal Transduction , T-Lymphocytes/metabolism , Tetradecanoylphorbol Acetate/pharmacology
15.
Arch Gynecol Obstet ; 305(5): 1225-1231, 2022 05.
Article in English | MEDLINE | ID: mdl-34797419

ABSTRACT

PURPOSE: To explore whether artificial oocyte activation (AOA) can improve embryo developmental potentiality and pregnancy outcomes for patients with a history of embryo developmental problem. METHODS: This was a retrospective study and candidate patients with embryo development problems were collected. A total of 1422 MII eggs from the enrolled 140 patients were randomized divided equally into 2 groups, half for the AOA group (AOA), and the rest of sibling mature eggs for the control group (non-AOA). The patients were further divided into two subgroups: (1) the rate of good-quality day 3 embryos was 0% (group 1, n = 66); (2) the rate of good-quality day 3 embryos ranged from 1 to 30% (group 2, n = 74). RESULTS: In the early embryonic growth, there were no significant differences in the outcomes of AOA and non-AOA groups in terms of normal fertilization rates, cleavage rates, day 3 good-quality embryo rates and available blastocyst rates (72.7% vs. 79.3%, 97.4% vs. 98.0%, 20.1% vs. 19.7%, 6.6% vs. 8.4% in group 1, respectively; 77.7% vs. 81.9%, 98.1% vs. 97.0%, 25.8% vs. 22.1%, 9.6% vs. 9.3% in group 2, respectively). In the late embryonic growth, no significant differences were found in biochemical and clinical pregnancy rates, implantation rates, miscarriage rates, and live-birth rates (50.0% vs. 45.2%, 45.2% vs. 40.5%, 37.3% vs. 31.3%, 10.5% vs. 11.8%, 40.5% vs. 35.7%, respectively) between two groups. In addition, neonatal outcomes were similar in both the groups as well. CONCLUSION: Our study demonstrated that the AOA using ionomycin 1 h after ICSI did not bring benefits to the early or late development of embryos derived from patients with a history of embryo developmental problems.


Subject(s)
Embryo Transfer , Sperm Injections, Intracytoplasmic , Embryonic Development , Female , Fertilization in Vitro , Humans , Oocytes/physiology , Pregnancy , Pregnancy Rate , Retrospective Studies
16.
Korean J Physiol Pharmacol ; 25(6): 555-564, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34697266

ABSTRACT

We investigated the effects of naringenin and morin on IL-5 and ROS production in PMA+ionomycin-treated EL-4 cells with the corroboration of their antioxidant and anti-inflammatory properties using an asthma-induced mouse model. The EL-4 cell line was used to study the outcomes of naringenin or morin, followed by cell viability studies. Western blot analysis and ELISA test were used to determine Th2 mediated cytokines. In vivo studies were carried out on BALB/c mice to induce allergic asthma using ovalbumin administered intraperitoneally. Intracellular ROS was determined using 2',7'-dichlorodihydrofluorescein diacetate, followed by serum enzymatic (AST and ALT) estimations and inflammatory cell count in the bronchoalveolar lavage fluid (BALF) and lung tissues. Histopathological studies were conducted to examine lung tissue-stained architecture. Our findings suggested that naringenin and morin significantly suppressed IL-5 and ROS production via various pathways. Interestingly, by reducing NFAT activity, naringenin and morin stimulated HO-1 expression, thereby suppressing IL-5 secretion due to regulating the transcription factor Nrf2 via P13/Akt or ERK/JNK signalling pathways in EL-4 cells, demonstrating the involvement of HO-1 expression in inhibiting asthmatic inflammation. The increased inflammatory cells in the BALF were substantially decreased by both naringenin and morin, followed by inhibition in the elevated Th-2 cytokines levels. The TNF-α protein levels in an allergic asthma mouse model were significantly reduced by suppressing Akt phosphorylation and eosinophil formation. Recent findings confirmed that naringenin and morin possess the potential to control asthma-related immune responses through antioxidant and anti-inflammatory properties, indicating potential therapeutic agents or functional foods.

17.
Front Cell Dev Biol ; 9: 672081, 2021.
Article in English | MEDLINE | ID: mdl-34368125

ABSTRACT

Total fertilization failure (TFF) occurs in 1-3% of total intracytoplasmic sperm injection (ICSI) cycles and can reoccur in subsequent cycles. Despite the high success rate with the application of assisted oocyte activation (AOA), there is still a small number of couples who cannot obtain fertilized eggs after conventional calcium (Ca2+) ionophores-based ICSI-AOA. Six couples experiencing repeated TFF or low fertilization (<10%) after ICSI and conventional ICSI-AOA were enrolled in this study. Compared with the regular ICSI group and the conventional ICSI-AOA group, the new AOA method, a combination of cycloheximide (CHX) and ionomycin, can significantly increase the fertilization rate from less than 10 up to approximately 50% in most cases. The normal distribution of sperm-related oocyte activation factor phospholipase C zeta (PLCζ1) in the sperms of the cases indicated the absence of an aberrant Ca2+ signaling activation. The results of the whole-embryo aneuploidies analysis indicated that oocytes receiving the novel AOA treatment had the potential to develop into blastocysts with normal karyotypes. Our data demonstrated that CHX combined with ionomycin was able to effectively improve the fertilization rate in the majority of patients suffering from TFF. This novel AOA method had a potential therapeutic effect on those couples experiencing TFF, even after conventional AOA, which may surmount the severe fertilization deficiencies in patients with a repeated low fertilization or TFF.

18.
J Proteome Res ; 20(6): 3150-3164, 2021 06 04.
Article in English | MEDLINE | ID: mdl-34008986

ABSTRACT

Citrullination is an important post-translational modification implicated in many diseases including rheumatoid arthritis (RA), Alzheimer's disease, and cancer. Neutrophil and mast cells have different expression profiles for protein-arginine deiminases (PADs), and ionomycin-induced activation makes them an ideal cellular model to study proteins susceptible to citrullination. We performed high-resolution mass spectrometry and stringent data filtration to identify citrullination sites in neutrophil and mast cells treated with and without ionomycin. We identified a total of 833 validated citrullination sites on 395 proteins. Several of these citrullinated proteins are important components of pathways involved in innate immune responses. Using this benchmark primary sequence data set, we developed machine learning models to predict citrullination in neutrophil and mast cell proteins. We show that our models predict citrullination likelihood with 0.735 and 0.766 AUCs (area under the receiver operating characteristic curves), respectively, on independent validation sets. In summary, this study provides the largest number of validated citrullination sites in neutrophil and mast cell proteins. The use of our novel motif analysis approach to predict citrullination sites will facilitate the discovery of novel protein substrates of protein-arginine deiminases (PADs), which may be key to understanding immunopathologies of various diseases.


Subject(s)
Citrullination , Mast Cells , Citrulline/metabolism , Ionomycin/pharmacology , Machine Learning , Mass Spectrometry , Mast Cells/metabolism , Neutrophils/metabolism , Protein-Arginine Deiminases/genetics
19.
Methods Mol Biol ; 2285: 111-119, 2021.
Article in English | MEDLINE | ID: mdl-33928547

ABSTRACT

An important hallmark for the characterisation of Th cells is their capacity for cytokine expression. In this chapter, we describe how Th cells can be restimulated polyclonally to reveal their cytokine-producing potential that can then be analysed by intracellular staining and flow cytometry.


Subject(s)
Cytokines/metabolism , Flow Cytometry , Single-Cell Analysis , T-Lymphocytes, Helper-Inducer/metabolism , Animals , Cells, Cultured , Humans , Ionomycin/pharmacology , Research Design , T-Lymphocytes, Helper-Inducer/drug effects , T-Lymphocytes, Helper-Inducer/immunology , Tetradecanoylphorbol Acetate/pharmacology , Workflow
20.
Int J Mol Sci ; 22(4)2021 Feb 09.
Article in English | MEDLINE | ID: mdl-33572290

ABSTRACT

Tetraspanin CD9 is widely expressed on various cell types, such as cancer cells and mesenchymal stem cells (MSCs), and/or cell-released exosomes. It has been reported that exosomal CD9 plays an important role in intercellular communications involved in cancer cell migration and metastasis. However, reports on the effect of the CD9 of MSCs or MSC-derived exosomes on cancer cell migration are still lacking. In this study, using a transwell migration assay, we found that both dextran-coated iron oxide nanoparticles (dex-IO NPs) and ionomycin stimulated exosomal CD9 expression in human MSCs (hMSCs); however, hMSCs could not deliver them to melanoma cells to affect cell migration. Interestingly, a reduced migration of melanoma cell line was observed when the ionomycin-incubated hMSC-conditioned media but not dex-IO NP-labeled hMSC-conditioned media were in the bottom chamber. In addition, we found that dex-IO NPs decreased cellular CD9 expression in hMSCs but ionomycin increased this. Simultaneously, we found that ionomycin suppressed the expression and secretion of the chemokine CCL21 in hMSCs. The silencing of CD9 demonstrated an inhibitory role of cellular CD9 in CCL21 expression in hMSCs, suggesting that ionomycin could upregulate cellular CD9 to decrease CCL21 expression and secretion of hMSCs, which would reduce the migration of B16F10, A549 and U87MG cancer cell lines due to chemoattraction reduction of CCL21. The present study not only highlights the important role of bone marrow-derived hMSCs' CD9-mediated CCL21 regulation in cancer bone metastasis but also suggests a new distinct pharmaceutical strategy for prevention or/and therapy of cancer metastasis.


Subject(s)
Bone Neoplasms/secondary , Cell Movement/physiology , Chemokine CCL21/metabolism , Mesenchymal Stem Cells/metabolism , Tetraspanin 29/metabolism , Animals , Bone Marrow/pathology , Cell Line, Tumor , Cell Movement/drug effects , Chemokine CCL21/genetics , Coculture Techniques , Culture Media, Conditioned/pharmacology , Exosomes/metabolism , Gene Knockdown Techniques , Humans , Ionomycin/pharmacology , Mesenchymal Stem Cells/cytology , Mice , Paracrine Communication/drug effects , Primary Cell Culture , Tetraspanin 29/genetics , Up-Regulation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL