Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Ecol Evol ; 10(23): 12973-12982, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33304509

ABSTRACT

Bird assemblages are sensitive to changes in landscape composition and the environment, such as those that result from drought. In this study, the relationship between landscape composition and avian functional diversity in traditional agricultural ecosystems in the Civilian Control Zone (CCZ) of Korea was examined. In addition, the resilience of biodiversity to changes in landscape elements resulting from drought conditions was investigated. The traditional agricultural landscape (TAL) of the sites studied was divided into three types: TAL 1 had a high proportion of rice paddies, TAL 2 included large forest areas, and TAL 3 represented areas with drylands. Of these, TAL 1 showed the highest species richness and functional richness, but these measures were most vulnerable to drought. Meanwhile, TAL 2 showed that the bird communities were more tolerant under drought event. This study shows that to conserve and enhance the diversity of birds in traditional agricultural landscapes of Northeast Asia, active management of forest areas is needed to protect bird populations. In addition, commercial pressures to develop this area will require urgent biodiversity conservation plans to protect the unique biodiversity of the Korean CCZ. This study thus provides landscape management guidance for conservation planning.

2.
Sci Total Environ ; 716: 135757, 2020 May 10.
Article in English | MEDLINE | ID: mdl-31837850

ABSTRACT

Microbial water quality datasets are essential in irrigated agricultural practices to detect and inform measures to prevent the contamination of produce. Escherichia coli (E. coli) concentrations are commonly used to evaluate microbial water quality. Remote sensing imagery has been successfully used to retrieve several water quality parameters that can be determinants of E. coli habitats in waterbodies. This pilot study was conducted to test the possibility of using imagery from a small unmanned aerial vehicle (sUAV or drone) to improve the estimation of microbial water quality in small irrigation ponds. In situ measurements of pH, turbidity, specific conductance, and concentrations of dissolved oxygen, chlorophyll-a, phycocyanin, and fluorescent dissolved organic matter were taken at depths of 0-15 cm in 23 locations across a pond in Central Maryland, USA. The pond surface was concurrently imaged using a drone with three modified GoPro cameras, and a multispectral MicaSense RedEdge camera with five spectral bands. The GoPro imagery was decomposed into red, blue, and green components. Mean digital numbers for 1-m radius areas in the images were combined with the water quality data to provide input for a regression tree-based analysis. The accuracy of the regression-tree data description with "only imagery" inputs was the same or better than that of trees constructed with "only water-quality parameters" as inputs. From multiple cross-validation runs with "only imagery" inputs for the regression trees, the average (±SD) determination coefficient and root-mean-squared error of the decimal logarithm of E. coli concentrations were 0.793 ±â€¯0.035 and 0.131 ±â€¯0.011, respectively. The results of this study demonstrate the opportunities for using sUAV imagery for obtaining a more accurate delineation of the spatial variation of E. coli concentrations in irrigation ponds.


Subject(s)
Ponds , Water Quality , Agricultural Irrigation , Escherichia coli , Maryland , Pilot Projects
3.
Front Plant Sci ; 9: 599, 2018.
Article in English | MEDLINE | ID: mdl-29868061

ABSTRACT

Regional-scale pond diversity is supported by high variation in community composition. To effectively and efficiently conserve pond regional diversity, it is essential to recognize the community types in a focal region and the scales of the factors influencing the occurrence of respective community types. Based on a flora survey and GIS analysis of 367 ponds in western Japan, we developed a multinomial regression model that describes the relationship between aquatic macrophyte community type (based on cluster analysis) and five environmental factors that differ in the spatial scale at which they operate (i.e., landscape or local scale) and origin (i.e., natural or anthropogenic). A change in topographic configuration resulted in a transition of the community types with high species richness. Increasing urban and agricultural area around ponds resulted in a decrease in species-rich community occurrence; an increase in urban area increased the probability of a pond having no macrophytes, whereas that of paddy field increased the probability of a pond having only a few macrophytes. Pond surface area and proportion of artificial embankment significantly defined the pond community: greater embankment proportions increased the probability of ponds having few or no macrophytes. Our results suggest that conserving regional pond biodiversity will require actions not only at a local scale but also at a sufficiently large spatial scale to cover the full gradient of topographic configurations that influence the macrophyte species composition in ponds.

SELECTION OF CITATIONS
SEARCH DETAIL