ABSTRACT
The aim of this study was to determine if quadriceps morphology [muscle volume (MV); cross-sectional area (CSA)], vastus lateralis (VL) muscle architecture, and muscle quality [echo intensity (ECHO)] can explain differences in knee extensor maximal voluntary isometric contraction (MVIC), crank torque (CT) and time-to-exhaustion (TTE) in trained cyclists. Twenty male competitive cyclists performed a maximal incremental ramp to determine their maximal power output (POMAX). Muscle morphology (MV; CSA), muscle architecture of VL and muscle quality (ECHO) of both quadriceps muscles were assessed. Subsequently, cyclists performed three MVICs of both knee extensor muscles and finally performed a TTE test at POMAX with CT measurement during TTE. Stepwise multiple regression results revealed right quadriceps MV determined right MVIC (31%) and CT (33%). Left MV determined CT (24%); and left VL fascicle length (VL-FL) determined MVIC (64%). However, quadriceps morphological variables do not explain differences in TTE. No significant differences were observed between left and right quadriceps muscle morphology (p > 0.05). The findings emphasize that quadriceps MV is an important determinant of knee extensor MVIC and CT but does not explain differences in TTE at POMAX. Furthermore, quadriceps morphological variables were similar between the left and right quadriceps in competitive cyclists.
ABSTRACT
Skeletal muscle force production following repetitive contractions is preferentially reduced when muscle is evaluated with low-frequency stimulation. This selective impairment in force generation is called low-frequency fatigue (LFF) and could be dependent on the contraction type. The purpose of this study was to compare LFF after concentric and eccentric maximal and submaximal contractions of knee extensor muscles. Ten healthy male subjects (age: 23.6 ± 4.2 years; weight: 73.8 ± 7.7 kg; height: 1.79 ± 0.05 m) executed maximal voluntary contractions that were measured before a fatigue test (pre-exercise), immediately after (after-exercise) and after 1 h of recovery (after-recovery). The fatigue test consisted of 60 maximal (100 percent) or submaximal (40 percent) dynamic concentric or eccentric knee extensions at an angular velocity of 60°/s. The isometric torque produced by low- (20 Hz) and high- (100 Hz) frequency stimulation was also measured at these times and the 20:100 Hz ratio was calculated to assess LFF. One-way ANOVA for repeated measures followed by the Newman-Keuls post hoc test was used to determine significant (P < 0.05) differences. LFF was evident after-recovery in all trials except following submaximal eccentric contractions. LFF was not evident after-exercise, regardless of exercise intensity or contraction type. Our results suggest that low-frequency fatigue was evident after submaximal concentric but not submaximal eccentric contractions and was more pronounced after 1-h of recovery.