Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
1.
BMC Cancer ; 24(1): 857, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39026221

ABSTRACT

BACKGROUND: Many long noncoding RNAs (lncRNAs) with altered expression significantly influence colorectal cancer (CRC) progression and behavior. The functions of many lncRNAs in CRC are not clear yet. This study aimed to discover novel lncRNA entities and comprehensively examine and validate their roles and underlying molecular mechanisms in CRC. METHODS: Tissue samples, both tumourous and non-tumourous, from three CRC patients were submitted for sequencing. Following expression validation in samples from ten patients and four CRC cell lines. The lncRNA KCNMA1-AS2 was synthesized by In-vitro transcription RNA synthesis and the lncRNA was directly transfected into CRC cell lines to overexpress. Functional assays including MTT proliferation assay, Annexin-V/propidium iodide apoptosis assay, wound healing migration assay and cell cycle assays were performed to evaluate the effect of overexpression of KCNMA1-AS2. Furthermore, the binding of KCNMA1-AS2 to miR-1227-5p was confirmed using dual luciferase reporter assays and qPCR analyses. Subsequent bioinformatics analyses identified 58 potential downstream targets of miR-1227-5p across three databases. RESULTS: In this study, we identified the lncRNA KCNMA1-AS2, the expression of which was down-regulated consistently in cancer tissues and CRC cell lines compared to non-cancerous tissues. The overexpression of lncRNA KCNMA1-AS2 led to significant reduction in CRC cell proliferation and migration, increase in cell apoptosis, and more cells arrested in S phase. Additionally, the interaction between KCNMA1-AS2 and miR-1227-5p was confirmed through dual luciferase reporter assay and qPCR analysis. It is also putatively predicted that MTHFR and ST8SIA2 may be linked to CRC based on bioinformatics analyses. CONCLUSIONS: LncRNA KCNMA1-AS2 exhibited distinct gene expression patterns in both CRC tissue and cell lines, impacting various cellular functions while also acting as a sponge for miR-1227-5p.The findings spotlight lncRNA KCNMA1-AS2 as a potential marker for diagnosis and treatment of CRC.


Subject(s)
Apoptosis , Cell Movement , Cell Proliferation , Colorectal Neoplasms , Gene Expression Regulation, Neoplastic , MicroRNAs , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Cell Proliferation/genetics , Apoptosis/genetics , Cell Movement/genetics , Cell Line, Tumor , Female , Male , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/genetics , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/metabolism , Middle Aged
2.
Elife ; 122024 May 29.
Article in English | MEDLINE | ID: mdl-38808578

ABSTRACT

Alterations in the function of K+ channels such as the voltage- and Ca2+-activated K+ channel of large conductance (BKCa) reportedly promote breast cancer (BC) development and progression. Underlying molecular mechanisms remain, however, elusive. Here, we provide electrophysiological evidence for a BKCa splice variant localized to the inner mitochondrial membrane of murine and human BC cells (mitoBKCa). Through a combination of genetic knockdown and knockout along with a cell permeable BKCa channel blocker, we show that mitoBKCa modulates overall cellular and mitochondrial energy production, and mediates the metabolic rewiring referred to as the 'Warburg effect', thereby promoting BC cell proliferation in the presence and absence of oxygen. Additionally, we detect mitoBKCa and BKCa transcripts in low or high abundance, respectively, in clinical BC specimens. Together, our results emphasize, that targeting mitoBKCa could represent a treatment strategy for selected BC patients in future.


Subject(s)
Breast Neoplasms , Humans , Animals , Mice , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Cell Line, Tumor , Cell Proliferation , Mitochondria/metabolism , Mitochondria/genetics , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/metabolism , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/genetics , Mitochondrial Membranes/metabolism , Female , Energy Metabolism
3.
J Neurosci ; 44(26)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38777602

ABSTRACT

The striatum plays a central role in directing many complex behaviors ranging from motor control to action choice and reward learning. In our study, we used 55 male CFW mice with rapid decay linkage disequilibrium to systematically mine the striatum-related behavioral functional genes by analyzing their striatal transcriptomes and 79 measured behavioral phenotypic data. By constructing a gene coexpression network, we clustered the genes into 13 modules, with most of them being positively correlated with motor traits. Based on functional annotations as well as Fisher's exact and hypergeometric distribution tests, brown and magenta modules were identified as core modules. They were significantly enriched for striatal-related functional genes. Subsequent Mendelian randomization analysis verified the causal relationship between the core modules and dyskinesia. Through the intramodular gene connectivity analysis, Adcy5 and Kcnma1 were identified as brown and magenta module hub genes, respectively. Knock outs of both Adcy5 and Kcnma1 lead to motor dysfunction in mice, and KCNMA1 acts as a risk gene for schizophrenia and smoking addiction in humans. We also evaluated the cellular composition of each module and identified oligodendrocytes in the striatum to have a positive role in motor regulation.


Subject(s)
Adenylyl Cyclases , Corpus Striatum , Animals , Mice , Male , Corpus Striatum/metabolism , Corpus Striatum/physiology , Adenylyl Cyclases/genetics , Behavior, Animal/physiology , Gene Regulatory Networks/genetics , Transcriptome
4.
Am J Physiol Renal Physiol ; 327(1): F49-F60, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38779757

ABSTRACT

The pore-forming α-subunit of the large-conductance K+ (BK) channel is encoded by a single gene, KCNMA1. BK channel-mediated K+ secretion in the kidney is crucial for overall renal K+ homeostasis in both physiological and pathological conditions. BK channels achieve phenotypic diversity by various mechanisms, including substantial exon rearrangements at seven major alternative splicing sites. However, KCNMA1 alternative splicing in the kidney has not been characterized. The present study aims to identify the major splice variants of mouse Kcnma1 in whole kidney and distal nephron segments. We designed primers that specifically cross exons within each alternative splice site of mouse Kcnma1 and performed real-time quantitative RT-PCR (RT-qPCR) to quantify relative abundance of each splice variant. Our data suggest that Kcnma1 splice variants within mouse kidney are less diverse than in the brain. During postnatal kidney development, most Kcnma1 splice variants at site 5 and the COOH terminus increase in abundance over time. Within the kidney, the regulation of Kcnma1 alternative exon splicing within these two sites by dietary K+ loading is both site and sex specific. In microdissected distal tubules, the Kcnma1 alternative splicing profile, as well as its regulation by dietary K+, are distinctly different than in the whole kidney, suggesting segment and/or cell type specificity in Kcnma1 splicing events. Overall, our data provide evidence that Kcnma1 alternative splicing is regulated during postnatal development and may serve as an important adaptive mechanism to dietary K+ loading in mouse kidney.NEW & NOTEWORTHY We identified the major Kcnma1 splice variants that are specifically expressed in the whole mouse kidney or aldosterone-sensitive distal nephron segments. Our data suggest that Kcnma1 alternative splicing is developmentally regulated and subject to changes in dietary K+.


Subject(s)
Alternative Splicing , Kidney , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits , Potassium, Dietary , Animals , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/genetics , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/metabolism , Potassium, Dietary/metabolism , Kidney/metabolism , Mice, Inbred C57BL , Mice , Male , Gene Expression Regulation, Developmental , Exons , Female
5.
Front Vet Sci ; 11: 1374794, 2024.
Article in English | MEDLINE | ID: mdl-38779034

ABSTRACT

Yaks inhabit high-altitude, low-oxygen regions, where ion transport functions play a crucial role in maintaining intracellular and extracellular ionic balance and regulating pulmonary vascular tension. These functions affect pulmonary ventilation and blood flow rate, aiding tissue development and enhancing oxygen transfer efficiency, thus facilitating better adaptation to hypoxic environments. To investigate the regulatory mechanisms of ion transport-related factors on the growth and development of yak lungs, we employed RNA sequencing (RNA-seq)for sequencing the transcriptome in the lung tissues of neonatal (1-day-old), juvenile (1-year-old), and adult (4-year-old) yaks. We also performed differential gene expression and functional analyses. The results yielded 26 genes associated with ion transport, mainly enriched in the salivary and pancreatic secretion pathways. Finally, we used several methods including quantitative polymerase chain reaction (qRT-PCR), and Western blotting (WB), immunohistochemical (IHC) and immunofluorescence (IF) staining to determine the distribution of the expression of the ion transport genes FOXI1, KCNMA1, and SLC12A2 in yak lung tissues. qRT-PCR and WB results indicated that mRNA and protein relative expression levels of FOXI1 and SLC12A2 were significantly higher in neonatal yaks than in juvenile and adult yaks (all p < 0.05), whereas those of KCNMA1 were significantly higher in adult yaks than in neonatal and juvenile yaks (all p < 0.05). IHC and IF results demonstrated that FOXI1, KCNMA1, and SLC12A2 were distributed among the epithelial mucosal layers (including ciliated, goblet, and Clara cells) of the yaks' bronchi and their branches in the lungs across different age groups of yak. Therefore, our results suggested that FOXI1, KCNMA1, and SLC12A2 may be strongly associated with the development and aging processes in yak lungs. These results provide insights into the molecular mechanisms underlying the yak's adaptation to high-altitude environments and valuable references for further research.

6.
Behav Brain Res ; 468: 115015, 2024 06 25.
Article in English | MEDLINE | ID: mdl-38670533

ABSTRACT

This study examined the effect of knockout of KCNMA1 gene, coding for the BK channel, on cognitive and attentional functions in mice, with an aim to better understand its implications for human neurodevelopmental disorders. The study used the 3-choice serial reaction time task (3-CSRTT) to assess the learning performance, attentional abilities, and repetitive behaviors in mice lacking the KCNMA1 gene (KCNMA1-/-) compared to wild-type (WT) controls. Results showed no significant differences in learning accuracy between the two groups. However, KCNMA1-/- mice were more prone to omitting responses to stimuli. In addition, when the timing of cue presentation was randomized, the KCNMA1-/- showed premature responses. Notably, these mice also demonstrated a marked reduction in perseverative responses, which include repeated nose-poke behaviors following decisions. These findings highlight the involvement of the KCNMA1 gene in managing attention, impulsivity, and potentially moderating repetitive actions.


Subject(s)
Attention , Conditioning, Operant , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits , Mice, Knockout , Animals , Attention/physiology , Male , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/genetics , Conditioning, Operant/physiology , Mice, Inbred C57BL , Mice , Reaction Time/physiology , Impulsive Behavior/physiology
7.
Front Pharmacol ; 15: 1373507, 2024.
Article in English | MEDLINE | ID: mdl-38584598

ABSTRACT

Large Conductance Voltage- and Calcium-activated K+ (BK) channels are transmembrane pore-forming proteins that regulate cell excitability and are also expressed in non-excitable cells. They play a role in regulating vascular tone, neuronal excitability, neurotransmitter release, and muscle contraction. Dysfunction of the BK channel can lead to arterial hypertension, hearing disorders, epilepsy, and ataxia. Here, we provide an overview of BK channel functioning and the implications of its abnormal functioning in various diseases. Understanding the function of BK channels is crucial for comprehending the mechanisms involved in regulating vital physiological processes, both in normal and pathological conditions, controlled by BK. This understanding may lead to the development of therapeutic interventions to address BK channelopathies.

8.
J Mol Histol ; 55(1): 83-96, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38165571

ABSTRACT

Acquired drug resistance is a main reason for limiting the application of sorafenib in HCC treatment. This study aimed to explore the role and mechanisms of a novel long non-coding RNA (lncRNA), lnc-TSI, in sorafenib resistance of HCC. The interaction between lnc-TSI and miR-4726-5p, and miR-4726-5p and KCNMA1 were predicted using bioinformatic tools. Expression of the molecules in the lnc-TSI/miR-4726-5p/KCNMA1 axis in clinical samples and cell lines, as well as the sorafenib resistant HCC cell lines, was determined using qRT-PCR or western blotting. Expressions of lnc-TSI, miR-4726-5p, and KCNMA1 were manipulated in HepG2 and Huh7 cells through plasmid transfection or lentivirus infection. The CCK-8, flow cytometry, and Tunel assays were employed to determine the role of this axis on sorafenib resistance of HCC. A xenograft model was established using sorafenib-resistant HepG2 and Huh7 cells followed by in vivo sorafenib treatments to confirm the in vitro findings. Lnc-TSI and KCNMA1 expressions were significantly downregulated in HCC clinical samples and cell lines, especially in sorafenib resistance ones, while mi-4726-5p presented a reversed expression pattern. Lnc-TSI interacted with miR-4726-5p, and Lnc-TSI acts as a ceRNA via sponging miR-4726-5p in HCC cells. Overexpression of lnc-TSI and KCNMA1 promoted apoptosis and decreased cell viability of sorafenib-treated HCC cells, thus alleviated sorafenib resistance. miR-4726-5p mimic reversed the KCNMA1-mediated sorafenib sensitivity-promoting effect, while additional overexpression of lnc-TSI reversed the effect of miR-4726-5p. In vivo analysis also showed that overexpression of ln-TSI diminished sorafenib resistance in mice inoculated with sorafenib-resistant HCC cells via increasing KCNMA1 expression and decreasing miR-4726-5p expression. The lnc-TSI/miR-4726-5p/KCNMA1 axis plays a critical role in regulating the resistance of HCC to sorafenib, and might serve as a therapeutic target to manage sorafenib resistance of HCC in clinic.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , MicroRNAs , RNA, Long Noncoding , Humans , Animals , Mice , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Sorafenib/pharmacology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/genetics , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/metabolism
9.
Neurobiol Aging ; 134: 115-125, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38056217

ABSTRACT

KCNMA1 encodes the K+ potassium channel α-subunit that plays a significant role in the auditory system. Our previous studies indicated that KCNMA1 is associated with age-related hearing loss(AHL). However, the detailed mechanism of KCNMA1 involvement in auditory age-related degradation has not been fully clarified. Therefore, we explored the expression of KCNMA1 in the peripheral auditory of 2-month-old and 12-month-old mice by Western blotting and immunofluorescence. The results of animal experiments showed that KCNMA1 expression was decreased in 12-month-old mice compared with 2-month-old mice, whereas the ferroptosis level was increased. To verify the role of KCNMA1 in AHL, we downregulated KCNMA1 in HEI-OC1 cells by transfecting shRNA. After downregulation, the ferroptosis level was increased and the aging process was accelerated. Furthermore, the aging process was affected by the expression of ferroptosis. In conclusion, these results revealed that KCNMA1 is associated with the aging process in auditory hair cells by regulating ferroptosis, which deepens our understanding of age-related hearing loss.


Subject(s)
Ferroptosis , Presbycusis , Animals , Mice , Down-Regulation , Ferroptosis/genetics , Hair Cells, Auditory/metabolism , Presbycusis/genetics
10.
Seizure ; 116: 51-64, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37353388

ABSTRACT

PURPOSE: In Developmental and Epileptic Encephalopathies (DEEs), identifying the precise genetic factors guides the clinicians to apply the most appropriate treatment for the patient. Due to high locus heterogeneity, WES analysis is a promising approach for the genetic diagnosis of DEE. Therefore, the aim of the present study is to evaluate the utility of WES in the diagnosis and treatment of DEE patients. METHODS: The exome data of 29 DEE patients were filtrated for destructive and missense mutations in 1896 epilepsy-related genes to detect the causative variants and examine the genotype-phenotype correlations. We performed Sanger sequencing with the available DNA samples to follow the co-segregation of the variants with the disease phenotype in the families. Also, the structural effects of p.Asn1053Ser, p.Pro120Ser and p.Glu1868Gly mutations on KCNMA1, NPC2, and SCN2A proteins, respectively, were evaluated by molecular dynamics (MD) and molecular docking simulations. RESULTS: Out of 29, nine patients (31%) harbor pathological (P) or likely pathological (LP) mutations in SCN2A, KCNQ2, ATP1A2, KCNMA1, and MECP2 genes, and three patients have VUS variants (10%) in SCN1A and SCN2A genes. Sanger sequencing results indicated that three of the patients have de novo mutations while eight of them carry paternally and/or maternally inherited causative variants. MD and molecular docking simulations supported the destructive effects of the mutations on KCNMA1, NPC2, and SCN2A protein structures. CONCLUSION: Herein we demonstrated the effectiveness of WES for DEE with high locus heterogeneity. Identification of the genetic etiology guided the clinicians to adjust the proper treatment for the patients.


Subject(s)
Epilepsy, Generalized , Epilepsy , Humans , Exome/genetics , Molecular Docking Simulation , Epilepsy/genetics , Epilepsy/diagnosis , Epilepsy, Generalized/genetics , Mutation/genetics , Phenotype
11.
Biol Direct ; 18(1): 81, 2023 11 29.
Article in English | MEDLINE | ID: mdl-38017487

ABSTRACT

The human bone marrow mesenchymal stem cells (hBMSCs) undergo intense osteogenic differentiation, a crucial bone formation mechanism. Evidence from prior studies suggested an association between long noncoding RNAs (lncRNAs) and the osteogenic differentiation of hBMSCs. However, precise roles and molecular mechanisms are still largely unknown. In this work, we report for the first time that lncRNA KCNMA1 antisense RNA 1 (KCNMA1-AS1) plays a vital role in regulating hBMSCs' osteogenic differentiation. Here, it was observed that the KCNMA1-AS1 expression levels were significantly upregulated during osteogenic differentiation. In addition, KCNMA1-AS1 overexpression enhanced in vitro osteogenic differentiation of hBMSCs and in vivo bone formation, whereas knockdown of KCNMA1-AS1 resulted in the opposite result. Additionally, the interaction between KCNMA1-AS1 and mothers against decapentaplegic homolog 9 (SMAD9) was confirmed by an RNA pull-down experiment, mass spectrometry, and RIP assay. This interaction regulated the activation of the SMAD9 signaling pathway. Moreover, rescue assays demonstrated that the inhibitor of the SMAD9 signaling pathway reversed the stimulative effects on osteogenic differentiation of hBMSCs by KCNMA1-AS1 overexpression. Altogether, our results stipulate that KCNMA1-AS1 promotes osteogenic differentiation of hBMSCs via activating the SMAD9 signaling pathway and can serve as a biomarker and therapeutic target in treating bone defects.


Subject(s)
Mesenchymal Stem Cells , RNA, Long Noncoding , Humans , Osteogenesis/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Cell Differentiation/genetics , Signal Transduction/genetics , Mesenchymal Stem Cells/metabolism , Smad8 Protein/metabolism , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/metabolism
12.
Int J Neurosci ; : 1-6, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37269313

ABSTRACT

KCNMA1 located on chromosome 10q22.3, encodes the pore-forming α subunit of the 'Big K+' (BK) large conductance calcium and voltage-activated K + channel. Numerous evidence suggests the functional BK channel alterations produced by different KCNMA1 alleles may associate with different symptoms, such as paroxysmal non kinesigenic dyskinesia with gain of function and ataxia with loss of function. Functional classifications revealed two major patterns, gain of function and loss of function effects on channel properties in different cell lines. In the literature, two mutations have been shown to confer gain of function properties to BK channels: D434G and N995S. In this study, we report the functional characterization of a variant which was previously reported the whole exome sequencing revealed bi-allelic nonsense variation of the cytoplasmic domain of calcium-activated potassium channel subunit alpha-1 protein. To detect functional consequences of the variation, we parallely conducted two independent approaches. One is immunostaining using and the other one is electrophysiological recording using patch-clamp on wild-type and R458X mutant cells to detect the differences between wild-type and the mutant cells. We detected the gain of function effect for the mutation (NM_001161352.1 (ENST00000286628.8):c.1372C > T;Arg458*) using two parallel approaches. According to the result we found, the reported mutation causes the loss of function in the cell. It should be noted that in future studies, it can be thought that the functions of genes associated with channelopathies may have a dual effect such as loss and gain.

13.
Nan Fang Yi Ke Da Xue Xue Bao ; 43(3): 349-359, 2023 Mar 20.
Article in Chinese | MEDLINE | ID: mdl-37087578

ABSTRACT

OBJECTIVE: To explore the association of KCNMA1 gene methylation levels in peripheral blood with lung cancer. METHODS: The methylation levels of 4 CpG sites in KCNMA1 gene were quantitatively detected in 285 patients with lung cancer, 186 age- and sex-matched patients with benign pulmonary nodules and 278 matched healthy control subjects using mass spectrometry (MALDI-TOF-MS). The association of KCNMA1 methylation levels with lung cancer was analyzed using logistic regression models adjusted for covariates. The KCNMA1 methylation levels in different subgroups of lung cancer patients were compared using Mann-Whitney U test. RESULTS: In subjects over 55 years and in female subjects, the highest quartile (Q4) vs the lowest quartile (Q1) of KCNMA1_CpG_5 methylation levels were significantly correlated with lung cancer (for subjects over 55 years: OR=2.60, 95% CI: 1.25-5.41, P=0.011; for female subjects: OR=2.09, 95% CI: 1.03?4.26, P=0.042). From Q2 to Q4 of KCNMA1_CpG_5 methylation levels, their correlation with lung cancer became gradually stronger (P=0.003 and 0.038, respectively). In male subjects, the OR of Q4 of KCNMA1_CpG_5 methylation levels was 0.35 in patients with lung cancer as compared with patients with benign nodules (95% CI: 0.16-0.79, P=0.012). KCNMA1_CpG_3 methylation level was significantly lower in invasive adenocarcinoma than in noninvasive adenocarcinoma (P=0.028), and that of KCNMA1_CpG_1 was significantly higher in patients with larger tumors (T2-4) than in those with smaller tumors (T1) (P=0.021). CONCLUSION: The change of peripheral blood KCNMA1 methylation level is correlated with the occurrence and development of lung cancer.


Subject(s)
Adenocarcinoma of Lung , DNA Methylation , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits , Female , Humans , Male , Adenocarcinoma/genetics , Case-Control Studies , CpG Islands , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/genetics , Lung Neoplasms/genetics , Adenocarcinoma of Lung/genetics
14.
FASEB J ; 37(4): e22866, 2023 04.
Article in English | MEDLINE | ID: mdl-36929614

ABSTRACT

Uncontrolled diabetes causes a catabolic state with multi-organic complications, of which impairment on skeletal muscle contributes to the damaged mobility. Kcnma1 gene encodes the pore-forming α-subunit of Ca2+ - and voltage-gated K+ channels of large conductance (BK channels), and loss-of-function mutations in Kcnma1 are in regards to impaired myogenesis. Herein, we observed a time-course reduction of Kcnma1 expression in the tibialis anterior muscles of leptin receptor-deficient (db/db) diabetic mice. To investigate the role of Kcnma1 in diabetic muscle atrophy, muscle-specific knockdown of Kcnma1 was achieved by mice receiving intravenous injection of adeno-associated virus-9 (AAV9)-encoding shRNA against Kcnma1 under the muscle creatine kinase (MCK) promoter. Impairment on muscle mass and myogenesis were observed in m/m mice with AAV9-shKcnma1 intervention, while this impairment was more obvious in diabetic db/db mice. Simultaneously, damaged mitochondrial dynamics and biogenesis showed much severer in db/db mice with AAV9-shKcnma1 intervention. RNA sequencing revealed the large transcriptomic changes resulted by Kcnma1 knockdown, and changes in mitochondrial homeostasis-related genes were validated. Besides, the artificial alteration of Kcnma1 in mouse C2C12 myoblasts was achieved with an adenovirus vector. Consistent results were demonstrated by Kcnma1 knockdown in palmitate-treated cells, whereas opposite results were exhibited by Kcnma1 overexpression. Collectively, we document Kcnma1 as a potential keeper of mitochondrial homeostasis, and the loss of Kcnma1 is a critical event in priming skeletal muscle loss in diabetes.


Subject(s)
Diabetes Mellitus, Experimental , Large-Conductance Calcium-Activated Potassium Channels , Mice , Animals , Large-Conductance Calcium-Activated Potassium Channels/metabolism , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/metabolism , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/genetics , Muscular Atrophy/genetics , Muscular Atrophy/metabolism , Muscle, Skeletal/metabolism , Homeostasis
15.
Cell Mol Life Sci ; 80(3): 61, 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36763212

ABSTRACT

BRAF mutations have been found in gliomas which exhibit abnormal electrophysiological activities, implying their potential links with the ion channel functions. In this study, we identified the Drosophila potassium channel, Slowpoke (Slo), the ortholog of human KCNMA1, as a critical factor involved in dRafGOF glioma progression. Slo was upregulated in dRafGOF glioma. Knockdown of slo led to decreases in dRafGOF levels, glioma cell proliferation, and tumor-related phenotypes. Overexpression of slo in glial cells elevated dRaf expression and promoted cell proliferation. Similar mutual regulations of p-BRAF and KCNMA1 levels were then recapitulated in human glioma cells with the BRAF mutation. Elevated p-BRAF and KCNMA1 were also observed in HEK293T cells upon the treatment of 20 mM KCl, which causes membrane depolarization. Knockdown KCNMA1 in these cells led to a further decrease in cell viability. Based on these results, we conclude that the levels of p-BRAF and KCNMA1 are co-dependent and mutually regulated. We propose that, in depolarized glioma cells with BRAF mutations, high KCNMA1 levels act to repolarize membrane potential and facilitate cell growth. Our study provides a new strategy to antagonize the progression of gliomas as induced by BRAF mutations.


Subject(s)
Glioma , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits , Proto-Oncogene Proteins B-raf , Animals , Humans , Drosophila/metabolism , Glioma/genetics , HEK293 Cells , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/genetics , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/metabolism , Potassium Channels/genetics , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism
16.
J Orthop Surg Res ; 18(1): 73, 2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36717952

ABSTRACT

OBJECTIVE: Osteoporosis is a progressive systemic skeletal disorder. Multiple profiling studies have contributed to characterizing biomarkers and therapeutic targets for osteoporosis. However, due to the limitation of the platform of miRNA sequencing, only a part of miRNA can be sequenced based on one platform. MATERIALS AND METHODS: In this study, we performed miRNA sequencing in osteoporosis bone samples based on a novel platform Illumina Hiseq 2500. Bioinformatics analysis was performed to construct osteoporosis-related competing endogenous RNA (ceRNA) networks. Gene interference and osteogenic induction were used to examine the effect of identified ceRNA networks on osteogenic differentiation of human bone marrow-derived mesenchymal stem cells (HBMSCs). RESULTS: miR-1303 was lowly expressed, while cochlin (COCH) and KCNMA1-AS1 were highly expressed in the osteoporosis subjects. COCH knockdown improved the osteogenic differentiation of HBMSCs. Meanwhile, COCH inhibition compensated for the suppression of osteogenic differentiation of HBMSCs by miR-1303 knockdown. Further, KCNMA1-AS1 knockdown promoted osteogenic differentiation of HBMSCs through downregulating COCH by sponging miR-1303. CONCLUSIONS: Our findings suggest that the KCNMA1-AS1/miR-1303/COCH axis is a promising biomarker and therapeutic target for osteoporosis.


Subject(s)
Extracellular Matrix Proteins , MicroRNAs , Osteoporosis , Humans , Cell Differentiation/genetics , Cells, Cultured , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits , MicroRNAs/genetics , Osteogenesis/genetics , Osteoporosis/genetics , Extracellular Matrix Proteins/genetics , RNA, Antisense/genetics
17.
Biochem Pharmacol ; 208: 115413, 2023 02.
Article in English | MEDLINE | ID: mdl-36646291

ABSTRACT

A number of mutations to members of several CNS potassium (K) channel families have been identified which result in rare forms of neonatal onset epilepsy, or syndromes of which one prominent characteristic is a form of epilepsy. Benign Familial Neonatal Convulsions or Seizures (BFNC or BFNS), also referred to as Self-Limited Familial Neonatal Epilepsy (SeLNE), results from mutations in 2 members of the KV7 family (KCNQ) of K channels; while generally self-resolving by about 15 weeks of age, these mutations significantly increase the probability of generalized seizure disorders in the adult, in some cases they result in more severe developmental syndromes. Epilepsy of Infancy with Migrating Focal Seizures (EIMSF), or Migrating Partial Seizures of Infancy (MMPSI), is a rare severe form of epilepsy linked primarily to gain of function mutations in a member of the sodium-dependent K channel family, KCNT1 or SLACK. Finally, KCNMA1 channelopathies, including Liang-Wang syndrome (LIWAS), are rare combinations of neurological symptoms including seizure, movement abnormalities, delayed development and intellectual disabilities, with Liang-Wang syndrome an extremely serious polymalformative syndrome with a number of neurological sequelae including epilepsy. These are caused by mutations in the pore-forming subunit of the large-conductance calcium-activated K channel (BK channel) KCNMA1. The identification of these rare but significant channelopathies has resulted in a resurgence of interest in their treatment by direct pharmacological or genetic modulation. We will briefly review the genetics, biophysics and pharmacology of these K channels, their linkage with the 3 syndromes described above, and efforts to more effectively target these syndromes.


Subject(s)
Channelopathies , Epilepsy, Benign Neonatal , Epilepsy , Infant, Newborn , Adult , Humans , Channelopathies/genetics , Channelopathies/therapy , Syndrome , Epilepsy/drug therapy , Epilepsy/genetics , Epilepsy, Benign Neonatal/genetics , Mutation , Calcium Channels/genetics , Potassium Channels, Sodium-Activated/genetics , Nerve Tissue Proteins/metabolism
18.
Journal of Chinese Physician ; (12): 1764-1768, 2023.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1026028

ABSTRACT

Objective:To summarize the clinical manifestations and determine the molecular etiology for three KCNMA1-related neurological disorders.Methods:A retrospective clinical data analysis was performed on 3 patients with clinically and genetically diagnosed neurological diseases related to KCNMA1 gene variants who were diagnosed and treated in the Department of Pediatrics, Xiangya Hospital of Central South University from January 2020 to December 2022.Results:Case 1, a 4-year-old and 8-month-old female, was diagnosed with " episodes of head-raising and lowering for 11 months". The electroencephalogram (EEG) showed background theta rhythm in the occipital area, with mainly sharp waves and peaks in the bilateral central, parietal, occipital and temporal areas. Slow waves were scattered or paroxysmal, affecting the central, parietal, and temporal areas on the right side. Levetiracetam was given as an anti-epileptic treatment, and the seizures were completely controlled. Physical examination revealed unclear articulation and short stature. The patient′s mental development has been delayed since childhood. After 2 years of rehabilitation treatment, his motor development was normal and his language development was slightly delayed. Whole-exome sequencing found a novel c. 1807A>G (p.Thr603Ala) mutation in the KCNMA1 gene, which was graded likely pathogenic (LP). Case 2, a male, 1 year and 4 months old, went to the hospital because of " recurrent stupor attacks for more than 6 months". Nearly 20 epileptic events were detected on the electroencephalogram. Levetiracetam, sodium valproate and clonazepam were administered successively. Seizure treatment, complete seizure control. Brain magnetic resonance imaging (MRI) showed poor cerebellar development. Development was lagging behind that of normal children of the same age. Whole-exome sequencing found a novel c. 756C>A (p.Phe252Leu) mutation in the KCNMA1 gene, which was graded LP. Case 3, a 16-month-old female, went to the hospital because of " trembling upper limbs, slurred speech for more than 10 years, and unsteady gait for 8 years." The electroencephalogram showed no abnormalities, and brain MRI showed cerebellar atrophy. Physical examination: unclear speech, unsteady grasping of objects with both hands, muscle strength of limbs level 4, and ataxic gait. Whole-exome sequencing found a novel c. 1051T>C (p.Ser351Pro) mutation in the KCNMA1 gene, which was graded LP.Conclusions:The core phenotypes of KCNMA1 gene mutation-related neurological diseases include epilepsy, neurodevelopmental disorders and paroxysmal dyskinesia, and cerebellar atrophy is common in brain MRI.

19.
Curr Res Physiol ; 5: 404-413, 2022.
Article in English | MEDLINE | ID: mdl-36203817

ABSTRACT

BK K+ channels are critical regulators of neuron and muscle excitability, comprised of a tetramer of pore-forming αsubunits from the KCNMA1 gene and cell- and tissue-selective ß subunits (KCNMB1-4). Mutations in KCNMA1 are associated with neurological disorders, including autism. However, little is known about the role of neuronal BK channel ß subunits in human neuropathology. The ß2 subunit is expressed in central neurons and imparts inactivation to BK channels, as well as altering activation and deactivation gating. In this study, we report the functional effect of G124R, a novel KCNMB2 mutation obtained from whole-exome sequencing of a patient diagnosed with autism spectrum disorder. Residue G124, located in the extracellular loop between TM1 and TM2, is conserved across species, and the G124R missense mutation is predicted deleterious with computational tools. To investigate the pathogenicity potential, BK channels were co-expressed with ß2WT and ß2G124R subunits in HEK293T cells. BK/ß2 currents were assessed from inside-out patches under physiological K+ conditions (140/6 mM K+ and 10 µM Ca2+) during activation and inactivation (voltage-dependence and kinetics). Using ß2 subunits lacking inactivation (ß2IR) revealed that currents from BK/ß2IRG124R channels activated 2-fold faster and deactivated 2-fold slower compared with currents from BK/ß2IRWT channels, with no change in the voltage-dependence of activation (V1/2). Despite the changes in the BK channel opening and closing, BK/ß2G124R inactivation rates (τinact and τrecovery), and the V1/2 of inactivation, were unaltered compared with BK/ß2WT channels under standard steady-state voltage protocols. Action potential-evoked current was also unchanged. Thus, the mutant phenotype suggests the ß2G124R TM1-TM2 extracellular loop could regulate BK channel activation and deactivation kinetics. However, additional evidence is needed to validate pathogenicity for this patient-associated variant in KCNMB2.

20.
Elife ; 112022 07 12.
Article in English | MEDLINE | ID: mdl-35819138

ABSTRACT

KCNMA1 forms the pore of BK K+ channels, which regulate neuronal and muscle excitability. Recently, genetic screening identified heterozygous KCNMA1 variants in a subset of patients with debilitating paroxysmal non-kinesigenic dyskinesia, presenting with or without epilepsy (PNKD3). However, the relevance of KCNMA1 mutations and the basis for clinical heterogeneity in PNKD3 has not been established. Here, we evaluate the relative severity of three KCNMA1 patient variants in BK channels, neurons, and mice. In heterologous cells, BKN999S and BKD434G channels displayed gain-of-function (GOF) properties, whereas BKH444Q channels showed loss-of-function (LOF) properties. The relative degree of channel activity was BKN999S > BKD434G>WT > BKH444Q. BK currents and action potential firing were increased, and seizure thresholds decreased, in Kcnma1N999S/WT and Kcnma1D434G/WT transgenic mice but not Kcnma1H444Q/WT mice. In a novel behavioral test for paroxysmal dyskinesia, the more severely affected Kcnma1N999S/WT mice became immobile after stress. This was abrogated by acute dextroamphetamine treatment, consistent with PNKD3-affected individuals. Homozygous Kcnma1D434G/D434G mice showed similar immobility, but in contrast, homozygous Kcnma1H444Q/H444Q mice displayed hyperkinetic behavior. These data establish the relative pathogenic potential of patient alleles as N999S>D434G>H444Q and validate Kcnma1N999S/WT mice as a model for PNKD3 with increased seizure propensity.


So far, only 70 patients around the world have been diagnosed with a newly identified rare syndrome known as KCNMA1-linked channelopathy. The condition is characterised by seizures and abnormal movements which include frequent 'drop attacks', a sudden and debilitating loss of muscle control that causes patients to fall without warning. The disease is associated with mutations in the gene for KCNMA1, a member of a class of proteins important for controlling nerve cell activity and brain function. However, due to the limited number of people affected by the condition, it is difficult to link a particular mutation to the observed symptoms; the basis for the drop attacks therefore remains unknown. Park et al. set out to 'model' KCNMA1-linked channelopathy in the laboratory, in order to determine which mutations in the KCNMA1 gene caused these symptoms. Three groups of mice were each genetically engineered to carry either one of the two most common mutations in the gene for KCNMA1, or a very rare mutation associated with the movement symptoms. Behavioural experiments and studies of nerve cell activity revealed that the mice carrying mutations that made the KCNMA1 protein more active developed seizures more easily and became immobilized, showing the mouse version of drop attacks. Giving these mice the drug dextroamphetamine, which works in some human patients, stopped the immobilizing attacks altogether. These results show for the first time which specific genetic changes cause the main symptoms of KCNMA1-linked channelopathy. Park et al. hope that this knowledge will deepen our understanding of this disease and help develop better treatments.


Subject(s)
Channelopathies , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits , Animals , Channelopathies/genetics , Chorea , Disease Models, Animal , Epilepsy, Generalized , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/genetics , Mice , Mice, Transgenic , Seizures/genetics
SELECTION OF CITATIONS
SEARCH DETAIL