Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.822
Filter
1.
Gene ; 927: 148742, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38969244

ABSTRACT

Preeclampsia (PE) is clinically defined as a part of pregnancy characterized by hypertension and multiple organ failure. PE is broadly categorized into two types: "placental" and "maternal". Placental PE is associated with fetal growth restriction and adverse maternal and neonatal outcomes. STOX1 (Storkhead box 1), a transcription factor, discovered through a complete transcript analysis of the PE susceptibility locus of 70,000 bp on chromosome 10q22.1. So far, studies investigating the relationship between STOX1 and PE have focused on STOX1 overexpression, STOX1 isoform imbalance, and STOX1 variations that could have clinical consequence. Initially, the Y153H variation of STOX was associated with the placental form of PE. Additionally, studies focusing on the maternal and fetal interface have shown that NODAL and STOX1 variations play a role together in the unsuccessful remodeling of the spiral arteries. Research specifically addressing the overexpression of STOX1 has shown that its disruption of cellular hemoastasis, leading to impaired hypoxia response, disruption of the cellular antioxidant system, and nitroso/redox imbalance. Furthermore, functional studies have been conducted showing that the imbalance between STOX1 isoforms contributes to the pathogenesis of placental PE. Research indicates that STOX1B competes with STOX1A and that the overexpression of STOX1B reverses cellular changes that STOX1A induces to the pathogenesis of PE. In this review, we aimed at elucidating the relationship between STOX1 and PE as well as function of STOX1. In conclusion, based on a comprehensive literature review, numerous studies support the role of STOX1 in the pathogenesis of PE.

2.
Front Physiol ; 15: 1384426, 2024.
Article in English | MEDLINE | ID: mdl-38952867

ABSTRACT

Alternative splicing is an essential post-transcriptional regulatory mechanism that diversifies gene function by generating multiple protein isoforms from a single gene and act as a crucial role in insect environmental adaptation. Olfaction, a key sense for insect adaptation, relies heavily on the antennae, which are the primary olfactory organs expressing most of the olfactory genes. Despite the extensive annotation of olfactory genes within insect antennal tissues facilitated by high-throughput sequencing technology advancements, systematic analyses of alternative splicing are still relatively less. In this study, we focused on the oriental fruit fly (Bactrocera dorsalis), a significant pest of fruit crops. We performed a detailed analysis of alternative splicing in its antennae by utilizing the full-length transcriptome of its antennal tissue and the insect's genome. The results revealed 8600 non-redundant full-length transcripts identified in the oriental fruit fly antennal full-length transcriptome, spanning 4,145 gene loci. Over 40% of these loci exhibited multiple isoforms. Among these, 161 genes showed sex-biased isoform switching, involving seven different types of alternative splicing. Notably, events involving alternative transcription start sites (ATSS) and alternative transcription termination sites (ATTS) were the most common. Of all the genes undergoing ATSS and ATTS alternative splicing between male and female, 32 genes were alternatively spliced in protein coding regions, potentially affecting protein function. These genes were categorized based on the length of the sex-biased isoforms, with the highest difference in isoform fraction (dIF) associated with the ATSS type, including genes such as BdorABCA13, BdorCAT2, and BdorTSN3. Additionally, transcription factor binding sites for doublesex were identified upstream of both BdorABCA13 and BdorCAT2. Besides being expressed in the antennal tissues, BdorABCA13 and BdorCAT2 are also expressed in the mouthparts, legs, and genitalia of both female and male adults, suggesting their functional diversity. This study reveals alternative splicing events in the antennae of Bactrophora dorsalis from two aspects: odorant receptor genes and other types of genes expressed in the antennae. This study not only provides a research foundation for understanding the regulation of gene function by alternative splicing in the oriental fruit fly but also offers new insights for utilizing olfaction-based behavioral manipulation techniques to manage this pest.

3.
Gastric Cancer ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954176

ABSTRACT

BACKGROUND: Limited data exist for global prevalence of claudin 18 isoform 2 (CLDN18.2) positivity and association of CLDN18.2 status with clinical and tumor characteristics in patients with locally advanced (LA) unresectable or metastatic gastric or gastroesophageal junction (mG/GEJ) adenocarcinoma. We report prevalence of CLDN18.2 positivity (phase 3; SPOTLIGHT, NCT03504397; GLOW, NCT03653507) and concordance of CLDN18.2 status between a subset of pair-matched tumor samples (phase 2, ILUSTRO, NCT03505320; phase 1, NCT03528629) from clinical studies of zolbetuximab. METHODS: Tumor samples from patients with LA unresectable or mG/GEJ adenocarcinoma were tested for CLDN18.2 status by immunohistochemistry. Human epidermal growth factor receptor 2 (HER2) expression was tested per central or local assessment. RESULTS: Across SPOTLIGHT and GLOW, the prevalence of CLDN18.2 positivity (≥ 75% of tumor cells demonstrating moderate-to-strong membranous CLDN18 staining) was 38.4%. Prevalence was similar in gastric versus GEJ adenocarcinoma samples and regardless of collection method (biopsy versus resection) or collection site (primary versus metastatic). CLDN18.2 positivity was most prevalent in patients with diffuse-type tumors. In ILUSTRO and the phase 1 study, concordance of CLDN18.2 positivity was 61.1% between archival (i.e., any time before treatment) and baseline (i.e., ≤ 3 months before first treatment) samples, and concordance of any CLDN18 staining (≥ 1% of tumor cells demonstrating moderate-to-strong membranous CLDN18 staining) was 88.9%. CONCLUSIONS: CLDN18.2 was a highly prevalent biomarker in patients with HER2-negative, LA unresectable or mG/GEJ adenocarcinoma. CLDN18.2 positivity remained relatively stable over time in many patients. Biomarker testing for CLDN18.2 should be considered in standard clinical practice in these patients.

4.
Toxicon ; 247: 107822, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38908528

ABSTRACT

To date there are only pirfenidone (PFD) and nintedanib to be given conditional recommendation in idiopathic pulmonary fibrosis (IPF) therapies with slowing disease progression, but neither has prospectively shown a reduced mortality. It is one of the urgent topics to find effective drugs for pulmonary fibrosis in medicine. Previous studies have demonstrated that microcystin-RR (MC-RR) effectively alleviates bleomycin-induced pulmonary fibrosis, but the mechanism has not been fully elucidated yet. We further conducted a comparison of therapeutic effect on the model animals of pulmonary fibrosis between MC-RR and PFD with histopathology and the expression of the molecular markers involved in differentiation, proliferation and metabolism of myofibroblasts, a major effector cell of tissue fibrosis. The levels of the enzyme molecules for maintaining the stability of interstitial structure were also evaluated. Our results showed that MC-RR and PFD effectively alleviated pulmonary fibrosis in model mice with a decreased signaling and marker molecules associated with myofibroblast differentiation and lung fibrotic lesion. In the meantime, both MC-RR and PFD treatment are beneficial to restore molecular dynamics of interstitial tissue and maintain the stability of interstitial architecture. Unexpectedly, MC-RR, rather than PFD, showed a significant effect on inhibiting PKM2-HIF-1α signaling and reducing the level of p-STAT3. Additionally, MC-RR showed a better inhibition effect on FGFR1 expression. Given that PKM2-HIF-1α and activated STAT3 molecular present a critical role in promoting the proliferation of myofibroblasts, MC-RR as a new strategy for IPF treatment has potential advantage over PFD.

5.
Int J Mol Sci ; 25(12)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38928478

ABSTRACT

Hereditary breast and ovarian cancer (HBOC) syndrome is a genetic condition that increases the risk of breast cancer by 80% and that of ovarian cancer by 40%. The most common pathogenic variants (PVs) causing HBOC occur in the BRCA1 gene, with more than 3850 reported mutations in the gene sequence. The prevalence of specific PVs in BRCA1 has increased across populations due to the effect of founder mutations. Therefore, when a founder mutation is identified, it becomes key to improving cancer risk characterization and effective screening protocols. The only founder mutation described in the Mexican population is the deletion of exons 9 to 12 of BRCA1 (BRCA1Δ9-12), and its description focuses on the gene sequence, but no transcription profiles have been generated for individuals who carry this gene. In this study, we describe the transcription profiles of cancer patients and healthy individuals who were heterozygous for PV BRCA1Δ9-12 by analyzing the differential expression of both alleles compared with the homozygous BRCA1 control group using RT-qPCR, and we describe the isoforms produced by the BRCA1 wild-type and BRCA1Δ9-12 alleles using nanopore long-sequencing. Using the Kruskal-Wallis test, our results showed a similar transcript expression of the wild-type allele between the healthy heterozygous group and the homozygous BRCA1 control group. An association between the recurrence and increased expression of both alleles in HBOC patients was also observed. An analysis of the sequences indicated four wild-type isoforms with diagnostic potential for discerning individuals who carry the PV BRCA1Δ9-12 and identifying which of them has developed cancer.


Subject(s)
Alleles , BRCA1 Protein , Hereditary Breast and Ovarian Cancer Syndrome , Humans , BRCA1 Protein/genetics , Female , Hereditary Breast and Ovarian Cancer Syndrome/genetics , Middle Aged , Genetic Predisposition to Disease , Adult , Founder Effect , Exons/genetics , Breast Neoplasms/genetics , Heterozygote , Mutation , Mexico , Ovarian Neoplasms/genetics , Clinical Relevance
6.
Genes (Basel) ; 15(6)2024 May 23.
Article in English | MEDLINE | ID: mdl-38927612

ABSTRACT

The current investigation endeavors to identify differentially expressed alternatively spliced (DAS) genes that exhibit concordant expression with splicing factors (SFs) under diverse multifactorial abiotic stress combinations in Arabidopsis seedlings. SFs serve as the post-transcriptional mechanism governing the spatiotemporal dynamics of gene expression. The different stresses encompass variations in salt concentration, heat, intensive light, and their combinations. Clusters demonstrating consistent expression profiles were surveyed to pinpoint DAS/SF gene pairs exhibiting concordant expression. Through rigorous selection criteria, which incorporate alignment with documented gene functionalities and expression patterns observed in this study, four members of the serine/arginine-rich (SR) gene family were delineated as SFs concordantly expressed with six DAS genes. These regulated SF genes encompass cactin, SR1-like, SR30, and SC35-like. The identified concordantly expressed DAS genes encode diverse proteins such as the 26.5 kDa heat shock protein, chaperone protein DnaJ, potassium channel GORK, calcium-binding EF hand family protein, DEAD-box RNA helicase, and 1-aminocyclopropane-1-carboxylate synthase 6. Among the concordantly expressed DAS/SF gene pairs, SR30/DEAD-box RNA helicase, and SC35-like/1-aminocyclopropane-1-carboxylate synthase 6 emerge as promising candidates, necessitating further examinations to ascertain whether these SFs orchestrate splicing of the respective DAS genes. This study contributes to a deeper comprehension of the varied responses of the splicing machinery to abiotic stresses. Leveraging these DAS/SF associations shows promise for elucidating avenues for augmenting breeding programs aimed at fortifying cultivated plants against heat and intensive light stresses.


Subject(s)
Alternative Splicing , Arabidopsis Proteins , Arabidopsis , Gene Expression Regulation, Plant , Stress, Physiological , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Stress, Physiological/genetics , Seedlings/genetics , RNA Splicing Factors/genetics , RNA Splicing Factors/metabolism
7.
J Am Soc Mass Spectrom ; 35(7): 1422-1433, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38832804

ABSTRACT

Voltage-Dependent Anion Channel isoforms (VDAC1, VDAC2, and VDAC3) are relevant components of the outer mitochondrial membrane (OMM) and play a crucial role in regulation of metabolism and in survival pathways. As major players in the regulation of cellular metabolism and apoptosis, VDACs can be considered at the crossroads between two broad families of pathologies, namely, cancer and neurodegeneration, the former being associated with elevated glycolytic rate and suppression of apoptosis in cancer cells, the latter characterized by mitochondrial dysfunction and increased cell death. Recently, we reported the characterization of the oxidation pattern of methionine and cysteines in rat and human VDACs showing that each cysteine in these proteins is present with a preferred oxidation state, ranging from the reduced to the trioxidized form, and such an oxidation state is remarkably conserved between rat and human VDACs. However, the presence and localization of disulfide bonds in VDACs, a key point for their structural characterization, have so far remained undetermined. Herein we have investigated by nanoUHPLC/High-Resolution nanoESI-MS/MS the position of intramolecular disulfide bonds in rat VDAC2 (rVDAC2), a protein that contains 11 cysteines. To this purpose, extraction, purification, and enzymatic digestions were carried out at slightly acidic or neutral pH in order to minimize disulfide bond interchange. The presence of six disulfide bridges was unequivocally determined, including a disulfide bridge linking the two adjacent cysteines 4 and 5, a disulfide bridge linking cysteines 9 and 14, and the alternative disulfide bridges between cysteines 48, 77, and 104. A disulfide bond, which is very resistant to reduction, between cysteines 134 and 139 was also detected. In addition to the previous findings, these results significantly extend the characterization of the oxidation state of cysteines in rVDAC2 and show that it is highly complex and presents unusual features. Data are available via ProteomeXchange with the identifier PXD044041.


Subject(s)
Amino Acid Sequence , Disulfides , Tandem Mass Spectrometry , Voltage-Dependent Anion Channel 2 , Animals , Voltage-Dependent Anion Channel 2/chemistry , Voltage-Dependent Anion Channel 2/metabolism , Voltage-Dependent Anion Channel 2/analysis , Rats , Disulfides/chemistry , Disulfides/analysis , Disulfides/metabolism , Tandem Mass Spectrometry/methods , Oxidation-Reduction , Cysteine/chemistry , Cysteine/analysis , Molecular Sequence Data , Chromatography, High Pressure Liquid/methods
8.
Mol Cell ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38917795

ABSTRACT

Efficient targeted control of splicing is a major goal of functional genomics and therapeutic applications. Guide (g)RNA-directed, deactivated (d)Cas CRISPR enzymes fused to splicing effectors represent a promising strategy due to the flexibility of these systems. However, efficient, specific, and generalizable activation of endogenous exons using this approach has not been previously reported. By screening over 300 dCasRx-splicing factor fusion proteins tethered to splicing reporters, we identify dCasRx-RBM25 as a potent activator of exons. Moreover, dCasRx-RBM25 efficiently activates the splicing of ∼90% of targeted endogenous alternative exons and displays high on-target specificity. Using gRNA arrays for combinatorial targeting, we demonstrate that dCasRx-RBM25 enables multiplexed activation and repression of exons. Using this feature, the targeting of neural-regulated exons in Ptpb1 and Puf60 in embryonic stem cells reveals combinatorial effects on downstream alternative splicing events controlled by these factors. Collectively, our results enable versatile, combinatorial exon-resolution functional assays and splicing-directed therapeutic applications.

9.
Mol Brain ; 17(1): 40, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902764

ABSTRACT

Alternative splicing (AS) contributes to the biological heterogeneity between species, sexes, tissues, and cell types. Many diseases are either caused by alterations in AS or by alterations to AS. Therefore, measuring AS accurately and efficiently is critical for assessing molecular phenotypes, including those associated with disease. Long-read sequencing enables more accurate quantification of differentially spliced isoform expression than short-read sequencing approaches, and third-generation platforms facilitate high-throughput experiments. To assess differences in AS across the cerebellum, cortex, hippocampus, and striatum by sex, we generated and analyzed Oxford Nanopore Technologies (ONT) long-read RNA sequencing (lrRNA-Seq) C57BL/6J mouse brain cDNA libraries. From > 85 million reads that passed quality control metrics, we calculated differential gene expression (DGE), differential transcript expression (DTE), and differential transcript usage (DTU) across brain regions and by sex. We found significant DGE, DTE, and DTU across brain regions and that the cerebellum had the most differences compared to the other three regions. Additionally, we found region-specific differential splicing between sexes, with the most sex differences in DTU in the cortex and no DTU in the hippocampus. We also report on two distinct patterns of sex DTU we observed, sex-divergent and sex-specific, that could potentially help explain sex differences in the prevalence and prognosis of various neurological and psychiatric disorders in future studies. Finally, we built a Shiny web application for researchers to explore the data further. Our study provides a resource for the community; it underscores the importance of AS in biological heterogeneity and the utility of long-read sequencing to better understand AS in the brain.


Subject(s)
Brain , Mice, Inbred C57BL , RNA, Messenger , Sequence Analysis, RNA , Sex Characteristics , Animals , Male , Brain/metabolism , Female , Sequence Analysis, RNA/methods , RNA, Messenger/genetics , RNA, Messenger/metabolism , Alternative Splicing/genetics , RNA Isoforms/genetics , Organ Specificity/genetics , Mice , Gene Expression Profiling
10.
bioRxiv ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38915658

ABSTRACT

Studying protein isoforms is an essential step in biomedical research; at present, the main approach for analyzing proteins is via bottom-up mass spectrometry proteomics, which return peptide identifications, that are indirectly used to infer the presence of protein isoforms. However, the detection and quantification processes are noisy; in particular, peptides may be erroneously detected, and most peptides, known as shared peptides, are associated to multiple protein isoforms. As a consequence, studying individual protein isoforms is challenging, and inferred protein results are often abstracted to the gene-level or to groups of protein isoforms. Here, we introduce IsoBayes, a novel statistical method to perform inference at the isoform level. Our method enhances the information available, by integrating mass spectrometry proteomics and transcriptomics data in a Bayesian probabilistic framework. To account for the uncertainty in the measurement process, we propose a two-layer latent variable approach: first, we sample if a peptide has been correctly detected (or, alternatively filter peptides); second, we allocate the abundance of such selected peptides across the protein(s) they are compatible with. This enables us, starting from peptide-level data, to recover protein-level data; in particular, we: i) infer the presence/absence of each protein isoform (via a posterior probability), ii) estimate its abundance (and credible interval), and iii) target isoforms where transcript and protein relative abundances significantly differ. We benchmarked our approach in simulations, and in two multi-protease real datasets: our method displays good sensitivity and specificity when detecting protein isoforms, its estimated abundances highly correlate with the ground truth, and can detect changes between protein and transcript relative abundances. IsoBayes is freely distributed as a Bioconductor R package, and is accompanied by an example usage vignette.

11.
Viruses ; 16(6)2024 May 31.
Article in English | MEDLINE | ID: mdl-38932187

ABSTRACT

In 2023, South Africa continued to experience sporadic cases of clade 2.3.4.4b H5N1 high-pathogenicity avian influenza (HPAI) in coastal seabirds and poultry. Active environmental surveillance determined that H5Nx, H7Nx, H9Nx, H11Nx, H6N2, and H12N2, amongst other unidentified subtypes, circulated in wild birds and ostriches in 2023, but that H5Nx was predominant. Genome sequencing and phylogenetic analysis of confirmed H5N1 HPAI cases determined that only two of the fifteen sub-genotypes that circulated in South Africa in 2021-2022 still persisted in 2023. Sub-genotype SA13 remained restricted to coastal seabirds, with accelerated mutations observed in the neuraminidase protein. SA15 caused the chicken outbreaks, but outbreaks in the Paardeberg and George areas, in the Western Cape province, and the Camperdown region of the KwaZulu-Natal province were unrelated to each other, implicating wild birds as the source. All SA15 viruses contained a truncation in the PB1-F2 gene, but in the Western Cape SA15 chicken viruses, PA-X was putatively expressed as a novel isoform with eight additional amino acids. South African clade 2.3.4.4b H5N1 viruses had comparatively fewer markers of virulence and pathogenicity compared to European strains, a possible reason why no spillover to mammals has occurred here yet.


Subject(s)
Birds , Disease Outbreaks , Genotype , Influenza A Virus, H5N1 Subtype , Influenza in Birds , Phylogeny , South Africa/epidemiology , Animals , Influenza in Birds/virology , Influenza in Birds/epidemiology , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/pathogenicity , Influenza A Virus, H5N1 Subtype/classification , Influenza A Virus, H5N1 Subtype/isolation & purification , Birds/virology , Chickens/virology , Poultry/virology , Genome, Viral , Virulence , Animals, Wild/virology , Neuraminidase/genetics , Viral Proteins/genetics
12.
Cytojournal ; 21: 19, 2024.
Article in English | MEDLINE | ID: mdl-38887695

ABSTRACT

Objective: This study aims to assess the effectiveness of Short Stature Homeobox 2 (SHOX2) and RAS Association Domain Family 1 Isoform A (RASSF1A) gene methylation detection in residual liquid-based cytology (LBC) materials from Endobronchial Ultrasound-Guided Transbronchial Needle Aspiration (EBUS-TBNA) and investigate the diagnostic accuracy of a comprehensive diagnostic approach. Material and Methods: Between June 2022 and May 2023, a total of 110 cases that underwent EBUS-TBNA were enrolled in the study. SHOX2 and RASSF1A genes methylation detection using the residual cytological material, LBC, and cell block (CB) were conducted for each EBUS-TBNA case. The sensitivity and specificity of cytology, CB histopathology, SHOX2, and RASSF1A methylation in diagnosing EBUS-TBNA samples were determined based on follow-up data. Results: Among the 72 cases confirmed as pulmonary carcinomas, the methylation test yielded positive results in 24 adenocarcinoma cases, 10 squamous cell carcinoma cases, and 14 small cell carcinoma cases. The sensitivity of the comprehensive diagnosis (combining LBC, CB, and methylation detection) in distinguishing metastatic pulmonary epithelial malignancies in mediastinal and hilar lymph nodes or masses from benign lesions was higher (97.22%, 70/72) than that of morphological diagnosis alone (LBC and CB) (88.89%, 64/72; P < 0.05). Conclusion: SHOX2 and RASSF1A methylation detection demonstrates a high sensitivity and negative predictive value in the identification of pulmonary epithelial malignancies and holds promise as a valuable ancillary approach to enhance morphological diagnosis of EBUS-TBNA.

13.
Sci Rep ; 14(1): 10176, 2024 05 03.
Article in English | MEDLINE | ID: mdl-38702476

ABSTRACT

Experimental evidence indicates that follicle-stimulating hormone (FSH), an essential hormone for reproduction, can act directly on endothelial cells inducing atherosclerosis activation and development. However, it remains unknown whether the FSH-receptor (FSHR) is expressed in human atherosclerosis plaques. To demonstrate the FSHR presence, we used immunohistochemical and immunoelectron microscopy involving a specific monoclonal antibody FSHR1A02 that recognizes an epitope present in the FSHR-ectodomain. In all 55 patients with atherosclerotic plaques located in carotid, coronary, femoral arteries, and iliac aneurysm, FSHR was selectively expressed in arterial endothelium covering atherosclerotic plaques and endothelia lining intraplaque neovessels. Lymphatic neovessels were negative for FSHR. M1-macrophages, foam cells, and giant multinucleated cells were also FSHR-positive. FSHR was not detected in normal internal thoracic artery. Immunoelectron microscopy performed in ApoEKO/hFSHRKI mice with atherosclerotic plaques, after injection in vivo with mouse anti-hFSHR monoclonal antibody FSHR1A02 coupled to colloidal gold, showed FSHR presence on the luminal surface of arterial endothelial cells covering atherosclerotic plaques. Therefore, FSHR can bind, internalize, and deliver into the plaque circulating ligands to FSHR-positive cells. In conclusion, we report FSHR expression in endothelial cells, M1-macrophages, M1-derived foam cells, giant multinucleated macrophages, and osteoclasts associated with human atherosclerotic plaques.


Subject(s)
Plaque, Atherosclerotic , Receptors, FSH , Plaque, Atherosclerotic/metabolism , Plaque, Atherosclerotic/pathology , Humans , Receptors, FSH/metabolism , Animals , Mice , Female , Male , Macrophages/metabolism , Aged , Middle Aged , Endothelial Cells/metabolism , Foam Cells/metabolism , Foam Cells/pathology
14.
bioRxiv ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38798496

ABSTRACT

Advancements in long-read transcriptome sequencing (long-RNA-seq) technology have revolutionized the study of isoform diversity. These full-length transcripts enhance the detection of various transcriptome structural variations, including novel isoforms, alternative splicing events, and fusion transcripts. By shifting the open reading frame or altering gene expressions, studies have proved that these transcript alterations can serve as crucial biomarkers for disease diagnosis and therapeutic targets. In this project, we proposed IFDlong, a bioinformatics and biostatistics tool to detect isoform and fusion transcripts using bulk or single-cell long-RNA-seq data. Specifically, the software performed gene and isoform annotation for each long-read, defined novel isoforms, quantified isoform expression by a novel expectation-maximization algorithm, and profiled the fusion transcripts. For evaluation, IFDlong pipeline achieved overall the best performance when compared with several existing tools in large-scale simulation studies. In both isoform and fusion transcript quantification, IFDlong is able to reach more than 0.8 Spearman's correlation with the truth, and more than 0.9 cosine similarity when distinguishing multiple alternative splicing events. In novel isoform simulation, IFDlong can successfully balance the sensitivity (higher than 90%) and specificity (higher than 90%). Furthermore, IFDlong has proved its accuracy and robustness in diverse in-house and public datasets on healthy tissues, cell lines and multiple types of diseases. Besides bulk long-RNA-seq, IFDlong pipeline has proved its compatibility to single-cell long-RNA-seq data. This new software may hold promise for significant impact on long-read transcriptome analysis. The IFDlong software is available at https://github.com/wenjiaking/IFDlong.

15.
Exp Cell Res ; 439(2): 114099, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38802035

ABSTRACT

Gastric cancer is histologically classified into the intestinal subtype, which forms tubular structures, and the aggressive diffuse subtype, characterized by rapid invasion and poor prognosis. The variety and quantity of miRNA isoforms between different histological subtypes of gastric cancer were unknown. Through systematic filtering, we found that more diverse miR-30a-5p isoforms was present in the diffuse subtype of gastric cancer, and was associated with patients' worse survival independent of tumor stage based on the TCGA miRNA-seq data. Among all nine isoforms of miR-30a-5p, miR-30a-5p -1|1 was more abundant than the archetype of miR-30a-5p. Higher expression of miR-30a-5p -1|1 was observed in patients with advanced tumor stage and poor survival. Furthermore, miR-30a-5p -1|1 could promote the metastasis of gastric cancer cells both in vitro and in vivo by down-regulating TMEM66. In clinical samples, decreased expression of TMEM66 was characteristic of gastric cancer, and the low level of TMEM66 correlated with deceased CD8 positive cells in the tumor microenvironment probably due to decreased cytokines production. In conclusion, the variety of miR-30a-5p isoforms correlates with worse survival in gastric cancer patients. Moreover, miR-30a-5p -1|1 could promote gastric cancer metastasis by inhibiting TMEM66 and the infiltration of intratumoral CD8 positive cells.


Subject(s)
Gene Expression Regulation, Neoplastic , Membrane Proteins , MicroRNAs , Stomach Neoplasms , T-Lymphocytes, Cytotoxic , Animals , Female , Humans , Male , Mice , Cell Line, Tumor , Cell Proliferation/genetics , Disease Progression , Gene Expression Regulation, Neoplastic/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice, Nude , MicroRNAs/genetics , MicroRNAs/metabolism , Prognosis , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Stomach Neoplasms/mortality , Stomach Neoplasms/metabolism , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/metabolism , Tumor Microenvironment/genetics
16.
Acta Neuropathol ; 147(1): 79, 2024 05 05.
Article in English | MEDLINE | ID: mdl-38705966

ABSTRACT

Although human females appear be at a higher risk of concussion and suffer worse outcomes than males, underlying mechanisms remain unclear. With increasing recognition that damage to white matter axons is a key pathologic substrate of concussion, we used a clinically relevant swine model of concussion to explore potential sex differences in the extent of axonal pathologies. At 24 h post-injury, female swine displayed a greater number of swollen axonal profiles and more widespread loss of axonal sodium channels than males. Axon degeneration for both sexes appeared to be related to individual axon architecture, reflected by a selective loss of small caliber axons after concussion. However, female brains had a higher percentage of small caliber axons, leading to more extensive axon loss after injury compared to males. Accordingly, sexual dimorphism in axonal size is associated with more extensive axonal pathology in females after concussion, which may contribute to worse outcomes.


Subject(s)
Axons , Brain Concussion , Disease Models, Animal , Sex Characteristics , Animals , Female , Axons/pathology , Brain Concussion/pathology , Male , Swine , Brain/pathology
17.
Biomed Mater ; 19(4)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38815609

ABSTRACT

The alignment of each cell in human myocardium is considered critical for the efficient movement of cardiac tissue. We investigated 96-well microstripe-patterned plates to align human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (CMs), which resemble fetal myocardium. The aligned CMs (ACMs) cultured on the microstripe-patterned plates exhibited pathology, motor function, gene expression, and drug response that more closely resembled those of adult cells than did unaligned CMs cultured on a flat plate (FCMs). We used these ACMs to evaluate drug side effects and efficacy, and to determine whether these were similar to adult-like responses. When CMs from patients with hypertrophic cardiomyopathy (HCMs) were seeded and cultured on the microstripe-patterned plates or layered on top of the ACMs, both sets of HCMs showed increased heart rate and synchronized contractions, indicating improved cardiac function. It is suggested that the ACMs could be used for drug screening as cells representative of adult-like CMs and be transplanted in the form of a cell sheet for regenerative treatment of heart failure.


Subject(s)
Cell Differentiation , Induced Pluripotent Stem Cells , Myocytes, Cardiac , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Humans , Induced Pluripotent Stem Cells/cytology , Cardiomyopathy, Hypertrophic , Cells, Cultured , Myocardium/cytology , Myocardium/metabolism , Tissue Engineering/methods , Cell Culture Techniques
18.
Acta Crystallogr D Struct Biol ; 80(Pt 6): 377-385, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38805243

ABSTRACT

Over the past forty years there has been a drastic increase in fructose-related diseases, including obesity, heart disease and diabetes. Ketohexokinase (KHK), the first enzyme in the liver fructolysis pathway, catalyzes the ATP-dependent phosphorylation of fructose to fructose 1-phosphate. Understanding the role of KHK in disease-related processes is crucial for the management and prevention of this growing epidemic. Molecular insight into the structure-function relationship in ligand binding and catalysis by KHK is needed for the design of therapeutic inhibitory ligands. Ketohexokinase has two isoforms: ketohexokinase A (KHK-A) is produced ubiquitously at low levels, whereas ketohexokinase C (KHK-C) is found at much higher levels, specifically in the liver, kidneys and intestines. Structures of the unliganded and liganded human isoforms KHK-A and KHK-C are known, as well as structures of unliganded and inhibitor-bound mouse KHK-C (mKHK-C), which shares 90% sequence identity with human KHK-C. Here, a high-resolution X-ray crystal structure of mKHK-C refined to 1.79 Šresolution is presented. The structure was determined in a complex with both the substrate fructose and the product of catalysis, ADP, providing a view of the Michaelis-like complex of the mouse ortholog. Comparison to unliganded structures suggests that KHK undergoes a conformational change upon binding of substrates that places the enzyme in a catalytically competent form in which the ß-sheet domain from one subunit rotates by 16.2°, acting as a lid for the opposing active site. Similar kinetic parameters were calculated for the mouse and human enzymes and indicate that mice may be a suitable animal model for the study of fructose-related diseases. Knowledge of the similarity between the mouse and human enzymes is important for understanding preclinical efforts towards targeting this enzyme, and this ground-state, Michaelis-like complex suggests that a conformational change plays a role in the catalytic function of KHK-C.


Subject(s)
Fructokinases , Animals , Fructokinases/chemistry , Fructokinases/metabolism , Mice , Crystallography, X-Ray , Isoenzymes/chemistry , Models, Molecular , Protein Conformation , Humans , Fructose/metabolism , Fructose/chemistry
19.
Genome Biol Evol ; 16(7)2024 07 03.
Article in English | MEDLINE | ID: mdl-38752399

ABSTRACT

Alternative splicing is the process of generating different mRNAs from the same primary transcript, which contributes to increase the transcriptome and proteome diversity. Abnormal splicing has been associated with the development of several diseases including cancer. Given that mutations and abnormal levels of the RIPK2 transcript and RIP-2 protein are frequent in tumors, and that RIP-2 modulates immune and inflammatory responses, we investigated alternative splicing events that result in partial deletions of the kinase domain at the N-terminus of RIP-2. We also investigated the structure and expression of the RIPK2 truncated variants and isoforms in different environments. In addition, we searched data throughout Supraprimates evolution that could support the biological importance of RIPK2 alternatively spliced products. We observed that human variants and isoforms were differentially regulated following temperature stress, and that the truncated transcript was more expressed than the long transcript in tumor samples. The inverse was found for the longer protein isoform. The truncated variant was also detected in chimpanzee, gorilla, hare, pika, mouse, rat, and tree shrew. The fact that the same variant has been preserved in mammals with divergence times up to 70 million years raises the hypothesis that it may have a functional significance.


Subject(s)
Alternative Splicing , Receptor-Interacting Protein Serine-Threonine Kinase 2 , Animals , Humans , Receptor-Interacting Protein Serine-Threonine Kinase 2/genetics , Receptor-Interacting Protein Serine-Threonine Kinase 2/metabolism , Evolution, Molecular , Protein Isoforms/genetics , Mice , Neoplasms/genetics , Rats
20.
Int J Mol Sci ; 25(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38791146

ABSTRACT

Crohn's disease (CD) is a subtype of inflammatory bowel disease (IBD) characterized by transmural disease. The concept of transmural healing (TH) has been proposed as an indicator of deep clinical remission of CD and as a predictor of favorable treatment endpoints. Understanding the pathophysiology involved in transmural disease is critical to achieving these endpoints. However, most studies have focused on the intestinal mucosa, overlooking the contribution of the intestinal wall in Crohn's disease. Multi-omics approaches have provided new avenues for exploring the pathogenesis of Crohn's disease and identifying potential biomarkers. We aimed to use transcriptomic and proteomic technologies to compare immune and mesenchymal cell profiles and pathways in the mucosal and submucosa/wall compartments to better understand chronic refractory disease elements to achieve transmural healing. The results revealed similarities and differences in gene and protein expression profiles, metabolic mechanisms, and immune and non-immune pathways between these two compartments. Additionally, the identification of protein isoforms highlights the complex molecular mechanisms underlying this disease, such as decreased RTN4 isoforms (RTN4B2 and RTN4C) in the submucosa/wall, which may be related to the dysregulation of enteric neural processes. These findings have the potential to inform the development of novel therapeutic strategies to achieve TH.


Subject(s)
Colon , Crohn Disease , Intestinal Mucosa , Proteomics , Humans , Crohn Disease/metabolism , Crohn Disease/pathology , Crohn Disease/genetics , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Proteomics/methods , Colon/metabolism , Colon/pathology , Transcriptome , Male , Female , Adult , Gene Expression Profiling , Biomarkers , Middle Aged , Multiomics
SELECTION OF CITATIONS
SEARCH DETAIL
...