Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 591
Filter
1.
Eur J Pharmacol ; : 176967, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39222740

ABSTRACT

Depression is a complex neurological disease that holds many theories on its aetiology and pathophysiology. The monoamine strategy of treating depression with medications to increase levels of monoamines in the (extra)synapse, primarily through the inhibition of monoamine transporters, does not always work, as seen in patients that lack a response to multiple anti-depressant exposures, as well as a lack of depressive symptoms in healthy volunteers exposed to monoamine reduction. Depression is increasingly being understood not as a single condition, but as a complex interplay of adaptations in various systems, including inflammatory responses and neurotransmission pathways in the brain. This understanding has led to the development of the neurodegenerative hypothesis of depression. This hypothesis, which is gaining widespread acceptance posits that both oxidative stress and inflammation play significant roles in the pathophysiology of depression. This article is a review of the literature focused on neuroinflammation in depression, as well as summarised studies of anti-inflammatory and antioxidant effects of antidepressants.

2.
Cells ; 13(15)2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39120289

ABSTRACT

This review discusses the potential of targeting the kynurenine pathway (KP) in the treatment of inflammatory diseases. The KP, responsible for the catabolism of the amino acid tryptophan (TRP), produces metabolites that regulate various physiological processes, including inflammation, cell cycle, and neurotransmission. These metabolites, although necessary to maintain immune balance, may accumulate excessively during inflammation, leading to systemic disorders. Key KP enzymes such as indoleamine 2,3-dioxygenase 1 (IDO1), indoleamine 2,3-dioxygenase 2 (IDO2), tryptophan 2,3-dioxygenase (TDO), and kynurenine 3-monooxygenase (KMO) have been considered promising therapeutic targets. It was highlighted that both inhibition and activation of these enzymes may be beneficial, depending on the specific inflammatory disorder. Several inflammatory conditions, including autoimmune diseases, for which modulation of KP activity holds therapeutic promise, have been described in detail. Preclinical studies suggest that this modulation may be an effective treatment strategy for diseases for which treatment options are currently limited. Taken together, this review highlights the importance of further research on the clinical application of KP enzyme modulation in the development of new therapeutic strategies for inflammatory diseases.


Subject(s)
Inflammation , Kynurenine , Humans , Kynurenine/metabolism , Inflammation/drug therapy , Animals , Molecular Targeted Therapy , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors
3.
Mol Pain ; 20: 17448069241275097, 2024.
Article in English | MEDLINE | ID: mdl-39093627

ABSTRACT

Chronic pain is a debilitating symptom with a significant negative impact on the quality of life and socioeconomic status, particularly among adults and the elderly. Major Depressive Disorder (MDD) stands out as one of the most important comorbid disorders accompanying chronic pain. The kynurenine pathway serves as the primary route for tryptophan degradation and holds critical significance in various biological processes, including the regulation of neurotransmitters, immune responses, cancer development, metabolism, and inflammation. This review encompasses key research studies related to the kynurenine pathway in the context of headache, neuropathic pain, gastrointestinal disorders, fibromyalgia, chronic fatigue syndrome, and MDD. Various metabolites produced in the kynurenine pathway, such as kynurenic acid and quinolinic acid, exhibit neuroprotective and neurotoxic effects, respectively. Recent studies have highlighted the significant involvement of kynurenine and its metabolites in the pathophysiology of pain. Moreover, pharmacological interventions targeting the regulation of the kynurenine pathway have shown therapeutic promise in pain management. Understanding the underlying mechanisms of this pathway presents an opportunity for developing personalized, innovative, and non-opioid approaches to pain treatment. Therefore, this narrative review explores the role of the kynurenine pathway in various chronic pain disorders and its association with depression and chronic pain.


Subject(s)
Chronic Pain , Kynurenine , Kynurenine/metabolism , Humans , Chronic Pain/metabolism , Animals , Signal Transduction
4.
Drug Dev Res ; 85(5): e22243, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39129450

ABSTRACT

The Kynurenine pathway (KP) which is involved in the synthesis of nicotinamide adenine dinucleotide (NAD) from tryptophan (Trp) is intricate in the development of insulin resistance (IR) and type 2 diabetes (T2D). Inflammatory reactions in response to cardiometabolic disorders can induce the development of IR through the augmentation of KP. However, kynurenine (KYN), a precursor of kynurenic acid (KA) is increased following physical exercise and involved in the reduction of IR. Consequently, KP metabolites KA and KYN have anti-diabetogenic effects while other metabolites have diabetogenic effects. KP modulators, either inhibitors or activators, affect glucose homeostasis and insulin sensitivity in T2D in a bidirectional way, either protective or detrimental, that is not related to the KP effect. However, metformin through inhibition of inflammatory signaling pathways can reduce the activation of KP in T2D. These findings indicated a strong controversy regarding the role of KP in T2D. Therefore, the objectives of this mini review were to clarify how KP induces the development of IR and T2D. In addition, this review aimed to find the mechanistic role of antidiabetic drug metformin on the KP, and how KP modulators affect the pathogenesis of T2D.


Subject(s)
Diabetes Mellitus, Type 2 , Hypoglycemic Agents , Insulin Resistance , Kynurenine , Metformin , Metformin/pharmacology , Metformin/therapeutic use , Humans , Kynurenine/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Animals , Signal Transduction/drug effects
5.
Biomolecules ; 14(8)2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39199306

ABSTRACT

Alzheimer disease, the leading cause of dementia, and polycystic ovary syndrome, one of the most prevalent female endocrine disorders, appear to be unrelated conditions. However, studies show that both disease entities have common risk factors, and the amount of certain protein marker of neurodegeneration is increased in PCOS. Reports on the pathomechanism of both diseases point to the possibility of common denominators linking them. Dysregulation of the kynurenine pathway, insulin resistance, and impairment of the hypothalamic-pituitary-gonadal axis, which are correlated with amyloid-beta aggregation are these common areas. This article discusses the relationship between Alzheimer disease and polycystic ovary syndrome, with a particular focus on the role of disorders of tryptophan metabolism in both conditions. Based on a review of the available literature, we concluded that systemic changes occurring in PCOS influence the increased risk of neurodegeneration.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Insulin Resistance , Polycystic Ovary Syndrome , Tryptophan , Humans , Polycystic Ovary Syndrome/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/etiology , Female , Amyloid beta-Peptides/metabolism , Tryptophan/metabolism , Gonadotropins/metabolism , Risk Factors
6.
Front Psychiatry ; 15: 1380620, 2024.
Article in English | MEDLINE | ID: mdl-38974918

ABSTRACT

Background: Research on depression showed that dysregulations in tryptophan (TRP), kynurenine (KYN), and its KYN pathway metabolites are key aspects in the development and maintenance of depressive symptoms. In our previous reports, we described sex-specific changes in TRP breakdown as well as changes in KYN and KYN/TRP in association with treatment response and inflammatory and metabolic parameters. However, results of treatment effects on KYN pathway metabolites as well as how pathway changes are related to treatment response remain sparse. Objective: We investigated potential changes of KYN and KYN pathway metabolites in association with therapeutic response of individuals with depression during a six-week multimodal psychiatric rehabilitation program. Methods: 87 participants were divided into treatment responders and non-responders (48 responders, 39 non-responders; 38 male, 49 female; M age = 51.09; SD age = 7.70) using scores of psychological questionnaires. KYN pathway metabolites serum concentrations as well as their ratios were collected using high performance liquid chromatography. Changes over time (time of admission (t1) vs. time of discharge (t2)) were calculated using repeated measure analyses of (co)variance. Results: Non-responders exhibited higher levels of 3-Hydroxyanthralinic acid (3-HAA), nicotinic acid (NA), and 3-HAA/KYN, independently of measurement time. NA levels decreased, while 3-HAA levels increased over time in both groups, independently of treatment response. 3-HK/KYN levels decreased, while KYN levels increased in non-responders, but not in responders over time. Discussion: The results indicate that some compounds of the KYN pathway metabolites can be altered through multimodal long-term interventions in association with treatment response. Especially the pathway degrading KYN further down to 3-HAA and 3-HK/KYN might be decisive for treatment response in depression.

7.
Int J Mol Sci ; 25(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-39000249

ABSTRACT

In recent years, there has been a growing realization of intricate interactions between the nervous and immune systems, characterized by shared humoral factors and receptors. This interplay forms the basis of the neuroimmune system, the understanding of which will provide insights into the pathogenesis of neurological diseases, in which the involvement of the immune system has been overlooked. Kynurenine and its derivatives derived from tryptophan have long been implicated in the pathogenesis of various neurological diseases. Recent studies have revealed their close association not only with neurological disorders but also with sepsis-related deaths. This review provides an overview of the biochemistry of kynurenine and its derivatives, followed by a discussion of their role via the modulation of the neuroimmune system in various diseases.


Subject(s)
Kynurenine , Neuroimmunomodulation , Humans , Kynurenine/metabolism , Animals , Nervous System Diseases/metabolism , Nervous System Diseases/immunology , Tryptophan/metabolism , Tryptophan/chemistry , Immune System/metabolism , Immune System/immunology , Sepsis/immunology , Sepsis/metabolism
8.
J Inflamm Res ; 17: 4669-4681, 2024.
Article in English | MEDLINE | ID: mdl-39051048

ABSTRACT

Purpose: Changes in inflammation, immunity, and nutritional status can promote the development of chronic kidney disease (CKD), and the Naples prognostic score (NPS) reflects changes in these three general clinical parameters. Indoleamine 2.3-dioxygenase (IDO) can block the function of inflammatory cells and inhibit the production of inflammatory cytokines. We examined use of the NPS and IDO activity to predict early-stage CKD. Patients and Methods: Clinical and demographic parameters and the NPS were recorded for 47 CKD patients and 30 healthy controls. A one-way ANOVA or the rank sum test was used to compare variables in the different groups. Spearman or Pearson correlation coefficients were calculated, and logistic regression was used to identify significant factors. Receiver operating characteristic (ROC) analysis was also performed. Results: The NPS had a positive correlation with plasma IDO activity and IDO activity was lowest in controls, and increased with CKD stage. ROC analysis indicated that NPS had an area under the curve (AUC) of 0.779 when comparing controls with all CKD patients. A prediction model for CKD (-4.847 + [1.234 × NPS] + [6.160 × plasma IDO activity]) demonstrated significant differences between controls and patients with early-stage CKD, and for patients with different stages of CKD. This model had AUC values of 0.885 (control vs CKD1-4), 0.876 (control vs CKD2), 0.818 (CKD2 vs CKD3), and 0.758 (CKD3 vs CKD4). Conclusion: A prediction model based on the NPS and IDO provided good to excellent predictions of early-stage CKD.

9.
Alzheimers Res Ther ; 16(1): 167, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39068471

ABSTRACT

BACKGROUND: Sex differences in neuroinflammation could contribute to women's increased risk of Alzheimer's disease (AD), providing rationale for exploring sex-specific AD biomarkers. In AD, dysregulation of the kynurenine pathway (KP) contributes to neuroinflammation and there is some evidence of sex differences in KP metabolism. However, the sex-specific associations between KP metabolism and biomarkers of AD and neuroinflammation need to be explored further. METHODS: Here we investigate sex differences in cerebrospinal fluid concentrations of seven KP metabolites and sex-specific associations with established AD biomarkers and neopterin, an indicator of neuroinflammation. This study included 311 patients with symptomatic AD and 105 age-matched cognitively unimpaired (CU) controls, followed for up to 5 years. RESULTS: We found sex differences in KP metabolites in the AD group, with higher levels of most metabolites in men, while there were no sex differences in the CU group. In line with this, more KP metabolites were significantly altered in AD men compared to CU men, and there was a trend in the same direction in AD women. Furthermore, we found sex-specific associations between kynurenic acid and the kynurenic acid/quinolinic acid ratio with neopterin, but no sex differences in the associations between KP metabolites and clinical progression. DISCUSSION: In our cohort, sex differences in KP metabolites were restricted to AD patients. Our results suggest that dysregulation of the KP due to increased inflammation could contribute to higher AD risk in women.


Subject(s)
Alzheimer Disease , Biomarkers , Kynurenic Acid , Neopterin , Sex Characteristics , Humans , Neopterin/cerebrospinal fluid , Female , Male , Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/metabolism , Kynurenic Acid/cerebrospinal fluid , Kynurenic Acid/metabolism , Aged , Biomarkers/cerebrospinal fluid , Middle Aged , Kynurenine/metabolism , Kynurenine/cerebrospinal fluid , Aged, 80 and over , Sex Factors
10.
Int J Mol Sci ; 25(13)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-39000041

ABSTRACT

Persistent systemic chronic inflammatory conditions are linked with many pathologies, including cardiovascular diseases (CVDs), a leading cause of death across the globe. Among various risk factors, one of the new possible contributors to CVDs is the metabolism of essential amino acid tryptophan. Proinflammatory signals promote tryptophan metabolism via the kynurenine (KYN) pathway (KP), thereby resulting in the biosynthesis of several immunomodulatory metabolites whose biological effects are associated with the development of symptoms and progression of various inflammatory diseases. Some participants in the KP are agonists of aryl hydrocarbon receptor (AhR), a central player in a signaling pathway that, along with a regulatory influence on the metabolism of environmental xenobiotics, performs a key immunomodulatory function by triggering various cellular mechanisms with the participation of endogenous ligands to alleviate inflammation. An AhR ligand with moderate affinity is the central metabolite of the KP: KYN; one of the subsequent metabolites of KYN-kynurenic acid (KYNA)-is a more potent ligand of AhR. Understanding the role of AhR pathway-related metabolites of the KP that regulate inflammatory factors in cells of the cardiovascular system is interesting and important for achieving effective treatment of CVDs. The purpose of this review was to summarize the results of studies about the participation of the KP metabolite-KYNA-and of the AhR signaling pathway in the regulation of inflammation in pathological conditions of the heart and blood vessels and about the possible interaction of KYNA with AhR signaling in some CVDs.


Subject(s)
Cardiovascular Diseases , Inflammation , Kynurenic Acid , Receptors, Aryl Hydrocarbon , Signal Transduction , Humans , Receptors, Aryl Hydrocarbon/metabolism , Cardiovascular Diseases/metabolism , Kynurenic Acid/metabolism , Inflammation/metabolism , Animals , Kynurenine/metabolism , Tryptophan/metabolism , Basic Helix-Loop-Helix Transcription Factors
11.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(7): 159531, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38986804

ABSTRACT

Plasma nonesterified fatty acids (NEFA) are elevated in cancer, because of decreased albumin levels and of fatty acid oxidation, and increased fatty acid synthesis and lipolysis. Albumin depletion and NEFA elevation maximally release albumin-bound tryptophan (Trp) and increase its flux down the kynurenine pathway, leading to increased production of proinflammatory kynurenine metabolites, which tumors use to undermine T-cell function and achieve immune escape. Activation of the aryl hydrocarbon receptor by kynurenic acid promotes extrahepatic Trp degradation by indoleamine 2,3-dioxygenase and leads to upregulation of poly (ADP-ribose) polymerase, activation of which and also of SIRT1 (silent mating type information regulation 2 homolog 1) could lead to depletion of NAD+ and ATP, resulting in cell death. NEFA also modulate heme synthesis and degradation, changes in which impact homocysteine metabolism and production of reduced glutathione and hydrogen sulphide. The significance of the interactions between heme and homocysteine metabolism in cancer biology has received little attention. Targeting Trp disposition in cancer to prevent the NEFA effects is suggested.


Subject(s)
Fatty Acids, Nonesterified , Neoplasms , Tryptophan , Humans , Neoplasms/metabolism , Tryptophan/metabolism , Fatty Acids, Nonesterified/metabolism , Animals , Receptors, Aryl Hydrocarbon/metabolism , Kynurenine/metabolism , Heme/metabolism , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Homocysteine/metabolism
12.
Neurosci Lett ; 837: 137902, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39029612

ABSTRACT

AIM: Tryptophan (TRP), an essential amino acid, undergoes catabolism through various pathways. Notably, the kynurenine pathway (KP), constituting one of these pathways, exhibits a unidirectional impact on immune response and energy metabolism. Nonetheless, its influence on pain sensation is characterized by biphasic dynamics. This study aims to scrutinize the influence of the KP pathway on pain sensation, particularly within the context of pancreatic inflammation. METHODS: Our prospective case-control study involved individuals diagnosed with acute pancreatitis and a control group matched for gender and age. The patient cohort was subsequently subdivided into severe and non-severe subgroups. To assess metabolites within KP, two blood samples were collected from the patient cohort, one at the time of diagnosis and another during the recovery phase. Furthermore, for pain quantification, daily pain scores utilizing the Visual Analog Scale (VAS) were extracted from the patients' medical records. RESULTS: The study incorporated 30 patients along with an equivalent number of controls. A noticeable distinction was evident between the patient and control groups, characterized by an increase in kynurenine levels and a decrease in the tryptophan/kynurenine ratio. Throughout the process of disease recovery, a uniform decrease was observed in all KP metabolites, excluding 3-Hydroxykynurenine. Elevated levels of Kynurenic acid (KYNA) were correlated with increased pain scores. Critically, no apparent distinctions in KP metabolites were discerned concerning pain severity in patients with comorbidities characterized by neural involvement. CONCLUSION: Based on our results, the kynurenine pathway (KP) is activated in instances of acute pancreatitis. Elevated levels of KYNA were found to be associated with heightened pain scores. The operative stages within the KP responsible for pain modulation are impaired in cases characterized by neuropathy-induced pain sensation.


Subject(s)
Kynurenine , Pain Perception , Pancreatitis , Tryptophan , Humans , Kynurenine/blood , Kynurenine/metabolism , Pancreatitis/blood , Pancreatitis/metabolism , Pancreatitis/complications , Pancreatitis/physiopathology , Male , Female , Middle Aged , Case-Control Studies , Tryptophan/blood , Tryptophan/metabolism , Pain Perception/physiology , Adult , Prospective Studies , Aged , Acute Disease
13.
Behav Brain Res ; 472: 115155, 2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39032869

ABSTRACT

Several studies have reported side effects of finasteride (FIN), such as anxiety/depression in young men. Obesity is also positively associated with anxiety/depression symptoms; however, the impacts of long-term FIN treatment and FIN withdrawal in young obese individuals are still elusive. The present study aimed to investigate the effect of long-term treatment and its withdrawal on anxiety/depression and brain pathologies in lean and obese adult male rats. Forty-eight male Wistar rats were equally divided into two groups and fed either a normal or high-fat diet. At age 13 weeks, rats in each dietary group were divided into three subgroups: 1) the control group receiving drinking water, 2) the long-term treatment group receiving FIN orally at 5 mg/kg/day for 6 weeks, and 3) the withdrawal group receiving FIN orally at 5 mg/kg/day for 2 weeks followed by a 4-week withdrawal period. Anxiety/depression-like behaviors, biochemical analysis, brain inflammation, oxidative stress, neuroactive steroids, brain metabolites, and microglial complexity were tested. The result showed that lean rats treated with long-term FIN and its withdrawal exhibited metabolic disturbances, depressive-like behavior, and both groups showed increased neurotoxic metabolites and reduced microglial complexity. Obesity itself led to metabolic disturbances and brain pathologies, including increased inflammation, oxidative stress, and quinolinic acid, as well as reduced microglial complexity, resulting in increased anxiety- and depression-like behaviors. Interestingly, the long-term FIN treatment group in obese rats showed attenuation of depressive-like behaviors, brain inflammation, and oxidative stress, along with increased brain antioxidants, suggesting the possible benefits of FIN in obese conditions.


Subject(s)
5-alpha Reductase Inhibitors , Anxiety , Depression , Diet, High-Fat , Finasteride , Obesity , Rats, Wistar , Animals , Male , Obesity/drug therapy , Depression/drug therapy , Depression/etiology , 5-alpha Reductase Inhibitors/pharmacology , Rats , Finasteride/pharmacology , Diet, High-Fat/adverse effects , Anxiety/drug therapy , Oxidative Stress/drug effects , Behavior, Animal/drug effects , Brain/drug effects , Brain/metabolism , Disease Models, Animal
14.
J Affect Disord ; 361: 693-701, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38936704

ABSTRACT

BACKGROUND: While theta burst stimulation (TBS) shows promise in Major Depressive Disorder (MDD), its effectiveness in bipolar depression (BD-D) remains uncertain. Optimizing treatment parameters is crucial in the pursuit of rapid symptom relief. Moreover, aligning with personalized treatment strategies and increased interest in immunopsychiatry, biomarker-based stratification of patients most likely to benefit from TBS might improve remission rates. We investigated treatment effectiveness of continuous TBS (cTBS) compared to sham in BD-D, and assessed the capacity of plasma kynurenine pathway metabolites to predict treatment outcome. METHODS: Thirty-seven patients with BD-D underwent accelerated active or sham cTBS treatment in a multicenter, double-blind, randomized controlled trial. Depressive symptoms were measured with the 17-item Hamilton Depression Rating Scale (HDRS-17) before treatment (T0), 3-4 days posttreatment (T1) and 10-11 days posttreatment (T2). Plasma tryptophan, kynurenine, kynurenic acid and quinolinic acid concentrations were quantified with ELISA. Linear mixed models were used for statistical analyses. RESULTS: Although the total sample showed depressive symptom improvement, active cTBS did not demonstrate greater symptom alleviation compared to sham. However, higher baseline quinolinic acid significantly predicted symptom improvement in the active treatment group, not in sham-stimulated patients. LIMITATIONS: The modest sample size limited the power to detect significant differences with regard to treatment effect. Also, the follow-up period was 10-11 days, whereas similar studies usually follow up for at least one month. CONCLUSION: More research is required to optimize cTBS for BD-D and explore the involvement of quinolinic acid in treatment outcome.


Subject(s)
Bipolar Disorder , Kynurenic Acid , Kynurenine , Quinolinic Acid , Transcranial Magnetic Stimulation , Tryptophan , Humans , Bipolar Disorder/therapy , Bipolar Disorder/blood , Double-Blind Method , Kynurenine/blood , Female , Male , Adult , Transcranial Magnetic Stimulation/methods , Middle Aged , Quinolinic Acid/blood , Treatment Outcome , Kynurenic Acid/blood , Tryptophan/blood , Psychiatric Status Rating Scales , Biomarkers/blood
15.
Article in English | MEDLINE | ID: mdl-38885875

ABSTRACT

Mounting evidence points towards a crucial role of the kynurenine pathway (KP) in the altered gut-brain axis (GBA) balance in severe mental illness (SMI, namely depression, bipolar disorder, and schizophrenia) and cardiometabolic comorbidities. Preliminary evidence shows that serotonergic psychedelics and their analogues may hold therapeutic potential in addressing the altered KP in the dysregulated GBA in SMI and comorbidities. In fact, aside from their effects on mood, psychedelics elicit therapeutic improvement in preclinical models of obesity, metabolic syndrome, and vascular inflammation, which are highly comorbid with SMI. Here, we review the literature on the therapeutic modulation of the KP in the dysregulated GBA in SMI and comorbidities, and the potential application of psychedelics to address the altered KP in the brain and systemic dysfunction underlying SMI and comorbidities. Psychedelics might therapeutically modulate the KP in the altered GBA in SMI and comorbidities either directly, via altering the metabolic pathway by influencing the rate-limiting enzymes of the KP and affecting the levels of available tryptophan, or indirectly, by affecting the gut microbiome, gut metabolome, metabolism, and the immune system. Despite promising preliminary evidence, the mechanisms and outcomes of the KP modulation with psychedelics in SMI and systemic comorbidities remain largely unknown and require further investigation. Several concerns are discussed surrounding the potential side effects of this approach in specific cohorts of individuals with SMI and systemic comorbidities.


Subject(s)
Hallucinogens , Kynurenine , Humans , Kynurenine/metabolism , Hallucinogens/therapeutic use , Hallucinogens/pharmacology , Animals , Brain-Gut Axis/drug effects , Brain-Gut Axis/physiology , Mental Disorders/drug therapy , Mental Disorders/metabolism , Comorbidity , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/physiology
16.
Front Cardiovasc Med ; 11: 1406856, 2024.
Article in English | MEDLINE | ID: mdl-38883986

ABSTRACT

The kynurenine pathway (KP) serves as the primary route for tryptophan metabolism in most mammalian organisms, with its downstream metabolites actively involved in various physiological and pathological processes. Indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO) serve as the initial and pivotal enzymes of the KP, with IDO playing important and intricate roles in cardiovascular diseases. Multiple metabolites of KP have been observed to exhibit elevated concentrations in plasma across various cardiovascular diseases, such as atherosclerosis, hypertension, and acute myocardial infarction. Multiple studies have indicated that kynurenine (KYN) may serve as a potential biomarker for several adverse cardiovascular events. Furthermore, Kynurenine and its downstream metabolites have complex roles in inflammation, exhibiting both inhibitory and stimulatory effects on inflammatory responses under different conditions. In atherosclerosis, upregulation of IDO stimulates KYN production, mediating aromatic hydrocarbon receptor (AhR)-induced exacerbation of vascular inflammation and promotion of foam cell formation. Conversely, in arterial calcification, this mediation alleviates osteogenic differentiation of vascular smooth muscle cells. Additionally, in cardiac remodeling, KYN-mediated AhR activation exacerbates pathological left ventricular hypertrophy and fibrosis. Interventions targeting components of the KP, such as IDO inhibitors, 3-hydroxyanthranilic acid, and anthranilic acid, demonstrate cardiovascular protective effects. This review outlines the mechanistic roles of KP in coronary atherosclerosis, arterial calcification, and myocardial diseases, highlighting the potential diagnostic, prognostic, and therapeutic value of KP in cardiovascular diseases, thus providing novel insights for the development and application of related drugs in future research.

17.
Mol Neurobiol ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829509

ABSTRACT

Demyelinating diseases including multiple sclerosis (MS) are chronic inflammatory diseases of the central nervous system. Indoleamine 2,3-dioxygenase 2 (Ido2) is a recently identified as catalytic enzyme involved in the rate-limiting step of the tryptophan-kynurenine pathway that influences susceptibility to inflammatory diseases. However, the pathological role of Ido2 in demyelination remains unclear. In this study, we investigated whether Ido2 deficiency influences the pathogenesis of proteolipid protein transgenic (Plp tg) mice, an animal model of chronic demyelination. Ido2 deficiency exacerbates impairments of motor function in the locomotor activity test, wire hanging test, and rotarod test. Ido2 deficiency caused severe demyelination associated with CD68-positive microglial activation in Plp tg mice. In the cerebellum of Plp tg mice, Ido2 deficiency significantly increased the expression of Tnfα. Ido2 deficiency reduced tryptophan metabolite kynurenine (KYN) levels and subsequent aryl hydrocarbon receptor (AhR) activity, which play an important role in anti-inflammatory response. These results suggest that Ido2 has an important role in preventing demyelination through AhR. Taken together, Ido2 could be a potential therapeutic target for demyelinating diseases.

18.
Int J Tryptophan Res ; 17: 11786469241248287, 2024.
Article in English | MEDLINE | ID: mdl-38757094

ABSTRACT

Stem cells are ubiquitously found in various tissues and organs in the body, and underpin the body's ability to repair itself following injury or disease initiation, though repair can sometimes be compromised. Understanding how stem cells are produced, and functional signaling systems between different niches is critical to understanding the potential use of stem cells in regenerative medicine. In this context, this review considers kynurenine pathway (KP) metabolism in multipotent adult progenitor cells, embryonic, haematopoietic, neural, cancer, cardiac and induced pluripotent stem cells, endothelial progenitor cells, and mesenchymal stromal cells. The KP is the major enzymatic pathway for sequentially catabolising the essential amino acid tryptophan (TRP), resulting in key metabolites including kynurenine, kynurenic acid, and quinolinic acid (QUIN). QUIN metabolism transitions into the adjoining de novo pathway for nicotinamide adenine dinucleotide (NAD) production, a critical cofactor in many fundamental cellular biochemical pathways. How stem cells uptake and utilise TRP varies between different species and stem cell types, because of their expression of transporters and responses to inflammatory cytokines. Several KP metabolites are physiologically active, with either beneficial or detrimental outcomes, and evidence of this is presented relating to several stem cell types, which is important as they may exert a significant impact on surrounding differentiated cells, particularly if they metabolise or secrete metabolites differently. Interferon-gamma (IFN-γ) in mesenchymal stromal cells, for instance, highly upregulates rate-limiting enzyme indoleamine-2,3-dioxygenase (IDO-1), initiating TRP depletion and production of metabolites including kynurenine/kynurenic acid, known agonists of the Aryl hydrocarbon receptor (AhR) transcription factor. AhR transcriptionally regulates an immunosuppressive phenotype, making them attractive for regenerative therapy. We also draw attention to important gaps in knowledge for future studies, which will underpin future application for stem cell-based cellular therapies or optimising drugs which can modulate the KP in innate stem cell populations, for disease treatment.

19.
Front Immunol ; 15: 1378040, 2024.
Article in English | MEDLINE | ID: mdl-38698866

ABSTRACT

Background: Interleukin-17-producing CD4 T cells contribute to the control of Mycobacterium tuberculosis (Mtb) infection in humans; whether infection with human immunodeficiency virus (HIV) disproportionately affects distinct Th17-cell subsets that respond to Mtb is incompletely defined. Methods: We performed high-definition characterization of circulating Mtb-specific Th17 cells by spectral flow cytometry in people with latent TB and treated HIV (HIV-ART). We also measured kynurenine pathway activity by liquid chromatography-mass spectrometry (LC/MS) on plasma and tested the hypothesis that tryptophan catabolism influences Th17-cell frequencies in this context. Results: We identified two subsets of Th17 cells: subset 1 defined as CD4+Vα7.2-CD161+CD26+and subset 2 defined as CD4+Vα7.2-CCR6+CXCR3-cells of which subset 1 was significantly reduced in latent tuberculosis infection (LTBI) with HIV-ART, yet Mtb-responsive IL-17-producing CD4 T cells were preserved; we found that IL-17-producing CD4 T cells dominate the response to Mtb antigen but not cytomegalovirus (CMV) antigen or staphylococcal enterotoxin B (SEB), and tryptophan catabolism negatively correlates with both subset 1 and subset 2 Th17-cell frequencies. Conclusions: We found differential effects of ART-suppressed HIV on distinct subsets of Th17 cells, that IL-17-producing CD4 T cells dominate responses to Mtb but not CMV antigen or SEB, and that kynurenine pathway activity is associated with decreases of circulating Th17 cells that may contribute to tuberculosis immunity.


Subject(s)
Antigens, Bacterial , HIV Infections , Interleukin-17 , Latent Tuberculosis , Mycobacterium tuberculosis , Th17 Cells , Adult , Female , Humans , Male , Middle Aged , Antigens, Bacterial/immunology , HIV Infections/immunology , HIV Infections/virology , Immunophenotyping , Interleukin-17/metabolism , Interleukin-17/immunology , Kynurenine/metabolism , Latent Tuberculosis/immunology , Latent Tuberculosis/microbiology , Mycobacterium tuberculosis/immunology , Phenotype , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Th17 Cells/immunology , Th17 Cells/metabolism , Tryptophan/metabolism
20.
Int J Mol Sci ; 25(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38732064

ABSTRACT

In recent years, there has been a marked increase in interest in the role of the kynurenine pathway (KP) in mechanisms associated with addictive behavior. Numerous reports implicate KP metabolism in influencing the immune system, hypothalamic-pituitary-adrenal (HPA) axis, and neurotransmission, which underlie the behavioral patterns characteristic of addiction. An in-depth analysis of the results of these new studies highlights interesting patterns of relationships, and approaching alcohol use disorder (AUD) from a broader neuroendocrine-immune system perspective may be crucial to better understanding this complex phenomenon. In this review, we provide an up-to-date summary of information indicating the relationship between AUD and the KP, both in terms of changes in the activity of this pathway and modulation of this pathway as a possible pharmacological approach for the treatment of AUD.


Subject(s)
Alcoholism , Hypothalamo-Hypophyseal System , Immune System , Kynurenine , Pituitary-Adrenal System , Synaptic Transmission , Humans , Kynurenine/metabolism , Hypothalamo-Hypophyseal System/metabolism , Pituitary-Adrenal System/metabolism , Alcoholism/metabolism , Alcoholism/immunology , Animals , Immune System/metabolism , Immune System/immunology , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL