Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
1.
ACS Nano ; 18(26): 17304-17313, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38904507

ABSTRACT

Recently, aqueous iron ion batteries (AIIBs) using iron metal anodes have gained traction in the battery community as low-cost and sustainable solutions for green energy storage. However, the development of AIIBs is significantly hindered by the limited capacity of existing cathode materials and the poor intercalation kinetic of Fe2+. Herein, we propose a H+ and Fe2+ co-intercalation electrochemistry in AIIBs to boost the capacity and rate capability of cathode materials such as iron hexacyanoferrate (FeHCF) and Na4Fe3(PO4)2(P2O7) (NFPP). This is achieved through an electrochemical activation step during which a FeOOH nanowire layer is formed in situ on the cathode. This layer facilitates H+ co-intercalation in AIIBs, resulting in a high specific capacity of 151 mAh g-1 and 93% capacity retention over 500 cycles for activated FeHCF cathodes. We found that this activation process can also be applied to other cathode chemistries, such as NFPP, where we found that the cathode capacity is doubled as a result of this process. Overall, the proposed H+/Fe2+ co-insertion electrochemistry expands the range of applications for AIBBs, in particular as a sustainable solution for storing renewable energy.

2.
Biol Trace Elem Res ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771434

ABSTRACT

In order to explore the effect of excessive iron supplementation on ferroptosis in mouse testes, Kunming mice received injections of varying concentrations of iron. The organ weight, sperm density, and malformation rate were measured. Observations of pathological and ultrastructural alterations in spermatogenic tubules were conducted using haematoxylin eosin (HE) staining and transmission electron microscopy(TEM). Transcript levels of related genes and serum biochemical indicators were measured in mouse testicular tissue. The results showed that higher iron concentration inhibited the growth of mice; reduced the organ coefficients of the testis, heart, and liver; and increased the rate of sperm malformation and mortality. Supplementation with high levels of iron ions can adversely affect the male reproductive system by reducing sperm count, damaging the structure of the seminiferous tubules and causing sperm cell abnormalities. In addition, the iron levels also affected the immune response and blood coagulation ability by affecting the red blood cells, white blood cells and platelets. The results showed that iron ions can affect mouse testicular tissue and induce ferroptosis by altering the expression of ferroptosis-related genes. However, the degree of effect was different for the different concentrations of iron ions. The study also revealed the potential role of deferoxamine in inhibiting the occurrence of ferroptosis. Nevertheless, the damage caused to the testis by deferoxamine supplementation suggests the need for further research in this direction. This study provides reference for reproductive toxicity induced by environmental iron exposure and clarifies the mechanism of reproductive toxicity caused by iron overload and the important role of iron in the male reproductive system.

3.
Am J Physiol Cell Physiol ; 326(5): C1367-C1383, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38406826

ABSTRACT

Age-related macular degeneration (AMD) is characterized by the degenerative senescence in the retinal pigment epithelium (RPE) and photoreceptors, which is accompanied by the accumulation of iron ions in the aging retina. However, current models of acute oxidative stress are still insufficient to simulate the gradual progression of AMD. To address this, we established chronic injury models by exposing the aRPE-19 cells, 661W cells, and mouse retina to iron ion overload over time. Investigations at the levels of cell biology and molecular biology were performed. It was demonstrated that long-term treatment of excessive iron ions induced senescence-like morphological changes, decreased cell proliferation, and impaired mitochondrial function, contributing to apoptosis. Activation of the mitogen-activated protein kinase (MAPK) pathway and the downstream molecules were confirmed both in the aRPE-19 and 661W cells. Furthermore, iron ion overload resulted in dry AMD-like lesions and decreased visual function in the mouse retina. These findings suggest that chronic exposure to overloading iron ions plays a significant role in the pathogenesis of retinopathy and provide a potential model for future studies on AMD.NEW & NOTEWORTHY To explore the possibility of constructing reliable research carriers on age-related macular degeneration (AMD), iron ion overload was applied to establish models in vitro and in vivo. Subsequent investigations into cellular physiology and molecular biology confirmed the presence of senescence in these models. Through this study, we hope to provide a better option of feasible methods for future researches into AMD.


Subject(s)
Disease Models, Animal , Iron , Macular Degeneration , Retinal Pigment Epithelium , Animals , Humans , Macular Degeneration/metabolism , Macular Degeneration/pathology , Macular Degeneration/genetics , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/pathology , Mice , Iron/metabolism , Mice, Inbred C57BL , Apoptosis , Oxidative Stress , Cell Line , Cellular Senescence , Iron Overload/metabolism , Iron Overload/pathology , Cell Proliferation , Retina/metabolism , Retina/pathology , Mitochondria/metabolism , Mitochondria/pathology
4.
J Fluoresc ; 34(1): 159-167, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37166610

ABSTRACT

A fluorescent probe Y((1,1'-([1,1'-biphenyl]-4,4'-diylbis(3-(2-hydroxyphenyl)-4,5-dihydro-1H-pyrazole-5,1-diyl)) bis(ethan-1-one))) was designed and synthesized, which could be used to Cu2+ and Fe3+ sensors. Through the study of optical properties, the probe Y shows good selectivity and sensitivity to Cu2+ and Fe3+ in aqueous tetrahydrofuran solution [10.0 mM HEPES, pH 7.4, THF-H2O = 9:1(v/v)] with has excellent anti-interference performance, and its detection limits were 0.931 uΜ for Cu2+ and 0.401uΜ for Fe3+. The coordination mechanism of probe Y with Cu2+ and Fe3+ was speculated and verified at DFT level and HRNM. By Hela cytotoxicity and imaging tests, probe Y not only has good biocompatibility, but also can be used for sensing Cu2+ in cells.


Subject(s)
Copper , Fluorescent Dyes , Humans , Fluorescent Dyes/chemistry , Copper/chemistry , Iron/chemistry , HeLa Cells , Optical Imaging , Spectrometry, Fluorescence
5.
Chem Biol Interact ; 387: 110828, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38081571

ABSTRACT

RSL3 is a common inhibitor of glutathione peroxidase 4 (GPx4) that can induce ferroptosis. Ferroptosis is an iron ion-dependent, oxidative-type of programmed cell death. In this study, larval/adult zebrafish were stimulated with RSL3 to construct a ferroptosis model, and CYP2R1-/- zebrafish was used as a 1,25(OH)2D3 knock-down model to explore the regulatory effect and mechanism of 1,25(OH)2D3/VD3 on RSL3-induced ferroptosis. The results showed that 1,25(OH)2D3/VD3 alleviated RSL3 induced mitochondrial damage in liver of larval/adult zebrafish, reversed the decline of GPx4 activity, and reduced the accumulation of ROS, LPO and MDA. VD3 also inhibited hepcidin (HEPC) in adult fish liver, promoted the production of ferroportin (FPN), and reduced the aggregation of Fe2+. Exogenous 1,25(OH)2D3 increased the CYP2R1-/- survival and liver GPx4 activity after RSL3 treatment. At the gene level, 1,25(OH)2D3/VD3 activated Keap1-Nrf2-GPx4 and inhibited the NFκB-hepcidin axis. In the ferroptosis context, deletion of the cyp2r1 gene resulted in a more severe decline in gpx4 expression, but the exogenous 1,25(OH)2D3 increased the expression of the GPx4 gene and protein in CYP2R1-/- zebrafish liver after RSL3 treatment. The collective results indicated that 1,25(OH)2D3/VD3 can inhibit ferroptosis induced by RSL3 in liver of larval/adult zebrafish by improving the antioxidant capacity and regulating iron ion transport. Exogenous 1,25(OH)2D3 reverses the downregulation of GPx4 in the CYP2R1-/- zebrafish liver in the ferroptosis state. Compared with the ferroptosis inhibitor Fer-1, the mechanism of action of 1,25(OH)2D3/VD3 is diversified and nonspecific. This study demonstrated the resistance of VD3 to RSL3-induced ferroptosis at different developmental stages in zebrafish.


Subject(s)
Antioxidants , Ferroptosis , Animals , Antioxidants/metabolism , Zebrafish/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Hepcidins/genetics , Hepcidins/metabolism , NF-E2-Related Factor 2/metabolism , Iron/metabolism , Ion Transport
6.
Small ; 20(6): e2305766, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37771178

ABSTRACT

Although the research on aqueous batteries employing metal as the anode is still mainly focused on the aqueous zinc-ion battery, aqueous iron-ion batteries are considered as promising aqueous batteries owing to the lower cost, higher specific capacity, and better stability. However, the sluggish Fe2+ (de)intercalation leads to unsatisfactory specific capacity and poor electrochemical stability, which makes it difficult to find cathode materials with excellent electrochemical properties. Herein, phenylamine (PA)-intercalated VOPO4 materials with expanded interlayer spacing are synthesized and applied successfully in aqueous iron-ion batteries. Owing to enough diffusion space from the expanded interlayer, which can boost fast Fe2+ diffusion, the aqueous iron-ion battery shows a high specific capacity of 170 mAh g-1 at 0.2 A g-1 , excellent rate performance, and cycle stability (96.2% capacity retention after 2200 cycles). This work provides a new direction for cathode material design in the development of aqueous iron-ion batteries.

7.
J Cell Mol Med ; 28(1): e18044, 2024 01.
Article in English | MEDLINE | ID: mdl-38140764

ABSTRACT

Breast cancer is the most prevalent cancer worldwide and its incidence increases with age, posing a significant threat to women's health globally. Due to the clinical heterogeneity of breast cancer, the majority of patients develop drug resistance and metastasis following treatment. Ferroptosis, a form of programmed cell death dependent on iron, is characterized by the accumulation of lipid peroxides, elevated levels of iron ions and lipid peroxidation. The underlying mechanisms and signalling pathways associated with ferroptosis are intricate and interconnected, involving various proteins and enzymes such as the cystine/glutamate antiporter, glutathione peroxidase 4, ferroptosis inhibitor 1 and dihydroorotate dehydrogenase. Consequently, emerging research suggests that ferroptosis may offer a novel target for breast cancer treatment; however, the mechanisms of ferroptosis in breast cancer urgently require resolution. Additionally, certain natural compounds have been reported to induce ferroptosis, thereby interfering with breast cancer. Therefore, this review not only discusses the molecular mechanisms of multiple signalling pathways that mediate ferroptosis in breast cancer (including metastasis, invasion and proliferation) but also elaborates on the mechanisms by which natural compounds induce ferroptosis in breast cancer. Furthermore, this review summarizes potential compound types that may serve as ferroptosis inducers in future tumour cells, providing lead compounds for the development of ferroptosis-inducing agents. Last, this review proposes the potential synergy of combining natural compounds with traditional breast cancer drugs in the treatment of breast cancer, thereby suggesting future directions and offering new insights.


Subject(s)
Breast Neoplasms , Ferroptosis , Humans , Female , Apoptosis , Glutamic Acid , Iron , Lipid Peroxidation
8.
Bioprocess Biosyst Eng ; 46(11): 1651-1664, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37728765

ABSTRACT

This study aimed to immobilize trypsin on activated carbon submitted to different surface modifications and its application in casein hydrolysis. With the aim of determining which support can promote better maintenance of the immobilized enzyme. Results showed that pH 5.0 was obtained as optimal for immobilization and pH 9.0 for the casein hydrolysis reaction for activated carbon and glutaraldehyde functionalized carbon. Among the supports used, activated carbon modified with iron ions in the presence of a chelating agent was the one that showed best results, under the conditions evaluated in this study. Presenting an immobilization yield of 95.15% and a hydrolytic activity of 4.11 U, same as soluble enzyme (3.76 U). This derivative kept its activity stable at temperatures above 40 °C for1 h and when stored for 30 days at 5 °C. Furthermore, it was effective for more than 6 reuse cycles (under the same conditions as the 1st cycle). In general, immobilization of trypsin on metallized activated carbon can be an alternative to biocatalysis, highlighting the advantages of protease immobilization.


Subject(s)
Caseins , Charcoal , Hydrolysis , Enzyme Stability , Trypsin/metabolism , Hydrogen-Ion Concentration , Enzymes, Immobilized/metabolism , Temperature
9.
Front Neurol ; 14: 1141434, 2023.
Article in English | MEDLINE | ID: mdl-37638179

ABSTRACT

Severe head trauma can lead to seizures. Persistent epileptic seizures and their progression are associated with the severity of trauma. Although case reports have revealed that early use of anti-seizure drugs after trauma can prevent epilepsy, clinical case-control studies have failed to confirm this phenomenon. To date, many brain trauma models have been used to study the correlation between post-traumatic seizures and related changes in neural circuit function. According to these studies, neuronal and glial responses are activated immediately after brain trauma, usually leading to significant cell loss in injured brain regions. Over time, long-term changes in neural circuit tissues, especially in the neocortex and hippocampus, lead to an imbalance between excitatory and inhibitory neurotransmission and an increased risk of spontaneous seizures. These changes include alterations in inhibitory interneurons and the formation of new, over-recurrent excitatory synaptic connections. In this study, we review the progress of research related to post-traumatic epilepsy to better understand the mechanisms underlying the initiation and development of post-traumatic seizures and to provide theoretical references for the clinical treatment of post-traumatic seizures.

10.
Heliyon ; 9(7): e17884, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37539111

ABSTRACT

Herein, we propose a simple and effective strategy for designing a zeolitic imidazolate frameworks (ZIFs) fluorescent probe with a two-dimensional leaf-like structure. By doping ZIF-L with phosphate, we developed a fluorescent probe for iron (Fe3+) in systems with high salinity. The fluorescence of P-ZIF-L was quenched effectively with the presence of Fe3+. The physicochemical structure, surface morphology, selectivity, stability and composition of the probe were investigated. Under optimized conditions, the fluorescent probe had a detection limit of 0.5 µM. Furthermore, the results that the probe exhibited desirable salt-tolerance and was suitable for determination of Fe3+ in brine water samples with satisfactory results.

11.
Int J Pharm ; 642: 123140, 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37354928

ABSTRACT

A novel cross-linked film dressing that can accelerate wound healing and guard against bacterial infection was presented in this work. The hyaluronic acid-proline-ferric ion (HA-Pro-Fe3+) film was successfully prepared by physically cross-linking method, which the carboxyl groups of the HA and Pro molecules should be in coordination with Fe3+. The HA-Pro-Fe3+ cross-linked film showed three-dimensional porous structure, appropriate water vapor permeability and swelling property, favorable cytocompatibility and hemocompatibility, antibacterial and antioxidative capability. The results of rat skin wound healing confirmed that HA-Pro-Fe3+ film could accelerate epithelial regeneration and collagen deposition, promote angiogenesis and significantly improve skin wound healing. Elisa analysis indicated that HA-Pro-Fe3+ material could down-regulate the expression of IL-6 and TNF-α, and up-regulate the level of TGF-ß1 and VEGF. Given its biocompatibility, antibacterial ability, promotion of cell proliferation and angiogenesis, the wide application of HA-Pro-Fe3+ cross-linked film in wound repair would be anticipated.


Subject(s)
Hyaluronic Acid , Wound Healing , Rats , Animals , Hyaluronic Acid/chemistry , Collagen/chemistry , Cell Proliferation , Iron , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Hydrogels/chemistry
12.
Int J Biol Sci ; 19(4): 1063-1079, 2023.
Article in English | MEDLINE | ID: mdl-36923926

ABSTRACT

Gastric cancer (GC) is one of the most common malignant tumors in the world. GPx4, as the core regulator of ferroptosis, has become a potential molecular target for developing anticancer agents. In the present study, we found that GPx4 was overexpressed and negatively correlated with poor prognosis in GC, while it was associated with the GC development. Molecular docking and structure-based virtual screening assays were used to screen potential GPx4 inhibitors, and we identified a novel GPx4 inhibitor, polyphyllin B (PB), which can induce ferroptosis by down-regulating GPx4 expression in GC cells. It has also been shown to inhibit cell proliferation, suppress invasion and migration, induce apoptosis, and block the cell cycle progression in GC cells in vitro. Then, immunofluorescence and western blotting assay confirmed that PB can regulate the expression of LC3B, TFR1, NOCA4 and FTH1 in vitro, which suggested that suggest that PB may increase the level of Fe2+ by transporting Fe3+ into the cell by TFR1 and promoting NCOA4-dependent iron autophagy. In addition, PB can also suppresses tumor growth in an orthotopic mouse model of GC via regulating the expression of GPx4, TFR1, NOCA4 and FTH1 in vivo. In summary, we confirmed that GPx4 may be a potential target for GC treatment, PB may be a novel and promising drug for the treatment of GC, which shows good antitumor efficacy without causing significant host toxicity via inducing ferroptosis in both gastric cancer cells and mouse models.


Subject(s)
Ferroptosis , Stomach Neoplasms , Animals , Mice , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics , Ferroptosis/genetics , Molecular Docking Simulation , Apoptosis/genetics , Cell Proliferation/genetics , Disease Models, Animal
13.
Environ Res ; 224: 115447, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36758919

ABSTRACT

A green, high-efficiency, and wide pH tolerance water remediation process has been urgently acquired for the increasingly exacerbating contaminated water. In this study, a Fe3+/persulfate (Fe3+/PS) system was employed and enhanced with a green natural ligand cysteine (Cys) for the degradation of quinclorac (QNC). The introduction of Cys into the Fe3+/PS system widened the effective pH range to 9 with a superior removal rate for QNC. The mechanism revealed that the Fe3+/Cys/PS system can enhance the ability of degrading QNC by accelerating the Fe3+/Fe2+ redox cycle, maintaining Fe2+ concentration and thereby generating more HO• and SO4•-. The impact factors (i.e., pH, concentrations of PS, Fe3+ and Cys) were optimized as well. This work provides a promising strategy with high catalytic activity and wide pH tolerance for organic contaminated water remediation.


Subject(s)
Quinolines , Water Pollutants, Chemical , Water Purification , Cysteine/chemistry , Hydrogen-Ion Concentration , Oxidation-Reduction , Water , Water Pollutants, Chemical/analysis , Green Chemistry Technology
14.
Anal Bioanal Chem ; 415(6): 1149-1157, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36700985

ABSTRACT

The fast-growing healthcare demand for user-friendly and affordable analytical tools is driving the efforts to develop reliable platforms for the customization of therapy based on individual health conditions. In this overall scenario, we developed a paper-based electrochemical sensor for the quantification of iron ions in serum as a cost-effective sensing tool for the correct supplement administration. In detail, the working electrode of the screen-printed device has been modified with a nanocomposite constituted of carbon black and gold nanoparticles with a drop-casting procedure. Square wave voltammetry has been adopted as an electrochemical technique. This sensor was further modified with Nafion for iron quantification in serum after sample treatment with trifluoroacetic acid. Under optimized conditions, iron ions have been detected with a LOD down to 0.05 mg/L and a linearity up to 10 mg/L in standard solution. The obtained results have been compared with reference methods namely commercial colorimetric assay and atomic absorption spectroscopy, obtaining a good correlation within the experimental errors. These results demonstrated the suitability of the developed paper-based sensor for future applications in precision medicine of iron-deficiency diseases.


Subject(s)
Iron , Metal Nanoparticles , Iron/chemistry , Gold/chemistry , Limit of Detection , Electrodes , Electrochemical Techniques/methods
15.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-969629

ABSTRACT

Background A large amount of iron deposition in the brain can cause neuronal damage by inducing oxidative stress, neuroinflammation, and abnormal mitochondrial function. In addition, iron deposition is also reported to be closely related to the pathogenesis of Alzheimer's disease (AD). The neurofibrillary tangles aggregated by tau hyperphosphorylation are one of the important pathological features of AD. Objective To investigate potential effect of exogenous trivalent iron ions on neuronal activity in human neuroblastoma (SH-SY5Y) cells and tau hyperphosphorylation and aggregation. Methods SH-SY5Y cells were treated with ferric chloride (FeCl3) at four concentrations (10, 100, 200, and 400 mg·L−1). Cell survival rate was then detected by CCK8 assay. Intracellular iron content was determined prussian blue (Perl's) by iron staining after 24 h exposure to FeCl3 at 10 or 200 mg·L−1. Transfection of tau-P301L plasmid was conducted to construct an AD-like cell model for tau overexpression. The differences in the expression of the phosphorylated tau (p-tau) protein in SH-SY5Y cells and SH-SY5Y cells with tau overexpression were detected by Western blotting after 24 h exposure to FeCl3 at 10 and 200 mg·L−1. After dilution with phosphate buffered saline (PBS), FeCl3, human tauR3, and FeCl3 + tauR3 were incubated at 37℃, and the fluorescence intensity reflecting tau aggregation level was measured by thioflavin T(ThT) method at 12, 24, 36, 48, 60, 72, 84, and 96 h, respectively. Meanwhile, after 96 h coincubation of FeCl3 and tauR3, the fibers formed by tau aggregation were observed under a transmission electron microscope (TEM). Results After 24 h of FeCl3 exposure, the cell survival rate of SH-SY5Y cells among all groups was statistically different (F=8.63, P<0.01). The cell survival rates in the 200 and 400 mg·L−1 groups were 80.1% and 68.7% of the control group, respectively (P<0.05). Compared with the control group, the nuclei of the 200 mg·L−1 FeCl3 group were mainly yellowish-brown after iron staining and the positive cell rate was up-regulated by 12.9% (P<0.01). After 24 h of FeCl3 exposure , the p-tau (Ser396) protein expression was statistically different among all groups (F=11.6, P<0.01). Compared with the control group, the p-tau protein expression level of SH-SY5Y cells in the 200 mg·L−1 group was up-regulated by 72.7% (P<0.01). After FeCl3-treated SH-SY5Y cells with tau overexpression for 24 h, the p-tau (Ser396) protein expression was statistically different among all groups (F=27.8, P<0.01). Compared with the tau group, the p-tau (Ser396) protein expression level of SH-SY5Y cells in the tau + 200 mg·L−1 group was up-regulated by 44.6% (P<0.05). Compared with the tauR3 group, the fluorescence intensities in the 84 and 96 h tauR3 + FeCl3 groups were up-regulated by 49.9% and 53.7% (P<0.01) respectively. After 96 h of coincubation, compared with the tauR3 group, FeCl3 + tauR3 aggravated tau aggregation and formed fiber deposition under TEM. Conclusion Exogenous trivalent iron ions may inhibit SH-SY5Y cell viability, promote the phosphorylation of tau in SH-SY5Y cells transfected with tau-P301L plasmid, and aggravate tauR3 aggregation and fiber production.

16.
Chinese Journal of Biologicals ; (12): 1242-1247, 2023.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-996685

ABSTRACT

@#Objective To develop and verify a sulfosalicylic acid spectrophotometric method for the determination of trace iron ions in diphtheria toxin medium,and apply it preliminarily.Methods The maximum absorbance of the complex of iron and sulfosalicylic acid was scanned by full spectrum;A method for the determination of iron ion in culture medium was developed by linear regression between the absorbance of the complex and the content of iron ion,and the stability,accuracy and precision of the method were verified.The effects of Ca~(2+),Mg~(2+),K~+,Na~+ and reactants on the method were investigated.Spectrophotometric method with sulfosalicylic acid was used to determine trace iron in the self-made and commercial medium for diphtheria toxin production.Sulfosalicylic acid spectrophotometry,ferrizine colorimetry and o-phenanthroline spectrophotometry were used to detect iron content in two kinds of culture media(beef trypsin digestion liquid and 5% polypeptone),and the detection results of the three methods were compared.Results The complex of iron and sulfosalicylic acid showed the maximum absorbance at the wavelength of 425 nm;There was a good linear relationship between the absorbance and concentration of iron ion in the range of 1~0.05 μg/mL,the detection limit was 0.05 μg/mL,and the standard equation was:Y=0.027 9 X+0.046 1,R~2> 0.99;The coefficients of variation(CVs) of A_(425) value of each concentration of standards measured every 5 min were less than 5%;Low(0.05 μg/mL),medium(0.5 μg/mL)and high concentration(1 μg/mL) of Fe~(3+) standard solutions were continuously determined for 3 times.The CVs of 9groups of each concentration measured in parallel were all less than 5% and the recovery rates were higher than 95%;Ca~(2+),Mg~(2+),K~+,Na~+,15 μL of sulfo salicylic acid(20%) and 50 μL of ammonia hydroxide(1:1) showed no interference in the method;The results of toxin-producing medium were consistent with those of diphtheria bacteria;The results of the three detection methods were consistent.Conclusion The developed spectrophotometric method with sulfo salicylic acid can determine the content of trace iron ions in diphtheria toxin medium accurately and effectively.

17.
Environ Technol ; : 1-15, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36382362

ABSTRACT

In this work, we designed and synthesized a novel, simple, low-cost, and effective chromone-based Schiff base ligand (HL) and its application as a chemosensor for Fe3+ detection. The structure of the synthesized sensor bears carboxylic, azomethine, and carbonyl groups which act as chelating sites for the detection of Fe3+ ions. The chemosensor HL exhibited highly selective detection of Fe3+ via a significant colour change from yellow to brown. The colour change is due to the ligand-to-metal charge-transfer (LMCT) mechanism. The sensor (HL) was characterized using UV-Vis, FTIR, NMR (1H- and 13C), and mass spectroscopy. The ligand solubility, detection condition, and sensitivity assessment suggested optimal use of DMF-water (9:1 v/v) as a working solvent at pH 7.0. Among a list of 15 metal ions screened, HL was highly selective, with instant response, towards Fe3+ ions without significant interferences with the other metal ions. The complexation ratio and association constants of HL to Fe3+ was determined by Job's plot and Benesi-Hildebrand methods, and were 2:1 and 2.24 × 103 M-1, respectively, with a detection limit of 2.86 µM. The HL probe was also applied to detect Fe3+ in real samples with acceptable performance. The simple test strips have been successfully developed and applied to the visual monitoring of Fe3+ ions with a detection limit of 68 µM. The DFT was used to examine the best interaction mode of HL with Fe metal to be Fe(III)-L or Fe(III)-2L. The chemical-reactivity and molecular electrostatic optional were figured to predict the interaction behaviour of the tested compounds.

18.
Biol Pharm Bull ; 45(9): 1291-1299, 2022.
Article in English | MEDLINE | ID: mdl-36047197

ABSTRACT

Here, we searched for microRNAs (miRNAs) in silico that could interact with SLC11A2 mRNA, a solute carrier (SLC) iron-ion transporter, and investigated their effects on SLC11A2 gene expression using the cultured human colon carcinoma cell line, Caco-2. In silico analysis using the miRWalk2.0 database revealed that several types of miRNAs interact with the human SLC11A2 gene; we focused on three miRNAs, miR-149-5p, miR-362-5p, and miR-539-5p as candidates in this study. We first revealed that the three miRNAs interact with the SLC11A2 3'-untranslated region (3'-UTR) using a luciferase assay in a Caco-2 cell line. We then examined whether the expression of each miRNA affected the expression of SLC11A2 mRNAs and their transcribed transporter proteins. We found transiently expressed miRNAs significantly reduced the reporter activity of the SLC11A2 3'-UTR site in Caco-2 cells by significantly decreasing the SLC11A2 gene and protein expression in the miRNA-transfected Caco-2 cells. Subsequently, we investigated the effects of these miRNAs on SLC11A2's iron-ion transporting activity by measuring iron-ion concentration in Caco-2 cells. Administration of ammonium iron (II) sulfate hexahydrate to Caco-2 cells significantly increased the intracellular iron-ion concentration. However, in iron-ion-pretreated cells, overexpression of each of the three miRNAs resulted in decreased intracellular iron-ion concentration. This indicated that overexpressed miRNAs inhibited iron-ion influx into Caco-2 cells by attenuating SLC11A2 transporting activity. Using in silico analysis, we predicted that three studied miRNAs could bind to the iron-ion influx transporter SLC11A2 and revealed that they regulate SLC11A2 gene expression and iron-ion transporting function in an in vitro system.


Subject(s)
Cation Transport Proteins , MicroRNAs , 3' Untranslated Regions , Caco-2 Cells , Cation Transport Proteins/genetics , Humans , Iron/metabolism , MicroRNAs/genetics , RNA, Messenger/genetics
19.
Xenobiotica ; 52(5): 488-497, 2022 May.
Article in English | MEDLINE | ID: mdl-35913106

ABSTRACT

Linzagolix is an orally available gonadotropin-releasing hormone antagonist used to treat sex-hormone-dependent diseases in women. This study aimed to investigate drug-drug interactions between linzagolix and iron/calcium ions in the intended clinical setting by conducting pharmacokinetic studies in vitro and in rats.Insoluble precipitate formation with metal ions was evaluated by measuring linzagolix concentrations in four types of bio-relevant dissolution media (fasted/fed state simulated gastric fluid and fasted/fed state simulated gastric fluid version 2), and chelate complex formation with metal ions was evaluated by release of linzagolix from a cellulose membrane sac. In these in vitro studies, linzagolix showed no potential for insoluble precipitate formation under fasted/fed conditions and no chelate complex formation in the presence of metal ions.In rats, the plasma concentration-time profiles of linzagolix and iron ion were similar regardless of whether they were administered with or without ferrous sulphate and linzagolix choline at clinically relevant doses. Thus, linzagolix and iron ion had no effect on each other's absorption in vivo.In conclusion, linzagolix is unlikely to cause clinically relevant drug-drug interactions by chelating metal ions according to the results of in vitro and in vivo studies.


Subject(s)
Calcium , Iron , Animals , Carboxylic Acids , Female , Gonadotropin-Releasing Hormone , Humans , Ions , Pyrimidines , Rats , Solubility
20.
Nanomaterials (Basel) ; 12(15)2022 Jul 29.
Article in English | MEDLINE | ID: mdl-35957054

ABSTRACT

Based on the self-passivation function of chitosan, an efficient, and green synthesis strategy was applied to prepare chitosan carbon dots (CDs). The quantum yield of carbon dots reached 35% under the conditions of hydrothermal temperature of 200 °C, hydrothermal time of 5 h, and chitosan concentration of 2%. Moreover, the obtained carbon dots had high selectivity and sensitivity to Fe3+. Based on the Schiff base reaction between the aldehyde groups of dialdehyde cellulose nanofibrils (DNF) and the amino groups of CDs, a chemically cross-linked, novel, fluorescent composite film, with high transparency and high strength, was created using one-pot processing. Knowing that the fluorescence effect of the composite film on Fe3+ had a linear relationship in the concentration range of 0-100 µM, a fluorescent probe can be developed for quantitative analysis and detection of Fe3+. Owing to their excellent fluorescent and mechanical properties, the fluorescent nanocomposite films have potential applications in the fields of Fe3+ detection, fluorescent labeling, and biosensing.

SELECTION OF CITATIONS
SEARCH DETAIL