Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 278
Filter
1.
Leuk Lymphoma ; : 1-13, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39219309

ABSTRACT

Super-enhancers (SEs) play an important role in regulating tumor-specific gene expression. JQ1, a Bromodomain-containing protein 4 (BRD4) inhibitor, exerts antitumor effects by disrupting SE-mediated regulation of gene expression. We investigated the anti-adult T-cell leukemia/lymphoma (ATL) effects of JQ1. JQ1 induced apoptosis and inhibited ATL cell proliferation. JQ1 suppressed RUNX1expression through the disruption of SE-mediated gene regulation. In the previous reports, it was shown that IC50s of AI-10-104 and Ro5-3335, RUNX1 inhibitors were 1-10 µM for lymphoblastic leukemia cell lines carrying RUNX1 mutations. In the present study, we demonstrated that IC50s of AI-10-104 and Ro5-3335 were also 1-10 µM or lower for ATL cell lines. Simultaneously, AI-10-104 suppressed MYC proto-oncogene (c-MYC) expression. RUNX1 is a potential therapeutic target for ATL that promotes c-MYC expression. We showed that RUNX1 expression is regulated via SEs in ATL and that RUNX1 may be a novel therapeutic target for ATL.

2.
Bioorg Med Chem ; 112: 117875, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39178586

ABSTRACT

JQ1 is a wonder therapeutic molecule that selectively inhibits the BRD4 signaling pathway and is thus widely used in the anticancer drug discovery program. Due to its unique selective BRD4 binding property, its applications are further extended in the design and synthesis of bi-functional PROTAC molecules. This BRD4 targeting PROTAC molecule selectively degrades the protein by proteolysis. There are several modifications of JQ1 known to date and extensively explored for their applications in PROTAC technology by several research groups in academia as well as industry for targeting oncogenic genes. In this review, we have covered the discovery and synthesis of the JQ1 molecule. The SAR of the JQ1 analogs will help researchers develop potent JQ1 compounds with improved inhibitory properties against malignant cells. Furthermore, we explored the potential application of JQ1 analogs in PROTAC technology. The brief history of the bromodomain family of proteins, as well as the obstacles connected with PROTAC technology, can help comprehend the context of the current research, which has the potential to improve the drug development process. Overall, this review comprehensively appraises JQ1 molecules and their prior implementation in PROTAC technology and cancer therapy.

3.
Eur J Neurosci ; 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39149798

ABSTRACT

Epilepsy is a neurological disease characterised by recurrent seizures with complex aetiology. Temporal lobe epilepsy, the most common form in adults, can be acquired following brain insults including trauma, stroke, infection or sustained status epilepticus. The mechanisms that give rise to the formation and maintenance of hyperexcitable networks following acquired insults remain unknown, yet an extensive body of literature points towards persistent gene and epigenomic dysregulation as a potential mediator of this dysfunction. While much is known about the function of specific classes of epigenetic regulators (writers and erasers) in epilepsy, much less is known about the enzymes, which read the epigenome and modulate gene expression accordingly. Here, we explore the potential role for the epigenetic reader bromodomain and extra-terminal domain (BET) proteins in epilepsy. Using the intra-amygdala kainic acid model of temporal lobe epilepsy, we initially identified widespread dysregulation of important epigenetic regulators including EZH2 and REST as well as altered BRD4 expression in chronically epileptic mice. BRD4 activity was also notably affected by epilepsy-provoking insults as seen by elevated binding to and transcriptional regulation of the immediate early gene Fos. Despite influencing early aspects of epileptogenesis, blocking BET protein activity with JQ1 had no overt effects on epilepsy development in mice but did alter glial reactivity and influence gene expression patterns, promoting various neurotransmitter signalling mechanisms and inflammatory pathways in the hippocampus. Together, these results confirm that epigenetic reader activity is affected by epilepsy-provoking brain insults and that BET activity may exert cell-specific actions on inflammation in epilepsy.

4.
Mol Cell Biochem ; 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39110281

ABSTRACT

Rheumatoid arthritis (RA) is a chronic autoimmune disease that can cause destruction of cartilage and bone's extracellular matrix. Bromodomain 4 (BRD4), as a transcriptional and epigenetic regulator, plays a key role in cancer and inflammatory diseases. While, the role of BRD4 in bone destruction in RA has not been extensively reported. Our study aimed to investigate the effect of BRD4 on the bone destruction in RA and, further, its mechanism in the pathogenesis of the disease. In this study, receiving approval from the Ethical Committee of the Affiliated Hospital of Qingdao University, we evaluated synovial tissues from patients with RA and OA for BRD4 expression through advanced techniques such as immunohistochemistry, quantitative real-time PCR (qRT-PCR), and Western blotting. We employed a collagen-induced arthritis (CIA) mouse model to assess the therapeutic efficacy of the BRD4 inhibitor JQ1 on disease progression and bone destruction, supported by detailed clinical scoring and histological examinations. Further, in vitro osteoclastogenesis assays using RAW264.7 macrophages, facilitated by TRAP staining and resorption pit assays, provided insights into the mechanistic effects of JQ1 on osteoclast function. Statistical analysis was rigorously conducted using SPSS, applying Kruskal-Wallis, one-way ANOVA, and Student's t-tests to validate the data. In our study, we found that BRD4 expression significantly increased in the synovial tissues of RA patients and the ankle joints of CIA mice, with JQ1, a BRD4 inhibitor, effectively reducing inflammation, arthritis severity (p < 0.05), and bone erosion. Treatment with JQ1 not only improved bone mass and structural integrity in CIA mice but also downregulated osteoclast-related gene expression and the RANKL/RANK signaling pathway, indicating a suppression of osteolysis. Furthermore, in vitro assays demonstrated that JQ1 markedly inhibited osteoclast differentiation and function, underscoring the pivotal role of BRD4 in osteoclastogenesis and its potential as a target for therapeutic intervention in RA-induced bone destruction. Our study concludes that targeting BRD4 with the inhibitor JQ1 significantly mitigates inflammation and bone destruction in rheumatoid arthritis, suggesting that inhibition of BRD4 may be a potential therapeutic strategy for the treatment of bone destruction in RA.

5.
Res Pharm Sci ; 19(1): 53-63, 2024 Feb.
Article in English | MEDLINE | ID: mdl-39006975

ABSTRACT

Background and purpose: Ovarian cancer is the deadliest gynecological cancer. Bromodomain and extra terminal domain (BET) proteins play major roles in the regulation of gene expression at the epigenetic level. Jun Qi (JQ1) is a potent inhibitor of BET proteins. Regarding the short half-life and poor pharmacokinetic profile, JQ1 was loaded into newly developed nano-carriers. Chitosan nanoparticles are one of the best and potential polymers in cancer treatment. The present study aimed to build chitosan-JQl nanoparticles (Ch-J-NPs), treat OVCAR-3 cells with Ch-J-NPs, and evaluate the effects of these nanoparticles on cell cycle and apoptosis-associated genes. Experimental approach: Ch-J-NPs were synthesized and characterized. The size and morphology of Ch-J-NPs were defined by DLS and FE-SEM techniques. OVCAR-3 cells were cultured and treated with Ch-J-NPs. Then, IC50 was measured using MTT assay. The groups were defined and cells were treated with IC50 concentration of Ch-J-NPs, for 48 h. Finally, cells in different groups were assessed for the expression of genes of interest using quantitative RT-PCR. Findings/Results: IC50 values for Ch-J-NPs were 5.625 µg/mL. RT-PCR results demonstrated that the expression of genes associated with cell cycle activity (c-MYC, hTERT, CDK1, CDK4, and CDK6) was significantly decreased following treatment of cancer cells with Ch-J-NPs. Conversely, the expression of caspase-3, and caspase-9 significantly increased. BAX (pro-apoptotic) to BCL2 (anti-apoptotic) expression ratio, also increased significantly after treatment of cells with Ch-J-NPs. Conclusion and implications: Ch-J-NPs showed significant anti-cell cyclic and apoptotic effects on OVCAR-3 cells.

6.
Int J Nanomedicine ; 19: 6717-6730, 2024.
Article in English | MEDLINE | ID: mdl-38979530

ABSTRACT

Introduction: Immune regulatory small molecule JQ1 can block its downstream effector PD-L1 pathway and effectively reverse the PD-L1 upregulation induced by doxorubicin (DOX). So the synergistic administration of chemotherapeutic drug DOX and JQ1 is expected to increase the sensitivity of tumors to immune checkpoint therapy and jointly enhance the body's own immunity, thus effectively killing tumor cells. Therefore, a drug delivery system loaded with DOX and JQ1 was devised in this study. Methods: Polydopamine nanoparticles (PDA NPs) were synthesized through spontaneous polymerization. Under appropriate pH conditions, DOX and JQ1 were loaded onto the surface of PDA NPs, and the release of DOX and JQ1 were measured using UV-Vis or high performance liquid chromatography (HPLC). The mechanism of fabricated nanocomplex in vitro was investigated by cell uptake experiment, cell viability assays, apoptosis assays, and Western blot analysis. Finally, the tumor-bearing mouse model was used to evaluate the tumor-inhibiting efficacy and the biosafety in vivo. Results: JQ1 and DOX were successfully loaded onto PDA NPs. PDA-DOX/JQ1 NPs inhibited the growth of prostate cancer cells, reduced the expression of apoptosis related proteins and induced apoptosis in vitro. The in vivo biodistribution indicated that PDA-DOX/JQ1 NPs could accumulated at the tumor sites through the EPR effect. In tumor-bearing mice, JQ1 delivered with PDA-DOX/JQ1 NPs reduced PD-L1 expression at tumor sites, generating significant tumor suppression. Furthermore, PDA-DOX/JQ1 NPs could reduce the side effects, and produce good synergistic treatment effect in vivo. Conclusion: We have successfully prepared a multifunctional platform for synergistic prostate cancer therapy.


Subject(s)
Apoptosis , Azepines , Doxorubicin , Indoles , Nanoparticles , Polymers , Prostatic Neoplasms , Male , Animals , Doxorubicin/chemistry , Doxorubicin/pharmacology , Doxorubicin/pharmacokinetics , Doxorubicin/administration & dosage , Indoles/chemistry , Indoles/pharmacology , Indoles/pharmacokinetics , Polymers/chemistry , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Nanoparticles/chemistry , Humans , Mice , Cell Line, Tumor , Apoptosis/drug effects , Azepines/chemistry , Azepines/pharmacology , Azepines/pharmacokinetics , Drug Synergism , Cell Survival/drug effects , Tissue Distribution , Xenograft Model Antitumor Assays , Drug Liberation , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics , B7-H1 Antigen/metabolism , Triazoles
7.
Cancer Lett ; : 217129, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39048045

ABSTRACT

Ovarian cancer, a significant contributor to cancer-related mortality, exhibits limited responsiveness to hormonal therapies targeting the estrogen receptor (ERα). This study aimed to elucidate the mechanisms behind ERα resistance to the therapeutic drug Fulvestrant (ICI182780 or ICI). Notably, compared to the cytoplasmic version, nuclear ERα was minimally degraded by ICI, suggesting a mechanism for drug resistance via the protective confines of the nuclear substructures. Of these substructures, we identified a 1.3MDa Megacomplex comprising transcription factors ERα, FOXA1, and PITX1 using size exclusion chromatography (SEC) in the ovarian cancer cell line, PEO4. ChIP-seq revealed these factors colocalized at 6,775 genomic positions representing sites of Megacomplex formation. Megacomplex ERα exhibited increased resistance to degradation by ICI compared to cytoplasmic and nuclear ERα. A small molecule inhibitor of active chromatin and super-enhancers, JQ1, in combination with ICI significantly enhanced ERα degradation from Megacomplex as revealed by SEC and ChIP-seq. Interestingly, this combination degraded both the cytoplasmic as well as nuclear ERa. Pathway enrichment analysis showed parallel results for RNA-seq gene sets following Estradiol, ICI, or ICI plus JQ1 treatments as those defined by Megacomplex binding identified through ChIP-seq. Furthermore, similar pathway enrichments were confirmed in mass-spec analysis of the Megacomplex macromolecule fractions after modulation by Estradiol or ICI. These findings implicate Megacomplex in ERα-driven ovarian cancer chromatin regulation. This combined treatment strategy exhibited superior inhibition of cell proliferation and viability. Therefore, by uncovering ERα's resistance within the Megacomplex, the combined ICI plus JQ1 treatment elucidates a novel drug treatment vulnerability.

8.
Cell Mol Life Sci ; 81(1): 313, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39066826

ABSTRACT

Bromodomain and extra-terminal (BET) proteins are relevant chromatin adaptors involved in the transcriptional control of thousands of genes. Two tandem N-terminal bromodomains are essential for chromatin attachment through acetyl-histone recognition. Recently, the BET proteins members BRD2 and BRD4 were found to interact with the SARS-CoV-2 envelope (E) protein, raising the question of whether the interaction constitutes a virus hijacking mechanism for transcription alteration in the host cell. To shed light on this question, we have compared the transcriptome of cells overexpressing E with that of cells treated with the BET inhibitor JQ1. Notably, E overexpression leads to a strong upregulation of natural immunity- and interferon response-related genes. However, BET inhibition results in the downregulation of most of these genes, indicating that these two conditions, far from causing a significant overlap of the altered transcriptomes, course with quite different outputs. Concerning the interaction of E protein with BET members, and differing from previous reports indicating that it occurs through BET bromodomains, we find that it relies on SEED and SEED-like domains, BET regions rich in Ser, Asp, and Glu residues. By taking advantage of this specific interaction, we have been able to direct selective degradation of E protein through a PROTAC system involving a dTAG-SEED fusion, highlighting the possible therapeutic use of this peptide for targeted degradation of a viral essential protein.


Subject(s)
Cell Cycle Proteins , SARS-CoV-2 , Transcription Factors , Triazoles , Humans , Transcription Factors/metabolism , Transcription Factors/genetics , SARS-CoV-2/metabolism , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Triazoles/pharmacology , Azepines/pharmacology , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/genetics , Protein Domains , Transcription, Genetic/drug effects , COVID-19/virology , COVID-19/metabolism , HEK293 Cells , Protein Binding , Bromodomain Containing Proteins
9.
Adv Biol (Weinh) ; 8(7): e2300640, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38797917

ABSTRACT

Multiple myeloma (MM) stands as a prevalent hematological malignancy, primarily incurable, originating from plasma cell clones. MM's progression encompasses genetic abnormalities and disruptions in the bone marrow microenvironment, leading to tumor proliferation, immune dysfunction, and compromised treatment outcomes. Emerging evidence highlights the critical role of regulatory T cells (Tregs) in MM progression, suggesting that targeting Tregs could enhance immune functionality and treatment efficacy. In this study, a notable increase in Treg proportions within MM patients' bone marrow (BM) compared to healthy individuals is observed. Additionally, it is found that the bromodomain and extraterminal domain (BET) inhibitor JQ1 selectively diminishes Treg percentages in MM patients' BM and reduces TGF-ß1-induced Tregs. This reduction occurs via inhibiting cell viability and promoting apoptosis. RNA sequencing further indicates that JQ1's inhibitory impact on Tregs likely involves upregulating STAT3 and suppressing PD-1 expression. Collectively, these findings suggest JQ1's potential to modulate Tregs, bolstering the immune response in MM and introducing a promising avenue for MM immunotherapy.


Subject(s)
Azepines , Multiple Myeloma , Programmed Cell Death 1 Receptor , STAT3 Transcription Factor , T-Lymphocytes, Regulatory , Triazoles , Multiple Myeloma/drug therapy , Multiple Myeloma/immunology , Multiple Myeloma/genetics , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Humans , Azepines/pharmacology , Azepines/therapeutic use , Triazoles/pharmacology , Triazoles/therapeutic use , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/metabolism , Up-Regulation/drug effects , Male , Middle Aged , Female , Gene Expression Regulation, Neoplastic/drug effects , Bromodomain Containing Proteins , Proteins
10.
Discov Oncol ; 15(1): 98, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38565708

ABSTRACT

Ferroptosis, an iron-dependent form of programmed cell death, is a promising strategy for cancer treatment. Bromodomain-containing protein 4 (BRD4) is an epigenetic reader and a promising target for cancer therapeutics. However, the role of BRD4 in ferroptosis is controversial and the value of the interaction between BRD4 inhibitors and ferroptosis inducers remains to be explored. Here, we found that BRD4 inhibition greatly enhanced erastin-induced ferroptosis in different types of cells, including HEK293T, HeLa, HepG2, RKO, and PC3 cell lines. Knocking down BRD4 in HEK293T and HeLa cells also promoted erastin-induced cell death. BRD4 inhibition by JQ-1 and I-BET-762 or BRD4 knockdown resulted in substantial accumulation of reactive oxygen species (ROS) in both HEK293T and HeLa cells. The effect of BRD4 inhibition on ferroptosis-associated genes varied in different cells. After using BRD4 inhibitors, the expression of FTH1, Nrf2, and GPX4 increased in HEK293T cells, while the levels of VDAC2, VDAC3, and FSP1 decreased. In HeLa cells, the expression of FTH1, VDAC2, VDAC3, Nrf2, GPX4, and FSP1 was reduced upon treatment with JQ-1 and I-BET-762. Consistently, the level of FSP1 was greatly reduced in HEK293T and HeLa cells with stable BRD4 knockdown compared to control cells. Furthermore, ChIP-sequencing data showed that BRD4 bound to the promoter of FSP1, but the BRD4 binding was greatly reduced upon JQ-1 treatment. Our results suggest that ROS accumulation and FSP1 downregulation are common mechanisms underlying increased ferroptosis with BRD4 inhibitors. Thus, BRD4 inhibitors might be more effective in combination with ferroptosis inducers, especially in FSP1-dependent cancer cells.

11.
Cell Commun Signal ; 22(1): 184, 2024 03 16.
Article in English | MEDLINE | ID: mdl-38493137

ABSTRACT

BACKGROUND: Injury to contractile organs such as the heart, vasculature, urinary bladder and gut can stimulate a pathological response that results in loss of normal contractility. PDGF and TGFß are among the most well studied initiators of the injury response and have been shown to induce aberrant contraction in mechanically active cells of hollow organs including smooth muscle cells (SMC) and fibroblasts. However, the mechanisms driving contractile alterations downstream of PDGF and TGFß in SMC and fibroblasts are incompletely understood, limiting therapeutic interventions. METHODS: To identify potential molecular targets, we have leveraged the analysis of publicly available data, comparing transcriptomic changes in mechanically active cells stimulated with PDGF and TGFß. Additional Analysis of publicly available data sets were performed on SMC and fibroblasts treated in the presence or absence of the MYC inhibitor JQ1. Validation of in silico findings were performed with qPCR, immunoblots, and collagen gel contraction assays measure the effect of JQ1 on cytoskeleton associated genes, proteins and contractility in mechanically active cells. Likelihood ratio test and FDR adjusted p-values were used to determine significant differentially expressed genes. Student ttest were used to calculate statistical significance of qPCR and contractility analyses. RESULTS: Comparing PDGF and TGFß stimulated SMC and fibroblasts identified a shared molecular profile regulated by MYC and members of the AP-1 transcription factor complex. Additional in silico analysis revealed a unique set of cytoskeleton-associated genes that were sensitive to MYC inhibition with JQ1. In vitro validation demonstrated JQ1 was also able to attenuate TGFß and PDGF induced changes to the cytoskeleton and contraction of smooth muscle cells and fibroblasts in vitro. CONCLUSIONS: These findings identify MYC as a key driver of aberrant cytoskeletal and contractile changes in fibroblasts and SMC, and suggest that JQ1 could be used to restore normal contractile function in hollow organs.


Subject(s)
Nuclear Proteins , Transcription Factors , Humans , Nuclear Proteins/metabolism , Transcription Factors/metabolism , Cytoskeleton/metabolism , Myocytes, Smooth Muscle , Transforming Growth Factor beta/metabolism , Cells, Cultured
12.
Biomed Pharmacother ; 174: 116492, 2024 May.
Article in English | MEDLINE | ID: mdl-38537579

ABSTRACT

Targeting epigenetic mechanisms has emerged as a potential therapeutic approach for the treatment of kidney diseases. Specifically, inhibiting the bromodomain and extra-terminal (BET) domain proteins using the small molecule inhibitor JQ1 has shown promise in preclinical models of acute kidney injury (AKI) and chronic kidney disease (CKD). However, its clinical translation faces challenges due to issues with poor pharmacokinetics and side effects. Here, we developed engineered liposomes loaded with JQ1 with the aim of enhancing kidney drug delivery and reducing the required minimum effective dose by leveraging cargo protection. These liposomes efficiently encapsulated JQ1 in both the membrane and core, demonstrating superior therapeutic efficacy compared to freely delivered JQ1 in a mouse model of kidney ischemia-reperfusion injury. JQ1-loaded liposomes (JQ1-NPs) effectively targeted the kidneys and only one administration, one-hour after injury, was enough to decrease the immune cell (neutrophils and monocytes) infiltration to the kidney-an early and pivotal step to prevent damage progression. By inhibiting BRD4, JQ1-NPs suppress the transcription of pro-inflammatory genes, such as cytokines (il-6) and chemokines (ccl2, ccl5). This success not only improved early the kidney function, as evidenced by decreased serum levels of BUN and creatinine in JQ1-NPs-treated mice, along with reduced tissue expression of the damage marker, NGAL, but also halted the production of extracellular matrix proteins (Fsp-1, Fn-1, α-SMA and Col1a1) and the fibrosis development. In summary, this work presents a promising nanotherapeutic strategy for AKI treatment and its progression and provides new insights into renal drug delivery.


Subject(s)
Azepines , Bromodomain Containing Proteins , Disease Progression , Kidney , Liposomes , Mice, Inbred C57BL , Nuclear Proteins , Renal Insufficiency, Chronic , Reperfusion Injury , Triazoles , Animals , Azepines/pharmacology , Azepines/administration & dosage , Reperfusion Injury/drug therapy , Reperfusion Injury/pathology , Triazoles/pharmacology , Triazoles/administration & dosage , Renal Insufficiency, Chronic/drug therapy , Renal Insufficiency, Chronic/pathology , Mice , Kidney/drug effects , Kidney/pathology , Kidney/metabolism , Male , Transcription Factors/antagonists & inhibitors , Transcription Factors/metabolism , Acute Kidney Injury/drug therapy , Acute Kidney Injury/prevention & control , Disease Models, Animal , Nanoparticles , Cell Cycle Proteins/antagonists & inhibitors
13.
PeerJ ; 12: e17035, 2024.
Article in English | MEDLINE | ID: mdl-38410799

ABSTRACT

Objective: To investigate the effects of bromine domain protein 4 (BRD4) inhibitor JQ1 on the expression profile of super-enhancer-related lncRNAs (SE-lncRNAs) and mRNAs in cervical cancer (CC) HeLa-cells. Methods: The CCK8 method was implemented to detect the inhibitory effect of JQ1 on HeLa cells and explore the best inhibitory concentration. Whole transcriptome sequencing was performed to detect the changes of lncRNAs and mRNAs expression profiles in cells of the JQ1 treatment group and control group, respectively. The differentially expressed SE-lncRNAs were obtained by matching, while the co-expressed mRNAs were obtained by Pearson correlation analysis. Results: The inhibitory effect of JQ1 on HeLa cell proliferation increased significantly with increasing concentration and treatment time (P < 0.05). Under the experimental conditions of three concentrations of 0.01, 0.1 and 1 µmol/L of JQ1 on HeLa cells at 24, 48, 72 and 120 h, 1 µmol/L of JQ1 at 72 and 120 h had the same cell viability and the strongest cell proliferation inhibition. In order to understand the inhibitory mechanism of JQ1 on HeLa cells, this study analyzed the expression profile differences from the perspective of SE-lncRNAs and mRNAs. A total of 162 SE-lncRNAs were identified, of which 8 SE-lncRNAs were down-regulated and seven SE-lncRNAs were up-regulated. A total of 418 differentially expressed mRNAs related to SE-lncRNAs were identified, of which 395 mRNAs had positive correlation with 12 SE-lncRNAs and 408 mRNAs had negative correlation with 15 SE-lncRNAs. Conclusion: JQ1 can significantly inhibit the proliferation of HeLa cells and affect the expression profile of SE-lncRNAs and mRNAs.


Subject(s)
RNA, Long Noncoding , Uterine Cervical Neoplasms , Female , Humans , HeLa Cells , Uterine Cervical Neoplasms/drug therapy , Nuclear Proteins/genetics , Transcription Factors/genetics , RNA, Long Noncoding/genetics , RNA, Messenger/genetics , Bromodomain Containing Proteins , Cell Cycle Proteins/genetics
14.
J Adv Res ; 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38365172

ABSTRACT

INTRODUCTION: Obesity, one of the most frequent health problems in the adult population, is a condition characterized by excessive white adipose tissue accumulation and accompanied by the increased risk to develop other disorders such as type II diabetes, cardiovascular disorders, physical disability, frailty and sarcopenia. Total fat mass frequently increases during aging, often coexisting with sarcopenia, thus resulting in an emerging condition defined sarcopenic obesity (SO). Our previous data demonstrated the relevant role of the bromo and extra-terminal domain (BET) proteins inhibitor JQ1 in attenuating inflammation and fibrosis in sarcopenic mice. Moreover, we preliminarily observed that JQ1 administration markedly reduces white adipose tissue mass, suggesting a potential role of BET proteins on visceral fat deposition during aging. OBJECTIVES: Starting from those observations, the aim of this study was to investigate the ability of JQ1 to reduce adiposity in a chronic diet-induced obesity (DIO) mouse model mimicking the human metabolic syndrome. METHODS: Male C57BL/6J mice were divided in subgroups, either fed a standard diet or a high fat diet for 22 or 12 weeks, treated over the last 14 days with JQ1 or with vehicle. RESULTS: The results showed that JQ1 administration reduces fat mass, preserving skeletal muscle mass and function. A direct JQ1 lipolytic effect was demonstrated on mature adipocyte cultures. JQ1-mediated loss of adipose tissue mass was not associated with systemic inflammation or with lipid accumulation in muscle and liver. JQ1 administration did not impinge on skeletal muscle metabolism and oxidative capability, as shown by the lack of significant impact on mitochondrial mass and biogenesis. CONCLUSION: In conclusion, the current data highlight a potential benefit of JQ1 administration to counteract obesity, suggesting epigenetic modulation as a prospective target in the treatment of obesity and sarcopenic obesity, despite the underlying multiorgan molecular mechanism is still not completely elucidated.

15.
Int Urol Nephrol ; 56(2): 739-749, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37548899

ABSTRACT

PURPOSE: Contrast-induced acute kidney injury (CI-AKI) is the third most common cause of hospital-acquired AKI. However, there is a paucity of efficacious interventions for the management of CI-AKI. Here, we aim to investigate the effects of JQ1 in CI-AKI and provide theoretical data and a  foundation for  novel ideas for the clinical treatment of CI-AKI. METHODS: In this study, we performed in vivo and in vitro experiments with mice and HK2 cells injury models respectively. The levels of serum creatinine (Cr) and blood urea nitrogen (BUN) were determined by an automatic analyzer for the measurements of renal function. The viability of HK-2 cells was analyzed using the Cell Counting Kit-8 (CCK-8) kit. Additionally, the kidney changes in the mice were detected using histopathology (H&E) and immunofluorescent staining. The mRNA and protein expressions were assessed using Quantitative real-time PCR and western blot, respectively. Autophagy and apoptosis was analyzed by Transmission electron microscopy (TEM) and TUNEL assay respectively. RESULTS: The results demonstrated that JQ1 exhibited potency of attenuating CI-AKI in mouse and HK2 cells. JQ1 increased the expression levels of Atg5, Atg7 and LC3B-II, and decreased the protein levels of p62 in the kidney and HK-2 cells. However, the combined use of JQ1 with chloroquine reversed the effects of JQ1. JQ1 also inhibited the inflammatory cells and downregulated the expression of some inflammatory cytokines (IL-6, IL-1ß, TNF-α, and IFN-γ). CONCLUSION: JQ1 protects against CI-AKI by promoting autophagy and inhibiting inflammation and JQ1 may be a promising therapeutic strategy for CI-AKI.


Subject(s)
Acute Kidney Injury , Mice , Animals , Up-Regulation , Acute Kidney Injury/chemically induced , Acute Kidney Injury/drug therapy , Acute Kidney Injury/prevention & control , Kidney/pathology , Inflammation/complications , Autophagy , Apoptosis
16.
Environ Toxicol ; 39(3): 1442-1455, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37987507

ABSTRACT

Engrailed 2 (EN2) is a homeodomain-containing protein that is dysregulated in many types of cancer. However, the role of EN2 in non-small cell lung cancer (NSCLC) and the mechanism underlying its biological function are largely unclear. Here, we showed that EN2 played an oncogenic function in NSCLC and greatly enhanced the malignant phenotype of NSCLC cells. Meanwhile, EN2 was able to boost the expression of a well-studied oncogenic Tenascin-C (TNC) gene, which in turn activated the AKT signaling pathway. Interestingly, we found that EN2 directly bound to the super-enhancer (SE) region in the TNC locus. The histone marker H3K27ac was also enriched in the region, indicating the activation of the SE. Treatment of the cells with JQ1, an inhibitor of SE activity, abrogated the effect of EN2 on the expression of TNC and phosphorylation of AKT-Ser473. Collectively, our work unveils a novel mode of EN2 function, in which EN2 governs the SE in the TNC locus, consequently activating the oncogenic TNC-AKT axis in NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Homeodomain Proteins , Lung Neoplasms , Tenascin , Humans , Carcinoma, Non-Small-Cell Lung/metabolism , Homeodomain Proteins/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Tenascin/genetics
17.
Heliyon ; 9(11): e22093, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38045194

ABSTRACT

Bromodomain and extraterminal domain protein inhibitors have shown therapeutic promise in hepatocellular carcinoma. However, resistance to bromodomain and extraterminal domain protein inhibitors has emerged in preclinical trials, presenting an immense clinical challenge, and the mechanisms are unclear. In this study, we found that overexpression of SIRT1 induced by JQ-1, a bromodomain and extraterminal domain protein inhibitor, may confer resistance to JQ-1 in hepatocellular carcinoma. SIRT1 protein expression was higher in hepatocellular carcinoma tissues than in normal tissues, and this phenotype was correlated with a poor prognosis. Cotreatment with JQ-1 and the SIRT1 inhibitor EX527 synergistically suppressed proliferation and blocked cell cycle progression in hepatocellular carcinoma cells. Combined administration of JQ-1 and EX527 successfully reduced the tumor burden in vivo. In addition, JQ-1 mediated AMPK/p-AMPK axis activation to upregulate SIRT1 protein expression and enhanced autophagy to inhibit cell apoptosis. Activation of AMPK could alleviate the antitumor effect of the combination of JQ-1 and EX527 on hepatocellular carcinoma cells. Furthermore, inhibition of SIRT1 further enhanced the antitumor effect of JQ-1 by blocking protective autophagy in hepatocellular carcinoma. Our study proposes a novel and efficacious therapeutic strategy of a BET inhibitor combined with a SIRT1 inhibitor for hepatocellular carcinoma.

18.
Antioxidants (Basel) ; 12(12)2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38136175

ABSTRACT

Peritoneal dialysis (PD) is a current replacement therapy for end-stage kidney diseases (ESKDs). However, long-term exposure to PD fluids may lead to damage of the peritoneal membrane (PM) through mechanisms involving the activation of the inflammatory response and mesothelial-to-mesenchymal transition (MMT), leading to filtration failure. Peritoneal damage depends on a complex interaction among external stimuli, intrinsic properties of the PM, and subsequent activities of the local innate-adaptive immune system. Epigenetic drugs targeting bromodomain and extra-terminal domain (BET) proteins have shown beneficial effects on different experimental preclinical diseases, mainly by inhibiting proliferative and inflammatory responses. However the effect of BET inhibition on peritoneal damage has not been studied. To this aim, we have evaluated the effects of treatment with the BET inhibitor JQ1 in a mouse model of peritoneal damage induced by chlorhexidine gluconate (CHX). We found that JQ1 ameliorated the CHX-induced PM thickness and inflammatory cell infiltration. Moreover, JQ1 decreased gene overexpression of proinflammatory and profibrotic markers, together with an inhibition of the nuclear factor-κB (NF-κB) pathway. Additionally, JQ1 blocked the activation of nuclear factor erythroid 2-related factor 2 (NRF2) and restored changes in the mRNA expression levels of NADPH oxidases (NOX1 and NOX4) and NRF2/target antioxidant response genes. To corroborate the in vivo findings, we evaluated the effects of the BET inhibitor JQ1 on PD patients' effluent-derived primary mesothelial cells and on the MeT-5A cell line. JQ1 inhibited tumor necrosis factor-α (TNF-α)-induced proinflammatory gene upregulation and restored MMT phenotype changes, together with the downmodulation of oxidative stress. Taken together, these results suggest that BET inhibitors may be a potential therapeutic option to ameliorate peritoneal damage.

19.
bioRxiv ; 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-38014184

ABSTRACT

Injury to contractile organs such as the heart, vasculature, urinary bladder and gut can stimulate a pathological response that results in loss of normal contractility. PDGF and TGFß are among the most well studied initiators of the injury response and have been shown to induce aberrant contraction in mechanically active cells of hollow organs including smooth muscle cells (SMC) and fibroblasts. However the mechanisms driving contractile alterations downstream of PDGF and TGFß in SMC and fibroblasts are incompletely understood, limiting therapeutic interventions. To identify potential molecular targets, we have leveraged the analysis of publicly available data, comparing transcriptomic changes in mechanically active cells stimulated with PDGF and TGFß and identified a shared molecular profile regulated by MYC and members of the AP-1 transcription factor complex. We also analyzed data sets from SMC and fibroblasts treated in the presence or absence of the MYC inhibitor JQ1. This analysis revealed a unique set of cytoskeleton-associated genes that were sensitive to MYC inhibition. JQ1 was also able to attenuate TGFß and PDGF induced changes to the cytoskeleton and contraction of smooth muscle cells and fibroblasts in vitro. These findings identify MYC as a key driver of aberrant cytoskeletal and contractile changes in fibroblasts and SMC, and suggest that JQ1 could be used to restore normal contractile function in hollow organs.

20.
Am J Cancer Res ; 13(9): 4003-4020, 2023.
Article in English | MEDLINE | ID: mdl-37818065

ABSTRACT

Castration-resistant prostate cancer (CRPC) is the final stage of prostate cancer (PCa). As the main androgen in males, testosterone, and its androgen receptor (AR) play an important role in CRPC. The enzyme that catalyzes testosterone, aromatase, can be influenced by CYP19A1 activity - thus possibly affecting both AR expression and CRPC. However, the function of CYP19A1 in CRPC remains unclear. Using data derived from public databases and clinical samples, we analyzed the expression of CYP19A1 in PCa and CRPC specimens. The effect of CYP19A1 on cell invasion and proliferation was investigated in vitro and in vivo; while its function in metabolizing testosterone was detected in vitro. The effect of BRD4 on CYP19A1 and AR was investigated by qRT-PCR and western blot; whereas the effect of JQ1 on cells was assessed based on the IC50 value. We found that CYP19A1 was downregulated in CRPC samples and cells which correlated with a decrease in CRPC cell invasion and proliferation, and an increase in AR expression. Inversely, CYP19A1 affected CRPC cell invasion and proliferation by suppressing the expression of AR which may be attributed to the metabolism of testosterone by CYP19A1. Moreover, the BRD4 inhibitor JQ1 induced the CYP19A1 expression and suppressed the AR expression. Following BRD4 knockdown, CYP19A1 showed higher expression while AR expression was decreased. Our findings demonstrated that CYP19A1 could reduce CRPC cell invasion and proliferation by targeting AR, and this process could be regulated by BRD4. CYP19A1 may be a potential therapeutic target and enhance BRD4 inhibition in treating CRPC.

SELECTION OF CITATIONS
SEARCH DETAIL