Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Language
Publication year range
1.
Bioengineered ; 12(2): 10089-10100, 2021 12.
Article in English | MEDLINE | ID: mdl-34724866

ABSTRACT

Ovarian cancer (OC) is the leading cause of death from gynecological cancer. In this study, we aimed to explore the role and potential mechanism of LIMD2 during the progression of OC. The expression of LIMD2 was analyzed by GEPIA (Gene Expression Profiling Interactive Analysis) database. Western blot and real-time PCR were applied to detect the gene expression of LIMD2 in OC cell lines. Cell counting kit-8 (CCK-8) assay, transwell, wound healing assays, and tumor xenograft experiments were used to evaluate the function of LIMD2 in vitro and vivo. Further, the LIMD2-associated pathways in OC were predicted by RNA-seq analysis, and the involvement of the corresponding cell signaling activities were confirmed by Western blot. We found that LIMD2 was high expressed in OC. Additionally, we found that silencing of LIMD2 inhibited OC cell proliferation in vitro and reduced the growth of its xenograft tumors. Moreover, knockdown of LIMD2 significantly decreased the migration of OC cells. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that pathways regulating extracellular matrix (ECM)-receptor interactions and focal adhesion signaling, were deregulated by LIMD2. Particularly, we confirmed that reducing LIMD2 could decrease the expression of Focal adhesion kinase (FAK) pathway related molecules. In conclusion, LIMD2 promotes the proliferation and invasion of ovarian cancer in vitro and in vivo, potentially through regulating the focal adhesion signaling pathway.


Subject(s)
Disease Progression , Focal Adhesions/metabolism , Neoplasm Proteins/metabolism , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Signal Transduction , Animals , Carcinogenesis/genetics , Carcinogenesis/pathology , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Humans , Mice, Nude , Neoplasm Metastasis , Neoplasm Proteins/genetics , Ovarian Neoplasms/genetics
2.
Cells ; 9(11)2020 11 23.
Article in English | MEDLINE | ID: mdl-33238381

ABSTRACT

Although papillary thyroid carcinoma (PTC) has a good prognosis, 20-90% of patients show metastasis to regional lymph nodes and 10-15% of patients show metastasis to distant sites. Metastatic disease represents the main clinical challenge that impacts survival rate. We previously showed that LIMD2 was a novel metastasis-associated gene. In this study, to interrogate the role of LIMD2 in cancer invasion and metastasis, we used CRISPR-mediated knockout (KO) of LIMD2 in PTC cells (BCPAP and TPC1). Western blot and high-content screening (HCS) analysis confirmed functional KO of LIMD2. LIMD2 KO reduced in vitro invasion and migration. Ultrastructural analyses showed that cell polarity and mitochondria function and morphology were restored in LIMD2 KO cells. To unveil the signals supervising these phenotypic changes, we employed phospho-protein array. Several members of the MAPK superfamily showed robust reduction in phosphorylation. A Venn diagram displayed the overlap of kinases with reduced phosphorylation in both cell lines and showed that they were able to initiate or sustain the epithelial-mesenchymal transition (EMT) and DNA damage checkpoint. Flow cytometry and HCS validation analyses further corroborated the phospho-protein array data. Collectively, our findings show that LIMD2 enhances phosphorylation of kinases associated with EMT and invasion. Through cooperation with different kinases, it contributes to the increased genomic instability that ultimately promotes PTC progression.


Subject(s)
Mitogen-Activated Protein Kinase Kinases/metabolism , Neoplasm Proteins/therapeutic use , Thyroid Cancer, Papillary/genetics , Cell Line, Tumor , Epithelial-Mesenchymal Transition , Female , Humans , Male , Neoplasm Metastasis , Neoplasm Proteins/pharmacology , Thyroid Cancer, Papillary/pathology
3.
Cells, v. 9, n. 11, 2522, nov. 2020
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3369

ABSTRACT

Although papillary thyroid carcinoma (PTC) has a good prognosis, 20–90% of patients show metastasis to regional lymph nodes and 10–15% of patients show metastasis to distant sites. Metastatic disease represents the main clinical challenge that impacts survival rate. We previously showed that LIMD2 was a novel metastasis-associated gene. In this study, to interrogate the role of LIMD2 in cancer invasion and metastasis, we used CRISPR-mediated knockout (KO) of LIMD2 in PTC cells (BCPAP and TPC1). Western blot and high-content screening (HCS) analysis confirmed functional KO of LIMD2. LIMD2 KO reduced in vitro invasion and migration. Ultrastructural analyses showed that cell polarity and mitochondria function and morphology were restored in LIMD2 KO cells. To unveil the signals supervising these phenotypic changes, we employed phospho-protein array. Several members of the MAPK superfamily showed robust reduction in phosphorylation. A Venn diagram displayed the overlap of kinases with reduced phosphorylation in both cell lines and showed that they were able to initiate or sustain the epithelial-mesenchymal transition (EMT) and DNA damage checkpoint. Flow cytometry and HCS validation analyses further corroborated the phospho-protein array data. Collectively, our findings show that LIMD2 enhances phosphorylation of kinases associated with EMT and invasion. Through cooperation with different kinases, it contributes to the increased genomic instability that ultimately promotes PTC progression

4.
Endocr Pathol ; 29(3): 222-230, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29560564

ABSTRACT

We previously described that LIM domain containing 2 (LIMD2) overexpression was closely correlated with metastatic process in papillary thyroid carcinoma (PTC). We here evaluated the expression of LIMD2 in a series of non-metastatic and metastatic PTC and their matched lymph node metastases via immunohistochemistry. LIMD2 was expressed in 74 (81%) of primary PTC and 35 (95%) of lymph node metastases. Sub-analysis performed in 37 matched samples demonstrated that in four cases, LIMD2 is expressed in lymph node metastases, while it is not expressed in primary tumors. Moreover, in eight cases, the staining intensity of LIMD2 was stronger in the patient-matched lymph node metastases than in the primary tumors. Next, the expression of LIMD2 was correlated with clinical pathological parameters and BRAF V600E and RET/PTC mutational status. The expression of LIMD2 in primary tumors was correlated with the presence of BRAF V600E mutation (P = 0.0338). Western blot analysis in thyroid cell lines demonstrated that LIMD2 is expressed in two PTC cell lines, while it is not expressed in normal thyroid and follicular thyroid carcinoma cell lines. Importantly, its expression was higher in a PTC cell line that harbors BRAF V600E mutation than in a PTC cell line that harbors RET/PTC1. The available genomic profiling data generated by The Cancer Genome Atlas Research Network confirmed that LIMD2 expression is higher in BRAF-like PTC samples. Our data suggest that LIMD2 may play an important role in the metastatic process of PTC, predominantly in BRAF V600E-positive tumors.


Subject(s)
Biomarkers, Tumor/analysis , LIM Domain Proteins/biosynthesis , Lymphatic Metastasis/pathology , Thyroid Cancer, Papillary/pathology , Adult , Aged , Female , Humans , Male , Middle Aged , Mutation , Proto-Oncogene Proteins B-raf/genetics , Thyroid Cancer, Papillary/genetics , Thyroid Cancer, Papillary/metabolism , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...