Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 14.595
Filter
1.
Food Chem ; 462: 140971, 2025 Jan 01.
Article in English | MEDLINE | ID: mdl-39208734

ABSTRACT

This study presents the contents of α-methylenecyclopropylglycine, a potentially toxic amino acid, in the peel, pulp and seed fractions of two well-known litchi varieties, namely Shahi and China, over a span of three harvest-seasons. For analysing α-methylenecyclopropylglycine, an LC-MS/MS-based method was validated. The method-accuracies fell within 75-110 % (RSD, <15 %) at 0.1 mg/kg (LOQ) and higher levels. A comparative evaluation of the results in peel, pulp and seed at 30 days before harvest (DBH), 15-DBH, and edible-ripe stage revealed that α-methylenecyclopropylglycine content increased as the litchi seeds grew towards maturity, regardless of the cultivar. In arils, at maturity, the concentration of α-methylenecyclopropylglycine ranged from not-detected to 11.7 µg/g dry weight. The Shahi cultivar showed slightly higher α-methylenecyclopropylglycine content in comparison to China litchi. This paper presents the first known analysis of combined seasonal data on different fruit components at various growth stages for the two chosen litchi cultivars grown in India.


Subject(s)
Fruit , Litchi , Seeds , Tandem Mass Spectrometry , Litchi/chemistry , Litchi/growth & development , Litchi/metabolism , Fruit/chemistry , Fruit/growth & development , China , Seeds/chemistry , Seeds/growth & development , Glycine/analogs & derivatives , Glycine/analysis , Chromatography, High Pressure Liquid , Cyclopropanes/analysis
2.
J Ethnopharmacol ; 336: 118727, 2025 Jan 10.
Article in English | MEDLINE | ID: mdl-39182700

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Ophiocordyceps sinensis (O. sinensis) is a genus of Ascomycete fungus that is endemic to the alpine meadows of the Tibetan Plateau and adjoining Himalayas. It has been used traditionally as a tonic to improve respiratory health in ancient China as well as to promote vitality and longevity. Bioactive components found in O. sinensis such as adenosine, cordycepin, 3-deoxyadenosine, L-arginine and polysaccharides have gained increasing interest in recent years due to their antioxidative and other properties, which include anti-asthmatic, antiviral, immunomodulation and improvement of general health. AIM OF THE STUDY: This study's primary aim was to investigate the effect of a cultivated fruiting body of O. sinensis strain (OCS02®) on airways patency and the secondary focus was to investigate its effect on the lifespan of Caenorhabditis elegans. MATERIALS AND METHODS: A cultivated strain, OCS02®, was employed and the metabolic profile of its cold-water extract (CWE) was analysed through liquid chromatography-mass spectrometry (LC-MS). Organ bath approach was used to investigate the pharmacological properties of OCS02® CWE when applied on airway tissues obtained from adult male Sprague-Dawley rats. The airway relaxation mechanisms of OCS02® CWE were explored using pharmacological tools, where the key regulators in airway relaxation and constriction were investigated. For the longevity study, age-synchronised, pos-1 RNAi-treated wild-type type Caenorhabditis elegans at the L4 stage were utilised for a lifespan assay. RESULTS: Various glycopeptides and amino acids, particularly a high concentration of L-arginine, were identified from the LC-MS analysis. In airway tissues, OCS02® CWE induced a significantly greater concentration-dependent relaxation when compared to salbutamol. The relaxation response was significantly attenuated in the presence of NG-Nitro-L-arginine methyl ester (L-NAME), 1H-[1,2,4]oxadiazolo [4,3-a]quinoxalin-1-one (ODQ) and several K+ channel blockers. The longevity effect induced by OCS02® CWE (5 mg/mL and above) was observed in C. elegans by at least 17%. CONCLUSIONS: These findings suggest that the airway relaxation mechanisms of OCS02® CWE involved cGMP-dependent and cGMP-independent nitric oxide signalling pathways. This study provides evidence that the cultivated strain of OCS02® exhibits airway relaxation effects which supports the traditional use of its wild O. sinensis in strengthening respiratory health.


Subject(s)
Fruiting Bodies, Fungal , Muscle, Smooth , Rats, Sprague-Dawley , Animals , Male , Fruiting Bodies, Fungal/chemistry , Muscle, Smooth/drug effects , Muscle Relaxation/drug effects , Rats , Trachea/drug effects , Trachea/metabolism , Longevity/drug effects , Hypocreales
3.
Methods Mol Biol ; 2855: 23-39, 2025.
Article in English | MEDLINE | ID: mdl-39354299

ABSTRACT

Metabolomics can be used for a multitude of purposes, including monitoring of treatment effects and for increasing the knowledge of the pathophysiology of a wide range of diseases. Global (commonly referred to as "untargeted") metabolomics is hypothesis-generating and provides the opportunity to discover new biomarkers. Being versatile and having a high degree of selectivity and sensitivity, liquid chromatography-mass spectrometry (LC-MS) is the most common technique applied for metabolomics. We here present our global metabolomics LC-electrospray ionization-MS/MS method. The sample preparation procedures for plasma, serum, dried blood spots, urine, and cerebrospinal fluid are simple and nonspecific to reduce the risk of analyte loss. The method is based on reversed-phase chromatography using a diphenyl column. The high-resolution Q Exactive Orbitrap MS with data-dependent acquisition provides MS/MS spectra of a wide range of analytes. Our method covers a large part of the metabolome regarding hydrophobicity and compound class.


Subject(s)
Metabolomics , Tandem Mass Spectrometry , Metabolomics/methods , Humans , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Biomarkers/blood , Biomarkers/urine , Spectrometry, Mass, Electrospray Ionization/methods , Metabolome , Dried Blood Spot Testing/methods , Chromatography, Reverse-Phase/methods , Liquid Chromatography-Mass Spectrometry
4.
Methods Mol Biol ; 2855: 67-84, 2025.
Article in English | MEDLINE | ID: mdl-39354301

ABSTRACT

Untargeted metabolomics is a powerful profiling tool for the discovery of possible biomarkers of disease onset and progression. Analytical pipelines applying liquid chromatography (LC) and mass spectrometry (MS)-based methods are widely used to survey a broad range of metabolites within various metabolic pathways, including organic acids, amino acids, nucleosides, and lipids. Accurate and complete identification of putative metabolites is an ongoing challenge in untargeted metabolomics studies. Highly sensitive instrumentation can result in the detection of adduct and fragment ions that form reproducibly and contain identifiable ions that are difficult to distinguish from metabolic pathway intermediates, which may result in false-positive identification. At concentrations as low as 10 µM, free fatty acids have been found to form homo- and heterodimers in untargeted metabolomics pipelines that resemble the lipid class fatty acid esters of hydroxy fatty acids (FAHFAs), resulting in misidentification. This chapter details a protocol for LC-MS-based untargeted metabolomics using hydrophilic interaction chromatography (HILIC) that specifically aids in distinguishing artifactual fatty acid dimers from endogenous FAHFAs.


Subject(s)
Esters , Fatty Acids , Mass Spectrometry , Metabolomics , Fatty Acids/analysis , Fatty Acids/metabolism , Fatty Acids/chemistry , Chromatography, Liquid/methods , Esters/analysis , Esters/chemistry , Esters/metabolism , Metabolomics/methods , Mass Spectrometry/methods , Artifacts , Dimerization , Hydroxy Acids/analysis , Hydroxy Acids/metabolism , Hydroxy Acids/chemistry , Hydrophobic and Hydrophilic Interactions , Humans , Tandem Mass Spectrometry/methods , Liquid Chromatography-Mass Spectrometry
5.
Methods Mol Biol ; 2855: 133-145, 2025.
Article in English | MEDLINE | ID: mdl-39354305

ABSTRACT

Endocannabinoids (ECBs) are lipid-derived endogenous molecules with important physiological roles such as regulation of energy balance, immunity, or neural development. Quantitation of ECBs helps better understand their physiological role and modulation of biological processes. This chapter presents the simultaneous quantification of 14 ECBs and related molecules in the brain, liver, and muscle, as well as white and brown adipose tissue using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The dynamic range of the method has been tuned to cover the endogenous concentrations of these analytes given the fact that they are endogenously present at different orders of magnitude. Specifically, three groups are established: 0.5-5000 ng/mL for 2-oleoyl- and 2-linoleoylglycerol and arachidonic acid, 0.05-500 ng/mL for 2-arachidonoylglycerol, and 0.0005-0.5 ng/mL for anandamide, palmitoyl-, palmitoleoyl-, stearoyl-, oleoyl-, linoleoyl-, alpha-linolenoyl-, dihomo-gamma-linolenoyl-, docosahexaenoyl-, and pentadecanoylethanolamide.


Subject(s)
Endocannabinoids , Tandem Mass Spectrometry , Endocannabinoids/analysis , Endocannabinoids/metabolism , Tandem Mass Spectrometry/methods , Chromatography, Liquid/methods , Animals , Brain/metabolism , Liver/metabolism , Liver/chemistry , Mice , Liquid Chromatography-Mass Spectrometry
6.
Methods Mol Biol ; 2854: 93-106, 2025.
Article in English | MEDLINE | ID: mdl-39192122

ABSTRACT

As an interferon-stimulating factor protein, STING plays a role in the response and downstream liaison in antiviral natural immunity. Upon viral invasion, the immediate response of STING protein leads to a series of changes in downstream proteins, which ultimately leads to an antiviral immune response in the form of proinflammatory cytokines and type I interferons, thus triggering an innate immune response, an adaptive immune response in vivo, and long-term protection of the host. In the field of antiviral natural immunity, it is particularly important to rigorously and sequentially probe the dynamic changes in the antiviral natural immunity connector protein STING caused by the entire anti-inflammatory and anti-pathway mechanism and the differences in upstream and downstream proteins. Traditionally, proteomics technology has been validated by detecting proteins in a 2D platform, for which it is difficult to sensitively identify changes in the nature and abundance of target proteins. With the development of mass spectrometry (MS) technology, MS-based proteomics has made important contributions to characterizing the dynamic changes in the natural immune proteome induced by viral infections. MS analytical techniques have several advantages, such as high throughput, rapidity, sensitivity, accuracy, and automation. The most common techniques for detecting complex proteomes are liquid chromatography (LC) and mass spectrometry (MS). LC-MS (Liquid Chromatography-Mass Spectrometry), which combines the physical separation capability of LC and the mass analysis capability of MS, is a powerful technique mainly used for analyzing the proteome of cells, tissues, and body fluids. To explore the combination of traditional proteomics techniques such as Western blotting, Co-IP (co-Immunoprecipitation), and the latest LC-MS methods to probe the anti-inflammatory pathway and the differential changes in upstream and downstream proteins induced by the antiviral natural immune junction protein STING.


Subject(s)
Immunity, Innate , Proteomics , Proteomics/methods , Chromatography, Liquid/methods , Humans , Blotting, Western/methods , Mass Spectrometry/methods , Immunoprecipitation/methods , Animals , Membrane Proteins/metabolism , Membrane Proteins/immunology , Liquid Chromatography-Mass Spectrometry
7.
Methods Mol Biol ; 2854: 29-34, 2025.
Article in English | MEDLINE | ID: mdl-39192115

ABSTRACT

Mass spectrometers are widely used to identify protein phosphorylation sites. The process usually involves selective isolation of phosphoproteins and subsequent fragmentation to identify both the peptide sequence and phosphorylation site. Immunoprecipitation could capture and purify the protein of interest, greatly reducing sample complexity before submitting it for mass spectrometry analysis. This chapter describes a method to identify an abnormal phosphorylated site of the adaptor protein by a viral kinase through immunoprecipitation followed by LC-MS/MS.


Subject(s)
Immunoprecipitation , Phosphoproteins , Tandem Mass Spectrometry , Phosphorylation , Tandem Mass Spectrometry/methods , Immunoprecipitation/methods , Chromatography, Liquid/methods , Humans , Phosphoproteins/metabolism , Phosphoproteins/analysis , Mass Spectrometry/methods
8.
Clin Chim Acta ; 564: 119939, 2025 Jan 01.
Article in English | MEDLINE | ID: mdl-39197698

ABSTRACT

BACKGROUND AND AIMS: Current laboratory methods for opioid detection involve an initial screening with immunoassays which offers efficient but non-specific results and a subsequent liquid chromatography-tandem mass spectrometry (LC-MS/MS) confirmation which offers accurate results but requires extensive sample preparation and turnaround time. Direct Analysis in Real Time (DART) tandem mass spectrometry is evaluated as an alternative approach for accurate opioid detection with efficient sample preparation and turnaround time. MATERIALS AND METHODS: DART-MS/MS was optimized by testing the method with varying temperatures, operation modes, extraction methods, hydrolysis times, and vortex times. The method was evaluated for 12 opioids by testing the analytical measurement range, percent carryover, precision studies, stability, and method-to-method comparison with LC-MS/MS. RESULTS: DART-MS/MS shows high sensitivity and specificity for the detection of 6-acetylmorphine, codeine, hydromorphone, oxymorphone, hydrocodone, naloxone, buprenorphine, norfentanyl, and fentanyl in urine samples. However, its performance was suboptimal for norbuprenorphine, morphine and oxycodone. CONCLUSION: In this proof-of-concept study, DART-MS/MS is evaluated for its rapid quantitative definitive testing of opioids drugs in urine. Further research is needed to expand its application to other areas of drug testing.


Subject(s)
Analgesics, Opioid , Tandem Mass Spectrometry , Humans , Tandem Mass Spectrometry/methods , Analgesics, Opioid/urine , Chromatography, Liquid/methods , Time Factors
9.
Anal Bioanal Chem ; 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39382675

ABSTRACT

Digoxin, a cardiac glycoside, is widely used in the treatment of cardiovascular diseases. Due to its narrow therapeutic range, precise monitoring of its blood concentration is essential. A reference measurement procedure (RMP) is pivotal for ensuring result accuracy and comparability. The RMP for serum digoxin by ID-LC-MS/MS was optimized with sample pre-treatment and detection processes, and the bracketing calibration method was used, which facilitates more accurate measurement, especially for extreme concentrations. The performance of this optimized RMP was thoroughly evaluated. The limit of detection (LoD) was 0.05 ng/mL (0.06 nmol/L) and the lowest limit of quantification (LLoQ) was 0.10 ng/mL (0.13 nmol/L). The intra- and inter-assay imprecisions were 2.24%, 2.51%, 1.40% and 1.72%, 1.65%, 0.97% at 0.5, 2.0, 5.0 ng/mL, respectively. Recoveries were 99.63 to 101.42% and the linear response ranged from 0.1 to 10.0 ng/mL. The relative bias was 0.41% and 2.00% of our results compared with the median of all participating reference laboratories for IFCC-RELA (External Quality Assessment Scheme for Reference Laboratories in Laboratory Medicine) 2023A and 2023B. The uncertainty, calibration and measurement capability (CMC) of this method were also evaluated. The optimized RMP was applied in the Trueness Verification Plan of Southern China, which indicates significant differences among clinical systems, highlighting the need for standardization efforts. In addition, two commonly used clinical systems which employed immunoassay methods were compared with this optimized RMP, and 26 individual serum samples were analyzed. The good correlations indicate the feasibility of standardization for serum digoxin. The optimized RMP serves as an accurate reference baseline for routine methods, aiming to enhance the accuracy and precision of measurements in clinical laboratories.

10.
J Mass Spectrom ; 59(10): e5088, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39351617

ABSTRACT

Bacterial keratitis (BK) is an infection that causes inflammation of the cornea and, if severe, can result in blindness. Topical fluoroquinolones combined with corticosteroids have been shown to be useful in the treatment of BK. A rapid, selective, and sensitive bioanalytical method for simultaneous quantification of Gatifloxacin (GAT) and Dexamethasone (DEX) has been developed and validated using tandem mass spectrometry (LC-MS/MS). Optimal separation was accomplished in under 5 min using an Agilent Zorbax C18 column (100 mm × 4.6 mm, 3.5 µm). The mobile phase was composed of a blend of 0.2% formic acid in triple distilled water and methanol with a flow rate of 0.65 mL/min in isocratic mode. GAT and DEX were detected in positive electrospray ionization multiple reaction monitoring mode (MRM), and the retention time was found to be at 1.64 and 2.93 min, respectively. The linearity of GAT and DEX was found to be in the range of 1.56-400 ng mL-1 with good precision and accuracy. The method was validated according to USFDA regulatory guidelines. The validated method was effectively utilized for preclinical pharmacokinetic analysis of GAT and DEX in rabbit tear fluid following the topical application of a commercial formulation.


Subject(s)
Dexamethasone , Gatifloxacin , Tandem Mass Spectrometry , Tears , Animals , Rabbits , Tandem Mass Spectrometry/methods , Gatifloxacin/pharmacokinetics , Gatifloxacin/chemistry , Dexamethasone/pharmacokinetics , Dexamethasone/analysis , Tears/chemistry , Reproducibility of Results , Limit of Detection , Chromatography, Liquid/methods , Male , Linear Models , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/blood , Fluoroquinolones/pharmacokinetics , Fluoroquinolones/analysis , Fluoroquinolones/blood , Ophthalmic Solutions/pharmacokinetics , Ophthalmic Solutions/chemistry , Liquid Chromatography-Mass Spectrometry
11.
Anal Bioanal Chem ; 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39354156

ABSTRACT

The effects of the simultaneous consumption of amphetamine or amphetamine derivatives and alcohol have not yet been adequately clarified, particularly concerning potential condensation products resulting from the endogenous reaction between these substances and their metabolites (e.g., acetaldehyde, a metabolite of ethanol). In this study, we developed an LC-MS/MS method employing liquid-liquid extraction for the qualitative detection of some relevant condensation products belonging to the class of tetrahydroisoquinolines and their derivatives in human blood, brain, and liver samples. This includes the analysis of the substrates amphetamine, methamphetamine, methylenedioxymethamphetamine, methylenedioxyamphetamine, as well as the condensation products 1,3-dimethyl-1,2,3,4-tetrahydroisoquinoline, N-methyl-1,3-dimethyl-1,2,3,4-tetrahydroisoquinoline, 1,3-dimethyl-7,8-methylenedioxy-1,2,3,4-tetrahydroisoquinoline, and N-methyl-1,3-dimethyl-7,8-methylenedioxy-1,2,3,4-tetrahydroisoquinoline. Therefore, the reference standards of the mentioned tetrahydroisoquinolines were synthesized in advance and the method was validated with regard to the question of the qualitative detection of these compounds. The validation parameters included selectivity, specificity, limit of detection, lower limit of quantification, recovery, matrix effects, and stability for blood, brain, and liver samples. Following the analysis of human blood and post-mortem tissue samples, evidence of the condensation product 1,3-dimethyl-1,2,3,4-tetrahydroisoquinoline originating from the interaction between amphetamine and acetaldehyde was identified in two liver samples. On the contrary, no evidence of this or other tetrahydroisoquinolines was found in the remaining tissue and serum samples.

12.
J Agric Food Chem ; 72(39): 21946-21956, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39354852

ABSTRACT

To explore the changes in meat quality and molecular mechanisms during the growth and development of Taihe black-bone silky fowl, this study employed liquid chromatography-mass spectrometry (LC-MS/MS) metabolomics to elucidate the dynamic changes of key differential metabolites (DMs) affecting meat quality, indicating that chicken at D120 had higher levels of ω-3 polyunsaturated fatty acids (PUFAs), creatine, anserine, and homocarnosine, while D150 had the most stachydrine and D210 had the most acylcarnitines. Additionally, D120 and D180 had more umami and sweet compounds. Furthermore, key metabolic pathways influenced by age included purine metabolism, the pentose phosphate pathway, nicotinate and nicotinamide metabolism, and taurine and hypotaurine metabolism. Transcriptomic identified differential expression genes (DEGs) are predominantly enriched in focal adhesion, the TGF-ß signaling pathway, and the MAPK signaling pathway. Integrated metabolomics and transcriptomics revealed complex regulatory networks of DEGs and DMs in key metabolic pathways. This research enhanced our understanding of the biology of Taihe black-bone silky fowl meat quality, revealing possible biomarkers.


Subject(s)
Chickens , Gene Expression Profiling , Meat , Metabolome , Animals , Chickens/genetics , Chickens/metabolism , Meat/analysis , Tandem Mass Spectrometry , Transcriptome , Metabolomics , Age Factors
13.
J Pharmacol Toxicol Methods ; : 107568, 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39383999

ABSTRACT

BACKGROUND: Therapeutic drug monitoring for antidepressants (ADs) is vital due to the potentially serious consequences and disputes related to medical events. Therefore, we created a quick and convenient analysis way for separation and quantification of ADs. METHODS: To ensure quantitative stability, we divided the 16 ADs or their metabolites into 4 pools (AD1-AD4), considering the hospital frequency that the clinician prescribed, the physicochemical properties of medicines, and the calibration range of selected ADs. After precipitation with methanol, the analytes were eluted for at least 3.5 min on a BEH C18 analytical column by different gradient elution methods. RESULTS: The LLOQ and LOD were 1.25-10 ng/mL and 0.42-5 ng/mL, respectively. High precision (<12 %) and accuracy (87.07-111.47 %) were demonstrated by quality control samples both within and between days. All the compounds were stable at room temperature and within -80 °C. CONCLUSION: The method is of wide clinical and laboratory interest due to simpler sample cleanup, shorter chromatographic run times, and wider calibration range compared to other methods.

14.
Front Psychiatry ; 15: 1425552, 2024.
Article in English | MEDLINE | ID: mdl-39355377

ABSTRACT

Objectives: This study aimed to explore the relationship between plasma proteome and the clinical features of Major Depressive Disorder (MDD) during treatment of acute episode. Methods: In this longitudinal observational study, 26 patients hospitalized for moderate to severe MDD were analyzed. The study utilized Liquid Chromatography with Tandem Mass Spectrometry (LC-MS/MS) alongside clinical metrics, including symptomatology derived from the Montgomery-Åsberg Depression Rating Scale (MADRS). Plasma protein analysis was conducted at the onset of acute depression and 6 weeks into treatment. Analytical methods comprised of Linear Models for Microarray Data (LIMMA), Weighted Correlation Network Analysis (WGCNA), Generalized Linear Models, Random Forests, and The Database for Annotation, Visualization and Integrated Discovery (DAVID). Results: Five distinct plasma protein modules were identified, correlating with specific biological processes, and uniquely associated with symptom presentation, the disorder's trajectory, and treatment response. A module rich in proteins related to adaptive immunity was correlated with the manifestation of somatic syndrome, treatment response, and inversely associated with achieving remission. A module associated with cell adhesion was linked to affective symptoms and avolition, and played a role in the initial episodes and treatment response. Another module, characterized by proteins involved in blood coagulation and lipid transport, exhibited negative correlations with a variety of MDD symptoms and was predominantly associated with the manifestation of psychotic symptoms. Conclusion: This research points to a complex interplay between the plasma proteome and MDD's clinical presentation, suggesting that somatic, affective, and psychotic symptoms may represent distinct endophenotypic manifestations of MDD. These insights hold potential for advancing targeted therapeutic strategies and diagnostic tools. Limitations: The study's limited sample size and its naturalistic design, encompassing diverse treatment modalities, present methodological constraints. Furthermore, the analysis focused on peripheral blood proteins, with potential implications for interpretability.

15.
Wellcome Open Res ; 9: 231, 2024.
Article in English | MEDLINE | ID: mdl-39355658

ABSTRACT

Background: Ivermectin is a widely used drug for the treatment of helminthiasis and filariasis worldwide, and it has also shown promise for malaria elimination through its potent mosquito-lethal activity. The objective of this study was to develop and validate a high-throughput and sensitive method to quantify ivermectin in plasma and whole blood samples, using automated sample extraction followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Methods: Phospholipids were removed in patient whole blood (100 µl) and plasma (100 µl) samples using a 96-well plate Hybrid-solid phase extraction technique. Ivermectin and its isotope-labelled internal standard (ivermectin-D2) were separated on an Agilent Poroshell 120 EC-C18 50mm × 3.0mm I.D. 2.7µm, using a mobile phase of acetonitrile: ammonium formate 2 mM containing 0.5% formic acid (90: 10, v/v). Detection was performed using a triple quadrupole mass spectrometer in the positive ionization mode. Results: The method was validated in the concentration range 0.970 - 384 ng/ml in both plasma and whole blood matrices. Intra- and inter-batch precisions during the validation were below 15%. There was no carryover or matrix effects detected. Ivermectin is a stable compound and results showed no degradation in the different stability tests. Conclusions: The validated method proved to have high sensitivity and precision, good selectivity and to be suitable for clinical application or laboratory quantification of ivermectin in plasma or whole blood samples.

16.
Biomed Chromatogr ; : e6010, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-39385620

ABSTRACT

This work aimed to establish an HILIC-MS/MS method to simultaneously determine the levels of 13 endogenous amino acids and trimethylamine oxide in the biological samples from the mice. Electrospray ion source was used for the analysis of mass spectrometry. The 20 min separation was applied in a Dikma Inspire Hilic column (2.1 × 100.0 mm, 3 µM). Positive ion mode under an MRM model gave a satisfying response value. The limits of quantitation were evaluated by accuracy from -12.59% to 7.89% and precision from 1.77% to 14.00% as well as acceptable interday and intraday precision, matrix effect, recovery, and stability. Later, the assay was successfully used to measure the concentrations of the determinands in the biological samples. Individual and tissue distribution differences for these metabolites were observable. The amino acids had a consistent highest content in the spleens, while the lowest levels were found in the livers. Alanine was the most abundant amino acid in the serum, and taurine kept the highest content in all of the tissues. Trimethylamine oxide remained low level, especially in the liver samples.

17.
Chem Biodivers ; : e202401537, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-39385708

ABSTRACT

The composition and concentration of compounds in medicinal plants vary based on several factors, including the specific part of the plant being used. These variations in composition and concentration lead to differences in biological activity levels. In this study, we aimed to assess the phytochemical profile of Sonchus arvensis and to investigate the biological activity of different plant parts (roots, stems, and leaves) using a metabolomics approach. We analyzed the plant extracts for total phenolic and flavonoid levels, antioxidant activity, and xanthine oxidase inhibition. We also conducted metabolite profiling using Fourier-transform infrared spectroscopy and liquid chromatography-high resolution mass spectrometry. A total of 17 metabolites were identified (13 in leaves, 10 in stems, and 9 in roots). Principal component analysis effectively differentiated S. arvensis extracts based on differences in plant parts. These findings indicate that the quantity and diversity of metabolites present in the roots, stems, and leaves influence the biological activity of S. arvensis.

18.
Exp Gerontol ; : 112601, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39362416

ABSTRACT

Dietary restriction (DR) extends lifespan in various species, but its effect at different ages, especially when started later, is unclear. This study used Caenorhabditis elegans to explore the impact of DR at different ages. Worms were divided into control and DR groups, with daily survival monitored. To confirm the occurrence of DR, the expression of DR-sensitive genes namely acdh-1, pyk-1, pck-2 and cts-1 were determined using RT-qPCR. Liquid chromatography mass spectrometry (LC-MS) was employed to observe the changes in metabolites affected by DR. The results indicated that young worms subjected to mild DR displayed the longest lifespan, highlighting the effectiveness of initiating DR at a young age. Increased expression of acdh-1 and pck-2 suggests activation of beta-oxidation and gluconeogenesis, while decreased cts-1 expression indicates a reduced citric acid cycle, further supporting the observed effects of DR in these worms. Metabolomic results indicated that DR decreased the activity of mechanistic Target of Rapamycin (mTOR) and the synthesis of amino acids namely leucine, tyrosine and tryptophan to conserve energy for cell repair and survival. DR also decreased levels of N-acetyl-L-methionine and S-adenosyl-methionine (SAM) in methionine metabolism, thereby promoting autophagy, reducing inflammation, and facilitating the removal of damaged cells and proteins. In conclusion, initiating dietary restriction early in life extends the lifespan by modulating amino acid metabolism and enhancing the autophagy pathway, thereby maintaining cellular wellbeing.

19.
Article in English | MEDLINE | ID: mdl-39373457

ABSTRACT

Lipidomics is a well-established field, enabled by modern liquid chromatography mass spectrometry (LC-MS) technology, rapidly generating large amounts of data. Lipid extracts derived from biological samples are complex, and most spectral features in LC-MS lipidomics data sets remain unidentified. In-depth analyses of commercial triacylglycerol, diacylglycerol, and cholesterol ester standards revealed the expected ammoniated and sodiated ions as well as five additional unidentified higher mass peaks with relatively high intensities. The identities and origin of these unknown peaks were investigated by modifying the chromatographic mobile-phase components and LC-MS source parameters. Tandem MS (MS/MS) of each unknown adduct peak yielded no lipid structural information, producing only an intense ion of the adducted species. The unknown adducts were identified as low-mass contaminants originating from methanol and isopropanol in the mobile phase. Each contaminant was determined to be an alkylated amine species using their monoisotopic masses to calculate molecular formulas. Analysis of bovine liver extract identified 33 neutral lipids with an additional 73 alkyl amine adducts. Analysis of LC-MS-grade methanol and isopropanol from different vendors revealed substantial alkylated amine contamination in one out of three different brands that were tested. Substituting solvents for ones with lower levels of alkyl amine contamination increased lipid annotations by 36.5% or 27.4%, depending on the vendor, and resulted in >2.5-fold increases in peak area for neutral lipid species without affecting polar lipid analysis. These findings demonstrate the importance of solvent selection and disclosure for lipidomics protocols and highlight some of the major challenges when comparing data between experiments.

20.
Biotechnol Rep (Amst) ; 44: e00856, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39376902

ABSTRACT

Host cell proteins (HCPs) are process-related impurities found in biopharmaceutical products that can impair their safety and efficacy. While ELISA has traditionally been employed to quantify HCPs, LC-MS emerges as a powerful alternative for precise identification of individual HCPs. In this study, we used LC-MS for profiling HCPs from Nicotiana benthamiana-derived biopharmaceuticals. Our approach involved rigorous false discovery rate control to ensure data integrity and reliability. Comprehensive analysis revealed a systematic reduction of HCPs following purification, demonstrating the efficiency of purification processes in removing non-essential proteins. Furthermore, LC-MS enabled the identification of potential contaminants, refining purification strategies and improving product purity and integrity. Our findings highlight the potential of LC-MS as an analytical tool for HCPs analysis in biopharmaceutical development and manufacturing. By providing detailed insights into HCPs profiles and contaminants, LC-MS facilitates informed decision-making in downstream processing steps, benefiting product quality, patient safety, and the biopharmaceutical sector.

SELECTION OF CITATIONS
SEARCH DETAIL