Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 150
Filter
1.
Mol Neurobiol ; 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39060906

ABSTRACT

Hypobaric hypoxia is the main cause of high-altitude retinopathy (HAR). Retinal oedema is the key pathological change in HAR. However, its pathological mechanism is not clear. In this study, a 5000-m hypobaric hypoxic environment was simulated. Haematoxylin and eosin (H&E) staining and electrophysiological (ERG) detection were used to observe the morphological and functional changes in the retina of mice under hypobaric hypoxia for 2-72 h. Toluidine blue staining and transmission electron microscopy were used to observe the morphology of Müller cells in the hypobaric hypoxia groups. The functional changes and oedema mechanism of Müller cells were detected by immunofluorescence and western blotting. The expression levels of glutamine synthetase (GS), glial fibrillary acidic protein (GFAP), aquaporin 4 (AQP4), and inwardly rectifying potassium channel subtype 4.1 (Kir4.1) in Müller cells were quantitatively analysed. This study revealed that retinal oedema gradually increased with prolonged exposure to a 5000-m hypobaric hypoxic environment. In addition, the ERG showed that the time delay and amplitude of the a-wave and b-wave decreased. The expression of GS decreased, and the expression of GFAP increased in Müller cells after exposure to hypobaric hypoxia for 4 h. At the same time, retinal AQP4 expression increased, and Kir4.1 expression decreased. The oedema and functional changes in Müller cells are consistent with the time point of retinal oedema. In conclusion, Müller cell oedema is involved in retinal oedema induced by hypobaric hypoxia. An increase in AQP4 and a decrease in Kir4.1 are the main causes of Müller cell oedema caused by hypobaric hypoxia.

2.
Acta Physiol (Oxf) ; 240(8): e14189, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38860527

ABSTRACT

Calcineurin, protein phosphatase 2B (PP2B) or protein phosphatase 3 (PP3), is a calcium-dependent serine/threonine protein phosphatase. Calcineurin is widely expressed in the kidney and regulates renal Na+ and K+ transport. In the thick ascending limb, calcineurin plays a role in inhibiting NKCC2 function by promoting the dephosphorylation of the cotransporter and an intracellular sorting receptor, called sorting-related-receptor-with-A-type repeats (SORLA), is involved in modulating the effect of calcineurin on NKCC2. Calcineurin also participates in regulating thiazide-sensitive NaCl-cotransporter (NCC) in the distal convoluted tubule. The mechanisms by which calcineurin regulates NCC include directly dephosphorylation of NCC, regulating Kelch-like-3/CUL3 E3 ubiquitin-ligase complex, which is responsible for WNK (with-no-lysin-kinases) ubiquitination, and inhibiting Kir4.1/Kir5.1, which determines NCC expression/activity. Finally, calcineurin is also involved in regulating ROMK (Kir1.1) channels in the cortical collecting duct and Cyp11 2 expression in adrenal zona glomerulosa. In summary, calcineurin is involved in the regulation of NKCC2, NCC, and inwardly rectifying K+ channels in the kidney, and it also plays a role in modulating aldosterone synthesis in adrenal gland, which regulates epithelial-Na+-channel expression/activity. Thus, application of calcineurin inhibitors (CNIs) is expected to abrupt calcineurin-mediated regulation of transepithelial Na+ and K+ transport in the kidney. Consequently, CNIs cause hypertension, compromise renal K+ excretion, and induce hyperkalemia.


Subject(s)
Calcineurin Inhibitors , Calcineurin , Hyperkalemia , Potassium , Hyperkalemia/metabolism , Animals , Humans , Calcineurin/metabolism , Potassium/metabolism , Calcineurin Inhibitors/adverse effects , Calcineurin Inhibitors/pharmacology , Kidney/metabolism , Kidney/drug effects
3.
J Vet Intern Med ; 38(4): 2237-2248, 2024.
Article in English | MEDLINE | ID: mdl-38842297

ABSTRACT

BACKGROUND: Epilepsy in dogs and humans is associated with blood-brain barrier (BBB) dysfunction (BBBD), which may involve dysfunction of tight junction (TJ) proteins, matrix metalloproteases, and astrocytes. Imaging techniques to assess BBB integrity, to identify potential treatment strategies, have not yet been evaluated in veterinary medicine. HYPOTHESIS: Some dogs with idiopathic epilepsy (IE) will exhibit BBBD. Identifying BBBD may improve antiepileptic treatment in the future. ANIMALS: Twenty-seven dogs with IE and 10 healthy controls. METHODS: Retrospective, prospective cohort study. Blood-brain barrier permeability (BBBP) scores were calculated for the whole brain and piriform lobe of all dogs by using dynamic contrast enhancement (DCE) magnetic resonance imaging (MRI) and subtraction enhancement analysis (SEA). Matrix metalloproteinase-9 (MMP9) activity in serum and cerebrospinal fluid (CSF) was measured and its expression in the piriform lobe was examined using immunofluorescent staining. Gene expression of TJ proteins and astrocytic transporters was analyzed in the piriform lobe. RESULTS: The DCE-MRI analysis of the piriform lobe identified higher BBBP score in the IE group when compared with controls (34.5% vs 26.5%; P = .02). Activity and expression of MMP9 were increased in the serum, CSF, and piriform lobe of IE dogs as compared with controls. Gene expression of Kir4.1 and claudin-5 in the piriform lobe of IE dogs was significantly lower than in control dogs. CONCLUSIONS AND CLINICAL IMPORTANCE: Our findings demonstrate BBBD in dogs with IE and were supported by increased MMP9 activity and downregulation of astrocytic potassium channels and some TJ proteins. Blood brain barrier dysfunction may be a novel antiepileptic therapy target.


Subject(s)
Blood-Brain Barrier , Dog Diseases , Epilepsy , Magnetic Resonance Imaging , Matrix Metalloproteinase 9 , Tight Junction Proteins , Animals , Dogs , Blood-Brain Barrier/metabolism , Dog Diseases/metabolism , Epilepsy/veterinary , Epilepsy/metabolism , Female , Male , Tight Junction Proteins/metabolism , Tight Junction Proteins/genetics , Magnetic Resonance Imaging/veterinary , Retrospective Studies , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase 9/genetics , Prospective Studies , Case-Control Studies , Cohort Studies
4.
Trends Neurosci ; 47(8): 569-570, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38866601

ABSTRACT

Neurons have high energy demands. In a recent study, Looser et al. identified oligodendrocyte Kir4.1 as the activity-dependent driver of oligodendrocyte glycolysis that ensures that lactate is supplied to active neurons. Given that oligodendrocyte Kir4.1 also influenced axonal glucose consumption and uptake, oligodendrocytes may play a broader role in neuronal metabolic regulation.


Subject(s)
Axons , Glucose , Oligodendroglia , Oligodendroglia/metabolism , Animals , Glucose/metabolism , Axons/metabolism , Axons/physiology , Humans , Potassium Channels, Inwardly Rectifying/metabolism , Neurons/metabolism
5.
J Psychiatr Res ; 174: 101-113, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38626560

ABSTRACT

Depressive disorders are widely debilitating psychiatric disease. Despite the considerable progress in the field of depression therapy, extensive research spanning many decades has failed to uncover pathogenic pathways that might aid in the creation of long-acting and rapid-acting antidepressants. Consequently, it is imperative to reconsider existing approaches and explore other targets to improve this area of study. In contemporary times, several scholarly investigations have unveiled that persons who have received a diagnosis of depression, as well as animal models employed to study depression, demonstrate a decrease in both the quantity as well as density of astrocytes, accompanied by alterations in gene expression and morphological attributes. Astrocytes rely on a diverse array of channels and receptors to facilitate their neurotransmitter transmission inside tripartite synapses. This study aimed to investigate the potential processes behind the development of depression, specifically focusing on astrocyte-associated neuroinflammation and the involvement of several molecular components such as connexin 43, potassium channel Kir4.1, aquaporin 4, glutamatergic aspartic acid transporter protein, SLC1A2 or GLT-1, glucocorticoid receptors, 5-hydroxytryptamine receptor 2B, and autophagy, that localized on the surface of astrocytes. The study also explores novel approaches in the treatment of depression, with a focus on astrocytes, offering innovative perspectives on potential antidepressant medications.


Subject(s)
Astrocytes , Astrocytes/metabolism , Astrocytes/drug effects , Humans , Animals , Antidepressive Agents/pharmacology , Depressive Disorder/drug therapy , Depressive Disorder/metabolism , Depressive Disorder/therapy , Neuroinflammatory Diseases/drug therapy
6.
Antioxidants (Basel) ; 12(12)2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38136181

ABSTRACT

NADPH oxidase (NOX) is a primary mediator of superoxides, which promote oxidative stress, neurodegeneration, and neuroinflammation after diisopropylfluorophosphate (DFP) intoxication. Although orally administered mitoapocynin (MPO, 10 mg/kg), a mitochondrial-targeted NOX inhibitor, reduced oxidative stress and proinflammatory cytokines in the periphery, its efficacy in the brain regions of DFP-exposed rats was limited. In this study, we encapsulated MPO in polyanhydride nanoparticles (NPs) based on 1,6-bis(p-carboxyphenoxy) hexane (CPH) and sebacic anhydride (SA) for enhanced drug delivery to the brain and compared with a high oral dose of MPO (30 mg/kg). NOX2 (GP91phox) regulation and microglial (IBA1) morphology were analyzed to determine the efficacy of MPO-NP vs. MPO-oral in an 8-day study in the rat DFP model. Compared to the control, DFP-exposed animals exhibited significant upregulation of NOX2 and a reduced length and number of microglial processes, indicative of reactive microglia. Neither MPO treatment attenuated the DFP effect. Neurodegeneration (FJB+NeuN) was significantly greater in DFP-exposed groups regardless of treatment. Interestingly, neuronal loss in DFP+MPO-treated animals was not significantly different from the control. MPO-oral rescued inhibitory neuronal loss in the CA1 region of the hippocampus. Notably, MPO-NP and MPO-oral significantly reduced astrogliosis (absolute GFAP counts) and reactive gliosis (C3+GFAP). An analysis of inwardly rectifying potassium channels (Kir4.1) in astroglia revealed a significant reduction in the brain regions of the DFP+VEH group, but MPO had no effect. Overall, both NP-encapsulated and orally administered MPO had similar effects. Our findings demonstrate that MPO effectively mitigates DFP-induced reactive astrogliosis in several key brain regions and protects neurons in CA1, which may have long-term beneficial effects on spontaneous seizures and behavioral comorbidities. Long-term telemetry and behavioral studies and a different dosing regimen of MPO are required to understand its therapeutic potential.

7.
Cells ; 12(10)2023 05 10.
Article in English | MEDLINE | ID: mdl-37408194

ABSTRACT

A single sub-anesthetic dose of ketamine evokes rapid and long-lasting beneficial effects in patients with a major depressive disorder. However, the mechanisms underlying this effect are unknown. It has been proposed that astrocyte dysregulation of extracellular K+ concentration ([K+]o) alters neuronal excitability, thus contributing to depression. We examined how ketamine affects inwardly rectifying K+ channel Kir4.1, the principal regulator of K+ buffering and neuronal excitability in the brain. Cultured rat cortical astrocytes were transfected with plasmid-encoding fluorescently tagged Kir4.1 (Kir4.1-EGFP) to monitor the mobility of Kir4.1-EGFP vesicles at rest and after ketamine treatment (2.5 or 25 µM). Short-term (30 min) ketamine treatment reduced the mobility of Kir4.1-EGFP vesicles compared with the vehicle-treated controls (p < 0.05). Astrocyte treatment (24 h) with dbcAMP (dibutyryl cyclic adenosine 5'-monophosphate, 1 mM) or [K+]o (15 mM), which increases intracellular cAMP, mimicked the ketamine-evoked reduction of mobility. Live cell immunolabelling and patch-clamp measurements in cultured mouse astrocytes revealed that short-term ketamine treatment reduced the surface density of Kir4.1 and inhibited voltage-activated currents similar to Ba2+ (300 µM), a Kir4.1 blocker. Thus, ketamine attenuates Kir4.1 vesicle mobility, likely via a cAMP-dependent mechanism, reduces Kir4.1 surface density, and inhibits voltage-activated currents similar to Ba2+, known to block Kir4.1 channels.


Subject(s)
Depressive Disorder, Major , Ketamine , Mice , Animals , Rats , Ketamine/pharmacology , Astrocytes/metabolism , Depressive Disorder, Major/metabolism , Neurons
8.
Cell Rep ; 42(5): 112456, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37126448

ABSTRACT

The regulation of translation in astrocytes, the main glial cells in the brain, remains poorly characterized. We developed a high-throughput proteomics screen for polysome-associated proteins in astrocytes and focused on ribosomal protein receptor of activated protein C kinase 1 (RACK1), a critical factor in translational regulation. In astrocyte somata and perisynaptic astrocytic processes (PAPs), RACK1 preferentially binds to a number of mRNAs, including Kcnj10, encoding the inward-rectifying potassium (K+) channel Kir4.1. By developing an astrocyte-specific, conditional RACK1 knockout mouse model, we show that RACK1 represses production of Kir4.1 in hippocampal astrocytes and PAPs. Upregulation of Kir4.1 in the absence of RACK1 increases astrocytic Kir4.1-mediated K+ currents and volume. It also modifies neuronal activity attenuating burst frequency and duration. Reporter-based assays reveal that RACK1 controls Kcnj10 translation through the transcript's 5' untranslated region. Hence, translational regulation by RACK1 in astrocytes represses Kir4.1 expression and influences neuronal activity.


Subject(s)
Astrocytes , Neuroglia , Animals , Mice , Astrocytes/metabolism , Mice, Knockout , Neuroglia/metabolism , Neurons , Receptors for Activated C Kinase/metabolism , Ribosomes
9.
Acta Neuropathol Commun ; 11(1): 86, 2023 05 31.
Article in English | MEDLINE | ID: mdl-37259148

ABSTRACT

Refractory epilepsy is the main neurological manifestation of Alpers' syndrome, a severe childhood-onset mitochondrial disease caused by bi-allelic pathogenic variants in the mitochondrial DNA (mtDNA) polymerase gamma gene (POLG). The pathophysiological mechanisms underpinning neuronal hyperexcitabilty leading to seizures in Alpers' syndrome remain unknown. However, pathological changes to reactive astrocytes are hypothesised to exacerbate neural dysfunction and seizure-associated cortical activity in POLG-related disease. Therefore, we sought to phenotypically characterise astrocytic pathology in Alpers' syndrome. We performed a detailed quantitative investigation of reactive astrocytes in post-mortem neocortical tissues from thirteen patients with Alpers' syndrome, eight neurologically normal controls and five sudden unexpected death in epilepsy (SUDEP) patients, to control for generalised epilepsy-associated astrocytic pathology. Immunohistochemistry to identify glial fibrillary acidic protein (GFAP)-reactive astrocytes revealed striking reactive astrogliosis localised to the primary visual cortex of Alpers' syndrome tissues, characterised by abnormal-appearing hypertrophic astrocytes. Phenotypic characterisation of individual GFAP-reactive astrocytes demonstrated decreased abundance of mitochondrial oxidative phosphorylation (OXPHOS) proteins and altered expression of key astrocytic proteins including Kir4.1 (subunit of the inwardly rectifying K+ ion channel), AQP4 (astrocytic water channel) and glutamine synthetase (enzyme that metabolises glutamate). These phenotypic astrocytic changes were typically different from the pathology observed in SUDEP tissues, suggesting alternative mechanisms of astrocytic dysfunction between these epilepsies. Crucially, our findings provide further evidence of occipital lobe involvement in Alpers' syndrome and support the involvement of reactive astrocytes in the pathogenesis of POLG-related disease.


Subject(s)
Diffuse Cerebral Sclerosis of Schilder , Epilepsy , Sudden Unexpected Death in Epilepsy , Humans , Child , Astrocytes/metabolism , Diffuse Cerebral Sclerosis of Schilder/genetics , Diffuse Cerebral Sclerosis of Schilder/metabolism , Seizures/genetics , DNA, Mitochondrial/genetics , Epilepsy/metabolism , Glial Fibrillary Acidic Protein/metabolism
10.
Brain Commun ; 5(2): fcad044, 2023.
Article in English | MEDLINE | ID: mdl-36910419

ABSTRACT

Multiple sclerosis is an autoimmune disease of the central nervous system. Yet, the autoimmune targets are still undefined. The extracellular e1 sequence of KCNJ10, the inwardly rectifying potassium channel 4.1, has been subject to fierce debate for its role as a candidate autoantigen in multiple sclerosis. Inwardly rectifying potassium channel 4.1 is expressed in the central nervous system but also in peripheral tissues, raising concerns about the central nervous system-specificity of such autoreactivity. Immunization of C57Bl6/J female mice with the e1 peptide (amino acids 83-120 of Kir4.1) induced anti-e1 immunoglobulin G- and T-cell responses and promoted demyelinating encephalomyelitis with B cell central nervous system enrichment in leptomeninges and T cells/macrophages in central nervous system parenchyma from forebrain to spinal cord, mostly in the white matter. Within our cohort of multiple sclerosis patients (n = 252), 6% exhibited high anti-e1 immunoglobulin G levels in serum as compared to 0.7% in the control cohort (n = 127; P = 0.015). Immunolabelling of inwardly rectifying potassium channel 4.1-expressing white matter glia with the anti-e1 serum from immunized mice increased during murine autoimmune neuroinflammation and in multiple sclerosis white matter as compared with controls. Strikingly, the mouse and human anti-e1 sera labelled astrocytoma cells when N-glycosylation was blocked with tunicamycin. Western blot confirmed that neuroinflammation induces Kir4.1 expression, including its shorter aglycosylated form in murine experimental autoencephalomyelitis and multiple sclerosis. In addition, recognition of inwardly rectifying potassium channel 4.1 using mouse anti-e1 serum in Western blot experiments under unreduced conditions or in cells transfected with the N-glycosylation defective N104Q mutant as compared to the wild type further suggests that autoantibodies target an e1 conformational epitope in its aglycosylated form. These data highlight the e1 sequence of inwardly rectifying potassium channel 4.1 as a valid central nervous system autoantigen with a disease/tissue-specific post-translational antigen modification as potential contributor to autoimmunity in some multiple sclerosis patients.

11.
Biochim Biophys Acta Mol Basis Dis ; 1869(5): 166700, 2023 06.
Article in English | MEDLINE | ID: mdl-36990129

ABSTRACT

Autism spectrum disorder (ASD) is a severe neurodevelopmental disorder. Abnormal pain sensation is a common clinical symptom of ASD that seriously affects the quality of life of patients with ASD and their families. However, the underlying mechanism is unclear. It is believed to be related to the excitability of neurons and the expression of ion channels. Herein, we confirmed that baseline pain and Complete Freund's adjuvant (CFA)-induced chronic inflammatory pain were impaired in the BTBR T+ Itpr3tf/J (BTBR) mouse model of ASD. RNA sequencing (RNA-seq) analyses of the dorsal root ganglia (DRG), which are closely related to pain in ASD model mice, revealed that high expression of KCNJ10 (encoding Kir4.1) might be an important factor in ASD pain sensation abnormalities. The levels of Kir4.1 were further verified by western blotting, RT-qPCR, and immunofluorescence. By inhibiting Kir4.1, the pain insensitivity of BTBR mice improved, confirming that a high expression level of Kir4.1 was highly correlated with decreased pain sensitivity in ASD. Meanwhile, we found that the anxiety behaviours and the social novelty recognition were changed after CFA induced inflammatory pain. And after inhibiting Kir4.1, the stereotyped behaviours and social novelty recognition of BTBR mice were also improved. Further, we found that the expression levels of glutamate transporters, excitatory amino acid transporter 1 (EAAT1), and excitatory amino acid transporter 2 (EAAT2) were increased in the DRG of BTBR mice but decreased after inhibiting Kir4.1. This suggests that Kir4.1 may play a key role in the improvement of pain insensitivity in ASD by regulating glutamate transporters. In conclusion, our findings revealed the possible mechanism and role of Kir4.1 in the pain insensitivity in ASD, using bioinformatics analyses and animal experiments, and provided a theoretical basis for clinically targeted intervention in ASD.


Subject(s)
Autism Spectrum Disorder , Mice , Animals , Autism Spectrum Disorder/genetics , Quality of Life , Mice, Inbred Strains , Pain/genetics , Glutamates , Disease Models, Animal
12.
Mol Neurobiol ; 60(7): 3664-3677, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36918517

ABSTRACT

Dystrophin is the causative gene for Duchenne and Becker muscular dystrophy (DMD/BMD), and it produces full-length and short dystrophin, Dp427 and Dp71, respectively, in the brain. The existence of the different dystrophin molecular complexes has been known for a quarter century, so it is necessary to derive precise expression profiles of the molecular complexes in the brain to elucidate the mechanism of cognitive symptoms in DMD/BMD patients. In order to investigate the Dp71 expression profile in cerebellum, we employed Dp71-specific tag-insertion mice, which allowed for the specific detection of endogenous Dp71 in the immunohistochemical analysis and found its expressions in the glial cells, Bergmann glial (BG) cells, and astrocytes, whereas Dp427 was exclusively expressed in the inhibitory postsynapses within cerebellar Purkinje cells (PCs). Interestingly, we found different cell-type dependent dystrophin molecular complexes; i.e., glia-associated Dp71 was co-expressed with dystroglycan (DG) and dystrobrevinα, whereas synapse-associated Dp427 was co-expressed with DG and dystrobrevinß. Furthermore, we investigated the molecular relationship of Dp71 to the AQP4 water channel and the Kir4.1 potassium channel, and found biochemical associations of Dp71 with AQP4 and Kir4.1 in both the cerebellum and cerebrum. Immunohistochemical and cytochemical investigations revealed partial co-localizations of Dp71 with AQP4 and Kir4.1 in the glial cells, indicating Dp71 interactions with the channels in the BG cells and astrocytes. Taken together, different cell-types, glial cells and Purkinje neurons, in the cerebellum express different dystrophin molecular complexes, which may contribute to pathological and physiological processes through the regulation of the water/ion channel and inhibitory postsynapses.


Subject(s)
Aquaporins , Potassium Channels, Inwardly Rectifying , Mice , Animals , Dystrophin/metabolism , Purkinje Cells/metabolism , Synapses/metabolism , Cerebellum/metabolism , Neuroglia/metabolism , Aquaporins/metabolism , Potassium Channels, Inwardly Rectifying/metabolism
13.
Prog Neurobiol ; 224: 102436, 2023 05.
Article in English | MEDLINE | ID: mdl-36931588

ABSTRACT

Astrocyte activation in the spinal dorsal horn may play an important role in the development of chronic neuropathic pain, but the mechanisms involved in astrocyte activation and their modulatory effects remain unknown. The inward rectifying potassium channel protein 4.1 (Kir4.1) is the most important background K+ channel in astrocytes. However, how Kir4.1 is regulated and contributes to behavioral hyperalgesia in chronic pain is unknown. In this study, single-cell RNA sequencing analysis indicated that the expression levels of both Kir4.1 and Methyl-CpG-binding protein 2 (MeCP2) were decreased in spinal astrocytes after chronic constriction injury (CCI) in a mouse model. Conditional knockout of the Kir4.1 channel in spinal astrocytes led to hyperalgesia, and overexpression of the Kir4.1 channel in spinal cord relieved CCI-induced hyperalgesia. Expression of spinal Kir4.1 after CCI was regulated by MeCP2. Electrophysiological recording in spinal slices showed that knockdown of Kir4.1 significantly up-regulated the excitability of astrocytes and then functionally changed the firing patterns of neurons in dorsal spinal cord. Therefore, targeting spinal Kir4.1 may be a therapeutic approach for hyperalgesia in chronic neuropathic pain.


Subject(s)
Astrocytes , Neuralgia , Animals , Mice , Astrocytes/metabolism , Hyperalgesia/metabolism , Methyl-CpG-Binding Protein 2/genetics , Neuralgia/genetics , Spinal Cord/metabolism , Spinal Cord Dorsal Horn
14.
Acta Physiol (Oxf) ; 238(2): e13948, 2023 06.
Article in English | MEDLINE | ID: mdl-36764674

ABSTRACT

AIM: Cyclosporin A (CsA) is a widely used immunosuppressive drug that causes hypertension and hyperkalemia. Moreover, CsA-induced stimulation of the thiazide-sensitive NaCl cotransporter (NCC) in the kidney has been shown to be responsible for the development of hyperkalemic hypertension. In this study, we tested whether CsA induces the activation of NCC by stimulating the basolateral Kir4.1/Kir5.1 channel in the distal convoluted tubule (DCT). METHODS: Electrophysiology, immunoblotting, metabolic cages, and radio-telemetry methods were used to examine the effects of CsA on Kir4.1/Kir5.1 activity in the DCT, NCC function, and blood pressure in wild-type (WT) and kidney-specific Kir4.1 knockout (KS-Kir4.1 KO) mice. RESULTS: The single-channel patch clamp experiment demonstrated that CsA stimulated the basolateral 40 pS K+ channel in the DCT. Whole-cell recording showed that short-term CsA administration (2 h) not only increased DCT K+ currents but also shifted the K+ current (IK ) reversal potential to the negative range (hyperpolarization). Furthermore, CsA administration increased phosphorylated NCC (pNCC) levels and inhibited renal Na+ and K+ excretions in WT mice but not in KS-Kir4.1 KO mice, suggesting that Kir4.1 is required to mediate CsA effects on NCC function. Finally, long-term CsA infusion (14 days) increased blood pressure, plasma K+ concentration, and total NCC or pNCC abundance in WT mice, but these effects were blunted in KS-Kir4.1 KO mice. CONCLUSION: We conclude that CsA stimulates basolateral K+ channel activity in the DCT and that Kir4.1 is essential for CsA-induced NCC activation and hyperkalemic hypertension.


Subject(s)
Hyperkalemia , Hypertension , Animals , Mice , Solute Carrier Family 12, Member 3/metabolism , Hyperkalemia/metabolism , Cyclosporine/pharmacology , Sodium Chloride/metabolism , Sodium Chloride/pharmacology , Mice, Knockout , Kidney Tubules, Distal , Hypertension/chemically induced , Hypertension/metabolism
15.
Glia ; 71(6): 1481-1501, 2023 06.
Article in English | MEDLINE | ID: mdl-36802096

ABSTRACT

NG2 glia represents a distinct type of macroglial cells in the CNS and is unique among glia because they receive synaptic input from neurons. They are abundantly present in white and gray matter. While the majority of white matter NG2 glia differentiates into oligodendrocytes, the physiological impact of gray matter NG2 glia and their synaptic input are still ill defined. Here, we asked whether dysfunctional NG2 glia affect neuronal signaling and behavior. We generated mice with inducible deletion of the K+ channel Kir4.1 in NG2 glia and performed comparative electrophysiological, immunohistochemical, molecular and behavioral analyses. Kir4.1 was deleted at postnatal day 23-26 (recombination efficiency about 75%) and mice were investigated 3-8 weeks later. Notably, these mice with dysfunctional NG2 glia demonstrated improved spatial memory as revealed by testing new object location recognition while working and social memory remained unaffected. Focussing on the hippocampus, we found that loss of Kir4.1 potentiated synaptic depolarizations of NG2 glia and stimulated the expression of myelin basic protein while proliferation and differentiation of hippocampal NG2 glia remained largely unaffected. Mice with targeted deletion of the K+ channel in NG2 glia showed impaired long-term potentiation at CA3-CA1 synapses, which could be fully rescued by extracellular application of a TrkB receptor agonist. Our data demonstrate that proper NG2 glia function is important for normal brain function and behavior.


Subject(s)
Neuroglia , Proteoglycans , Mice , Animals , Proteoglycans/metabolism , Neuroglia/metabolism , Neurons/metabolism , Oligodendroglia/metabolism , Neuronal Plasticity , Antigens/metabolism
16.
Glia ; 71(5): 1259-1277, 2023 05.
Article in English | MEDLINE | ID: mdl-36645018

ABSTRACT

Neuronal rhythmogenesis in the spinal cord is correlated with variations in extracellular K+ levels ([K+ ]e ). Astrocytes play important role in [K+ ]e homeostasis and compute neuronal information. Yet it is unclear how neuronal oscillations are regulated by astrocytic K+ homeostasis. Here we identify the astrocytic inward-rectifying K+ channel Kir4.1 (a.k.a. Kcnj10) as a key molecular player for neuronal rhythmicity in the spinal central pattern generator (CPG). By combining two-photon calcium imaging with electrophysiology, immunohistochemistry and genetic tools, we report that astrocytes display Ca2+ transients before and during oscillations of neighboring neurons. Inhibition of astrocytic Ca2+ transients with BAPTA decreases the barium-sensitive Kir4.1 current responsible of K+ clearance. Finally, we show in mice that Kir4.1 knockdown in astrocytes progressively prevents neuronal oscillations and alters the locomotor pattern resulting in lower motor performances in challenging tasks. These data identify astroglial Kir4.1 channels as key regulators of neuronal rhythmogenesis in the CPG driving locomotion.


Subject(s)
Astrocytes , Neurons , Mice , Animals , Astrocytes/physiology , Spinal Cord , Immunohistochemistry , Periodicity
17.
Glia ; 71(3): 704-719, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36408843

ABSTRACT

Astrocytic morphological plasticity and its modulation of adjacent neuronal activity are largely determined by astrocytic volume regulation, in which glial fibrillary acidic protein (GFAP), aquaporin 4 (AQP4), and potassium channels including inwardly rectifying K+ channel 4.1 (Kir4.1) are essential. However, associations of astrocyte-dominant Kir4.1 with other molecules in astrocytic volume regulation and the subsequent influence on neuronal activity remain unclear. Here, we report our study on these issues using primary cultures of rat pups' hypothalamic astrocytes and male adult rat brain slices. In astrocyte culture, hyposmotic challenge (HOC) significantly decreased GFAP monomer expression and astrocytic volume at 1.5 min and increased Kir4.1 expression and inwardly rectifying currents (IRCs) at 10 min. BaCl2 (100 µmol/l) suppressed the HOC-increased IRCs, which was simulated by VU0134992 (2 µmol/l), a Kir4.1 blocker. Preincubation of the astrocyte culture with TGN-020 (10 µmol/l, a specific AQP4 blocker) made the HOC-increased Kir4.1 currents insignificant. In hypothalamic brain slices, HOC initially decreased and then increased the firing rate of vasopressin (VP) neurons in the supraoptic nucleus. In the presence of BaCl2 or VU0134992, HOC-elicited rebound increase in VP neuronal activity was blocked. GFAP was molecularly associated with Kir4.1, which was increased by HOC at 20 min; this increase was blocked by BaCl2 . These results suggest that HOC-evoked astrocytic retraction or decrease in the volume and length of its processes is associated with increased Kir4.1 activity. Kir4.1 involvement in HOC-elicited astrocytic retraction is associated with AQP4 activity and GFAP plasticity, which together determines the rebound excitation of VP neurons.


Subject(s)
Astrocytes , Neurons , Rats , Animals , Male , Astrocytes/metabolism , Neurons/metabolism , Vasopressins/metabolism , Aquaporin 4/genetics , Aquaporin 4/metabolism
18.
Glia ; 71(4): 926-944, 2023 04.
Article in English | MEDLINE | ID: mdl-36479906

ABSTRACT

Non-myelinating Schwann cells (NMSC) play important roles in peripheral nervous system formation and function. However, the molecular identity of these cells remains poorly defined. We provide evidence that Kir4.1, an inward-rectifying K+ channel encoded by the KCNJ10 gene, is specifically expressed and active in NMSC. Immunostaining revealed that Kir4.1 is present in terminal/perisynaptic SCs (TPSC), synaptic glia at neuromuscular junctions (NMJ), but not in myelinating SCs (MSC) of adult mice. To further examine the expression pattern of Kir4.1, we generated BAC transgenic Kir4.1-CreERT2 mice and crossed them to the tdTomato reporter line. Activation of CreERT2 with tamoxifen after the completion of myelination onset led to robust expression of tdTomato in NMSC, including Remak Schwann cells (RSC) along peripheral nerves and TPSC, but not in MSC. In contrast, activating CreERT2 before and during the onset of myelination led to tdTomato expression in NMSC and MSC. These observations suggest that immature SC express Kir4.1, and its expression is then downregulated selectively in myelin-forming SC. In support, we found that while activating CreERT2 induces tdTomato expression in immature SC, it fails to induce tdTomato in MSC associated with sensory axons in culture. NMSC derived from neonatal sciatic nerve were shown to express Kir4.1 and exhibit barium-sensitive inwardly rectifying macroscopic K+ currents. Thus, this study identified Kir4.1 as a potential modulator of immature SC and NMSC function. Additionally, it established a novel transgenic mouse line to introduce or delete genes in NMSC.


Subject(s)
Myelin Sheath , Schwann Cells , Mice , Animals , Schwann Cells/metabolism , Myelin Sheath/metabolism , Mice, Transgenic , Sciatic Nerve/metabolism , Tamoxifen/pharmacology
19.
EBioMedicine ; 87: 104406, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36527899

ABSTRACT

BACKGROUND: Stroke is one of the most common neurological diseases in the world and is clinically manifested by transient or permanent brain dysfunction. It has a high mortality and disability rate, which severely affects people's health and diminishes the quality of life. However, there is no efficient treatment that can be considered curative and there are other less well-known theories of pathogenesis. Therefore, it is imperative to gain a full understanding of the pathophysiology of ischemia and to seek new therapeutic strategies. METHODS: We first examined Kir4.1 channel and myelin based protein (MBP) expression in brain tissues from acute ischemic patients by Western blotting. We then established a transient ischemic mouse model (tMCAO) to conduct molecular, cell biological, transmission electron microscopy and pharmacokinetic studies, as well as in Kir4.1 cKO mice. Finally, neuroimaging and behavioral analyses were used to examine whether activation of Kir4.1 channel by luteolin could contribute to neuronal functional recovery in ischemic stroke. FINDINGS: In acute ischemic stroke patients, we first demonstrated that Kir4.1 ion channels were greatly impaired and a severe demyelination of axons occurred in ischemic infarction area of cerebral cortex in these patients. Further evidence showed that the deficits of Kir4.1 channels in NG2 glia led to the myelin loss of axons in a transient ischemic mouse model (tMCAO). Treating ischemic mice with a natural botanical extract, luteolin augmented Kir4.1 channel currents in NG2 glia and consequently promoted remyelination of axons, alleviated the infarction area and ultimately improved motor function in a series of behavioral tests. INTERPRETATION: Targeting Kir4.1 ion channels expressed in NG2 glial cells by luteolin treatment highlights an effective therapeutic strategy for a prompt brain functional recovery in ischemic stroke. FUNDING: This work was supported by grants from the Ministry of Science and Technology China Brain Initiative (2022ZD0204702, to X.T.), the National Natural Science Foundation of China (82271466, 82171279, 31970904 and 31571063), the Program for Professor of Special Appointment (Eastern Scholar for Dr. X.T.) at Shanghai Institutions for Higher Learning (1510000084), Shanghai Pujiang Talent Award (15PJ1404600), Shanghai Municipal Science and Technology Major Project (2018SHZDZX05) and Shanghai Science and Technology Project (17411954000).


Subject(s)
Ischemic Stroke , Remyelination , Stroke , Mice , Animals , Ischemic Stroke/drug therapy , Ischemic Stroke/etiology , Ischemic Stroke/metabolism , Luteolin/metabolism , Quality of Life , China , Neuroglia/metabolism , Stroke/etiology , Stroke/genetics , Infarction/metabolism
20.
Life Sci ; 306: 120833, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-35882273

ABSTRACT

Maintaining glutamate homeostasis through astrocyte-enriched glutamate transporter 1 (GLT-1) is critical for neuronal survival, but it is often disrupted after brain injury. Hericium erinaceus (HE), an edible mushroom, was reported to be anti-inflammatory and neuroprotective against brain ischemia, but its effect on glutamate homeostasis was unknown. Here we investigated the neuroprotective effect of erinacine A (EA), an active component of HE, with special focus on the GLT-1 function in the in vitro and in vivo cerebral ischemia mouse models. By using oxygen-glucose deprivation (OGD) to challenge mouse glia-neuron (GN) mixed culture as the in vitro model, we found that EA treatment significantly improved neuronal/astroglial survival and attenuated OGD-induced proinflammatory NFκB and AKT signaling activations. Notably, EA attenuated OGD-induced GLT-1 downregulation, and a selective GLT-1 inhibitor WAY-213613 reversed these EA-mediated neuroprotection. EA also ameliorated glutamate excitotoxicity effectively. In a transient hypoxia-ischemia (tHI) brain injury mouse model, we examined an EA treatment strategy by performing a pre-tHI daily oral gavage of EA (oEA) for 7 days followed by a post-tHI intranasal injection of EA (nEA) for 3 days, and found that this treatment significantly protected sensorimotor cortex and improved the post-tHI forepaw grip strength. Western blotting results further revealed that EA treatment also preserved astrocyte-enriched glutamate and aspartate transporter (GLAST) as well as a GLT-1 function-associated potassium channel Kir4.1 in the cerebral cortex and striatum after tHI. These results suggest that EA is effective for preserving GLT-1 and glutamate clearance machinery to protect against excitotoxicity after ischemic brain injury.


Subject(s)
Brain Injuries , Brain Ischemia , Animals , Astrocytes/metabolism , Brain Ischemia/drug therapy , Diterpenes , Down-Regulation , Excitatory Amino Acid Transporter 2/metabolism , Glucose/pharmacology , Glutamic Acid/metabolism , Mice
SELECTION OF CITATIONS
SEARCH DETAIL