Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Language
Publication year range
1.
Curr Res Toxicol ; 7: 100181, 2024.
Article in English | MEDLINE | ID: mdl-39021403

ABSTRACT

Sickle cell disease (SCD) is an inherited hemoglobin disorder marked by red blood cell sickling, resulting in severe anemia, painful episodes, extensive organ damage, and shortened life expectancy. In SCD, increased iron levels can trigger ferroptosis, a specific type of cell death characterized by reactive oxygen species (ROS) and lipid peroxide accumulation, leading to damage and organ impairments. The intricate interplay between iron, ferroptosis, inflammation, and oxidative stress in SCD underscores the necessity of thoroughly understanding these processes for the development of innovative therapeutic strategies. This review highlights the importance of balancing the complex interactions among various factors and exploitation of the knowledge in developing novel therapeutics for this devastating disease.

2.
J Hazard Mater ; 446: 130701, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36603425

ABSTRACT

Serious concerns have recently been raised regarding the association of Fe excess with neurodegenerative diseases in mammals and nutritional and oxidative disorders in plants. Therefore, the current study aimed to understand the physiological changes induced by Fe excess in Pistia stratiotes, a species often employed in phytoremediation studies. P. stratiotes were subjected to five concentrations of Fe: 0.038 (control), 1.0, 3.0, 5.0 and 7.0 mM. Visual symptoms of Fe-toxicity such as bronzing of leaf edges in 5.0 and 7.0 mM-grown plants were observed after 5 days. Nevertheless, no major changes were observed in photosynthesis-related parameters at this time-point. In contrast, plants growing for 10 days in high Fe concentrations showed decreased chlorophyll concentrations and lower net CO2 assimilation rate. Notwithstanding, P. stratiotes accumulated high amounts of Fe, especially in roots (maximum of 10,000 µg g-1 DW) and displayed a robust induction of the enzymatic antioxidant system. In conclusion, we demonstrated that P. stratiotes can be applied to clean up Fe-contaminated water, as the species displays high Fe bioaccumulation, mostly in root apoplasts, and can maintain physiological processes under Fe excess. Our results further revealed that by monitoring visual symptoms, P. stratiotes could be applied for bioindication purposes.


Subject(s)
Araceae , Hydrocharitaceae , Water Pollutants, Chemical , Animals , Iron , Biodegradation, Environmental , Bioaccumulation , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Water , Mammals
3.
Plant Physiol Biochem ; 143: 275-285, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31536896

ABSTRACT

Iron (Fe) toxicity is often observed in lowland rice (Oryza sativa L.) plants, disrupting cell homeostasis and impairing growth and crop yields. Silicon (Si) can mitigate the effects of Fe excess on rice by decreasing tissue Fe concentrations, but no information exists whether Si could prevent the harmful effects of Fe toxicity on the photosynthesis and carbon metabolism. Two rice cultivars with contrasting abilities to tolerate Fe excess were hydroponically grown under two Fe levels (25 µM or 5 mM) and amended or not with Si (0 or 2 mM). Fe toxicity caused decreases in net photosynthetic rate (A), particularly in the sensitive cultivar. These decreases were correlated with reductions in stomatal (gs) and mesophyll (gm) conductances, as well as with increasing photorespiration. Photochemical (e.g. electron transport rate) and biochemical (e.g., maximum RuBisCO carboxylation capacity and RuBisCO activity) parameters of photosynthesis, and activities of a range of carbon metabolism enzymes, were minimally, if at all, affected by the treatments. Si attenuated the decreases in A by presumably reducing the Fe content. In fact, A as well as gs and gm, correlated significantly with leaf Fe contents. In summary, our data suggest a remarkable metabolic homeostasis under Fe toxicity, and that Si attenuated the impairments of Fe excess on the photosynthetic apparatus by affecting the leaf diffusive conductance with minimal impacts on carbon metabolism.


Subject(s)
Carbon/metabolism , Iron/toxicity , Oryza/metabolism , Silicon/pharmacology , Gene Expression Regulation, Plant , Oryza/drug effects , Oryza/physiology , Photosynthesis/drug effects , Plant Leaves/drug effects , Plant Leaves/metabolism , Plant Leaves/physiology
4.
BMC Res Notes ; 12(1): 361, 2019 Jun 25.
Article in English | MEDLINE | ID: mdl-31238948

ABSTRACT

OBJECTIVES: This study was conducted to establish a method for early, quick and cheap screening of iron excess tolerance in rice (Oryza sativa L.) cultivars. RESULTS: Based on the experiments, iron excess leads to reduction in shoot length (SL) and this can be a useful characteristic for adequate screening of tolerant genotypes. The sensitive genotypes Nipponbare and BR-IRGA 409 indicated higher accumulation of iron in their tissues while BRS-Agrisul and Epagri 108 also accumulated iron, but at lower concentrations. BR-IRGA 410 displayed an intermediate phenotype regarding iron accumulation. No changes in shoot Cu content can be observed when comparing treatments. On the other hand, an increase was seen for Zn and Mn when shoots are subjected to Fe2+ excess. Fe stress at a lower concentration than 7 mM increased Zn but decreased Mn contents in shoots of BR-IRGA 409. Strong positive correlations were found here for Fe × Zn (0.93); Fe × Mn (0.97) and Zn × Mn (0.92), probably due to the Fe-induced activation of bivalent cation transporters. Results show that genotypes scored as sensitive present higher concentration of Fe in shoots and this is an efficient method to characterize rice cultivars regarding iron response.


Subject(s)
Adaptation, Physiological/genetics , Genetic Testing , Iron/toxicity , Oryza/genetics , Oryza/physiology , Adaptation, Physiological/drug effects , Genotype , Oryza/drug effects , Plant Leaves/drug effects , Plant Leaves/physiology , Plant Shoots/drug effects , Plant Shoots/physiology
5.
Genet. mol. biol ; Genet. mol. biol;40(1,supl.1): 312-325, 2017. graf
Article in English | LILACS | ID: biblio-892395

ABSTRACT

Abstract Iron is a well-known metal. Used by humankind since ancient times in many different ways, this element is present in all living organisms, where, unfortunately, it represents a two-way problem. Being an essential block in the composition of different proteins and metabolic pathways, iron is a vital component for animals and plants. That is why iron deficiency has a severe impact on the lives of different organisms, including humans, becoming a major concern, especially in developing countries where access to adequate nutrition is still difficult. On the other hand, this metal is also capable of causing damage when present in excess, becoming toxic to cells and affecting the whole organism. Because of its importance, iron absorption, transport and storage mechanisms have been extensively investigated in order to design alternatives that may solve this problem. As the understanding of the strategies that plants use to control iron homeostasis is an important step in the generation of improved plants that meet both human agricultural and nutritional needs, here we discuss some of the most important points about this topic.

6.
Sci. agric ; 73(3): 217-226, 2016. tab, ilus, graf
Article in English | VETINDEX | ID: biblio-1497568

ABSTRACT

Iron plays a pivotal role in the redox reactions of photosynthesis and metabolic processes such as chlorophyll synthesis. Iron availability in waterlogged soils can reach toxic levels and promote oxidative stress. Fe toxicity is the most concerning of stresses for rice in many lowland environments around the world and may cause severe impairments in rice photosynthesis. This study aimed to investigate the extension of oxidative stress after excess Fe exposure and its effects on the photosynthesis of rice cultivars with differential sensitivity. Three Brazilian rice cultivars (EPAGRI 107, BRSMG SELETA and BR IRGA 409) were grown in Hoagland nutrient solution (pH 4.0) with two Fe-EDTA doses corresponding to excess Fe (7 mM) and control (0.009 mM) treatments. After just three days of excess Fe exposure, there was a significant increase in iron concentration in the shoots. The BR IRGA 409 cultivar exhibited higher Fe accumulation in its shoots, and the EPAGRI 107 cultivar recorded the lowest values, which were below the critical toxicity level, as a resistance strategy. Impairment in light energy partitioning and oxidative damage became evident before changes in stomatal resistance, chlorophyll content, maximal PSII quantum yield or visual symptoms for the most sensitive cultivar (BR IRGA 409). The photosynthesis limitations, in addition to the impairment of excess energy dissipation in rice from iron toxicity, are the results of oxidative damage.


Subject(s)
Iron , Photosynthesis , Oryza , Toxicity , 24444 , Energy Diffusion , Metabolism , Oxidation-Reduction
7.
Sci. agric. ; 73(3): 217-226, 2016. tab, ilus, graf
Article in English | VETINDEX | ID: vti-15672

ABSTRACT

Iron plays a pivotal role in the redox reactions of photosynthesis and metabolic processes such as chlorophyll synthesis. Iron availability in waterlogged soils can reach toxic levels and promote oxidative stress. Fe toxicity is the most concerning of stresses for rice in many lowland environments around the world and may cause severe impairments in rice photosynthesis. This study aimed to investigate the extension of oxidative stress after excess Fe exposure and its effects on the photosynthesis of rice cultivars with differential sensitivity. Three Brazilian rice cultivars (EPAGRI 107, BRSMG SELETA and BR IRGA 409) were grown in Hoagland nutrient solution (pH 4.0) with two Fe-EDTA doses corresponding to excess Fe (7 mM) and control (0.009 mM) treatments. After just three days of excess Fe exposure, there was a significant increase in iron concentration in the shoots. The BR IRGA 409 cultivar exhibited higher Fe accumulation in its shoots, and the EPAGRI 107 cultivar recorded the lowest values, which were below the critical toxicity level, as a resistance strategy. Impairment in light energy partitioning and oxidative damage became evident before changes in stomatal resistance, chlorophyll content, maximal PSII quantum yield or visual symptoms for the most sensitive cultivar (BR IRGA 409). The photosynthesis limitations, in addition to the impairment of excess energy dissipation in rice from iron toxicity, are the results of oxidative damage.(AU)


Subject(s)
Iron , Oryza , Toxicity , Photosynthesis , Energy Diffusion , Oxidation-Reduction , Metabolism , 24444
8.
Front Pharmacol ; 5: 38, 2014.
Article in English | MEDLINE | ID: mdl-24653700

ABSTRACT

A growing set of observations points to mitochondrial dysfunction, iron accumulation, oxidative damage and chronic inflammation as common pathognomonic signs of a number of neurodegenerative diseases that includes Alzheimer's disease, Huntington disease, amyotrophic lateral sclerosis, Friedrich's ataxia and Parkinson's disease. Particularly relevant for neurodegenerative processes is the relationship between mitochondria and iron. The mitochondrion upholds the synthesis of iron-sulfur clusters and heme, the most abundant iron-containing prosthetic groups in a large variety of proteins, so a fraction of incoming iron must go through this organelle before reaching its final destination. In turn, the mitochondrial respiratory chain is the source of reactive oxygen species (ROS) derived from leaks in the electron transport chain. The co-existence of both iron and ROS in the secluded space of the mitochondrion makes this organelle particularly prone to hydroxyl radical-mediated damage. In addition, a connection between the loss of iron homeostasis and inflammation is starting to emerge; thus, inflammatory cytokines like TNF-alpha and IL-6 induce the synthesis of the divalent metal transporter 1 and promote iron accumulation in neurons and microglia. Here, we review the recent literature on mitochondrial iron homeostasis and the role of inflammation on mitochondria dysfunction and iron accumulation on the neurodegenerative process that lead to cell death in Parkinson's disease. We also put forward the hypothesis that mitochondrial dysfunction, iron accumulation and inflammation are part of a synergistic self-feeding cycle that ends in apoptotic cell death, once the antioxidant cellular defense systems are finally overwhelmed.

SELECTION OF CITATIONS
SEARCH DETAIL