Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
1.
Am J Cancer Res ; 14(2): 809-831, 2024.
Article in English | MEDLINE | ID: mdl-38455406

ABSTRACT

Increasing evidence indicates that long noncoding RNAs (lncRNAs) are therapeutic targets and key regulators of tumors development and progression, including melanoma. Long intergenic non-protein-coding RNA 511 (LINC00511) has been demonstrated as an oncogenic molecule in breast, stomach, colorectal, and lung cancers. However, the precise role and functional mechanisms of LINC00511 in melanoma remain unknown. This study confirmed that LINC00511 was highly expressed in melanoma cells (A375 and SK-Mel-28 cells) and tissues, knockdown of LINC00511 could inhibit melanoma cell migration and invasion, as well as the growth of subcutaneous tumor xenografts in vivo. By using Chromatin immunoprecipitation (ChIP) assay, it was demonstrated that the transcription factor Yin Yang 1 (YY1) is capable of binding to the LINC00511 promoter and enhancing its expression in cis. Further mechanistic investigation showed that LINC00511 was mainly enriched in the cytoplasm of melanoma cells and interacted directly with microRNA-150-5p (miR-150-5p). Consistently, the knockdown of miR-150-5p could recover the effects of LINC00511 knockdown on melanoma cells. Furthermore, ADAM metallopeptidase domain expression 19 (ADAM19) was identified as a downstream target of miR-150-5p, and overexpression of ADAM19 could promote melanoma cell proliferation. Rescue assays indicated that LINC00511 acted as a competing endogenous RNA (ceRNA) to sponge miR-150-5p and increase the expression of ADAM19, thereby activating the PI3K/AKT pathway. In summary, we identified LINC00511 as an oncogenic lncRNA in melanoma and defined the LINC00511/miR-150-5p/ADAM19 axis, which might be considered a potential therapeutic target and novel molecular mechanism the treatment of patients with melanoma.

2.
Noncoding RNA ; 9(5)2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37888204

ABSTRACT

BACKGROUND: Long intergenic non-coding RNA, is one type of lncRNA, exerting various cellular activities, as does ncRNA, including the regulation of gene expression and chromatin remodeling. The abnormal expression of lincRNAs can induce or suppress carcinogenesis. MAIN BODY: LincRNAs can regulate cancer progression through different mechanisms and are considered as potential drug targets. Genetic variations such as single nucleotide polymorphisms (SNPs) in lincRNAs may affect gene expression and messenger ribonucleic acid (mRNA) stability. SNPs in lincRNAs have been found to be associated with different types of cancer, as well. Specifically, LINC00511 has been known to promote the progression of multiple malignancies such as breast cancer, colorectal cancer, lung cancer, hepatocellular carcinoma, and others, making it a promising cancer prognostic molecular marker. CONCLUSION: LincRNAs have been proved to be associated with different cancer types through various pathways. Herein, we performed a comprehensive literature and in silico databases search listing lncRNAs, lincRNAs including LINC00511, lncRNAs' SNPs, as well as LINC00511 SNPs in different cancer types, focusing on their role in various cancer types and mechanism(s) of action.

3.
Cells ; 12(12)2023 06 17.
Article in English | MEDLINE | ID: mdl-37371125

ABSTRACT

Cisplatin is one of the most effective chemotherapeutic agents strongly associated with nephrotoxicity. Tubular adult renal progenitor cells (tARPC) can regenerate functional tubules and participate in the repair processes after cisplatin exposition. This study investigated the molecular mechanisms underlying the protective effect of tARPC on renal epithelium during cisplatin nephrotoxicity. By performing a whole-genome transcriptomic analysis, we found that tARPC, in presence of cisplatin, can strongly influence the gene expression of renal proximal tubular cell [RPTEC] by inducing overexpression of CYP1B1, a member of the cytochrome P450 superfamily capable of metabolizing cisplatin and of hypoxia/cancer-related lncRNAs as MIR210HG and LINC00511. Particularly, tARPC exerted renoprotection and regeneration effects via extracellular vesicles (EV) enriched with CYP1B1 and miR-27b-3p, a well-known CYP1B1 regulatory miRNA. The expression of CYP1B1 by tARPC was confirmed by analyzing biopsies of cisplatin-treated renal carcinoma patients that showed the colocalization of CYP1B1 with the tARPC marker CD133. CYP1B1 was also overexpressed in urinary EV purified from oncologic patients that presented nephrotoxicity episodes after cisplatin treatment. Interestingly CYP1B1 expression significantly correlated with creatinine and eGFR levels. Taken together, our results show that tARPC are able to counteract cisplatin-induced nephrotoxicity via CYP1B1 release through EV. These findings provide a promising therapeutic strategy for nephrotoxicity risk assessment that could be related to abundance of renal progenitors.


Subject(s)
Cisplatin , Kidney , MicroRNAs , Stem Cells , Adult , Humans , Cisplatin/adverse effects , Cisplatin/metabolism , Cisplatin/pharmacology , Cytochrome P-450 CYP1B1/genetics , Cytochrome P-450 CYP1B1/metabolism , Down-Regulation/genetics , Extracellular Vesicles/genetics , Extracellular Vesicles/metabolism , Kidney/drug effects , Kidney/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Stem Cells/metabolism
4.
Front Genet ; 14: 1116445, 2023.
Article in English | MEDLINE | ID: mdl-37124625

ABSTRACT

Long Intergenic Non-Protein Coding RNA 511 (LINC00511) is an RNA gene being mostly associated with lung cancer. Further assessments have shown dysregulation of this lncRNA in a variety of cancers. LINC00511 has interactions with hsa-miR-29b-3p, hsa-miR-765, hsa-mir-150, miR-1231, TFAP2A-AS2, hsa-miR-185-3p, hsa-miR-29b-1-5p, hsa-miR-29c-3p, RAD51-AS1 and EZH2. A number of transcription factors have been identified that regulate expression of LINC00511. The current narrative review summarizes the role of LINC00511 in different cancers with an especial focus on its prognostic impact in human cancers.

5.
Comput Biol Med ; 159: 106943, 2023 06.
Article in English | MEDLINE | ID: mdl-37099974

ABSTRACT

BACKGROUND: Mounting evidence suggests that noncoding RNAs (lncRNAs) were involved in various human cancers. However, the role of these lncRNAs in HPV-driven cervical cancer (CC) has not been extensively studied. Considering that HR-HPV infections contribute to cervical carcinogenesis by regulating the expression of lncRNAs, miRNAs and mRNAs, we aim to systematically analyze lncRNAs and mRNAs expression profile to identify novel lncRNAs-mRNAs co-expression networks and explore their potential impact on tumorigenesis in HPV-driven CC. METHODS: LncRNA/mRNA microarray technology was utilized to identify the differentially expressed lncRNAs (DElncRNAs) and mRNAs (DEmRNAs) in HPV-16 and HPV-18 cervical carcinogenesis compared to normal cervical tissues. Venn diagram and weighted gene co-expression network analysis (WGCNA) were used to identify the hub DElncRNAs/DEmRNAs that were both significantly correlated with HPV-16 and HPV-18 CC patients. LncRNA-mRNA correlation analysis and functional enrichment pathway analysis were performed on these key DElncRNAs/DEmRNAs in HPV-16 and HPV-18 CC patients to explore their mutual mechanism in HPV-driven CC. A lncRNA-mRNA co-expression score (CES) model was established and validated by using the Cox regression method. Afterward, the clinicopathological characteristics were analyzed between CES-high and CES-low groups. In vitro, functional experiments were performed to evaluate the role of LINC00511 and PGK1 in cell proliferation, migration and invasion in CC cells. To understand whether LINC00511 play as an oncogenic role partially via modulating the expression of PGK1, rescue assays were used. RESULTS: We identified 81 lncRNAs and 211 mRNAs that were commonly differentially expressed in HPV-16 and HPV-18 CC tissues compared to normal tissues. The results of lncRNA-mRNA correlation analysis and functional enrichment pathway analysis showed that the LINC00511-PGK1 co-expression network may make an important contribution to HPV-mediated tumorigenesis and be closely associated with metabolism-related mechanisms. Combined with clinical survival data, the prognostic lncRNA-mRNA co-expression score (CES) model based on LINC00511 and PGK1 could precisely predict patients' overall survival (OS). CES-high patients had a worse prognosis than CES-low patients and the enriched pathways and potential targets of applicable drugs were explored in CES-high patients. In vitro experiments confirmed the oncogenic functions of LINC00511 and PGK1 in the progression of CC, and revealed that LINC00511 functions in an oncogenic role in CC cells partially via modulating the expression of PGK1. CONCLUSIONS: Together, these data identify co-expression modules that provide valuable information to understand the pathogenesis of HPV-mediated tumorigenesis, which highlights the pivotal function of the LINC00511-PGK1 co-expression network in cervical carcinogenesis. Furthermore, our CES model has a reliable predicting ability that could stratify CC patients into low- and high-risk groups of poor survival. This study provides a bioinformatics method to screen prognostic biomarkers which leads to lncRNA-mRNA co-expression network identification and construction for patients' survival prediction and potential drug applications in other cancers.


Subject(s)
MicroRNAs , Papillomavirus Infections , RNA, Long Noncoding , Uterine Cervical Neoplasms , Female , Humans , Biomarkers, Tumor/genetics , Carcinogenesis/genetics , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , MicroRNAs/genetics , Papillomavirus Infections/genetics , Phosphoglycerate Kinase/genetics , Phosphoglycerate Kinase/metabolism , RNA, Long Noncoding/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Uterine Cervical Neoplasms/genetics
6.
Pathol Res Pract ; 244: 154382, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36868095

ABSTRACT

The digestive system malignant tumors (DSMTs), mainly consist of digestive tract and digestive gland tumors, become an inescapable culprit to hazard human health worldwide. Due to the huge hysteresis in the cognitive theories of DSMTs occurrence and progression, advances in medical technology have not improved the prognosis. Therefore, more studies on a variety of tumor-associated molecular biomarkers and more detailed disclosure on potential regulatory networks are urgently needed to facilitate the diagnostic and therapeutic strategies of DSMTs. With the development of cancer bioinformatics, a special type of endogenous RNA involved in multi-level cellular function regulation rather than encoding protein, is categorized as non-coding RNAs (ncRNAs) and becomes a hotspot issue in oncology. Among them, long non-coding RNAs (lncRNAs), transcription length > 200 nt, show obvious superiority in both research quantity and dimension compared to microRNAs (miRNAs) and circular RNAs (circRNAs). As a recently discovered lncRNA, LINC00511 has been confirmed to be closely associated with DSMTs and might be exploited as a novel biomarker. In the present review, the comprehensive studies of LINC00511 in DSMTs are summarized, as well as the underlying molecular regulatory networks. In addition, deficiencies in researches are point out and discussed. The Cumulative oncology studies provide a fully credible theoretical basis for identifying the regulatory role of LINC00511 in human DSMTs. LINC00511, proved to be an oncogene in DSMTs, might be defined as a potential biomarker for diagnosis and prognosis evaluation, as well as a rare therapeutic target.


Subject(s)
Digestive System Neoplasms , Gastrointestinal Neoplasms , MicroRNAs , RNA, Long Noncoding , Humans , Cell Line, Tumor , Cell Proliferation/genetics , MicroRNAs/genetics , Gastrointestinal Neoplasms/genetics , Digestive System Neoplasms/diagnosis , Digestive System Neoplasms/genetics , Digestive System Neoplasms/therapy , Biomarkers, Tumor/genetics , Digestive System/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Gene Expression Regulation, Neoplastic
7.
Open Med (Wars) ; 18(1): 20230628, 2023.
Article in English | MEDLINE | ID: mdl-36874361

ABSTRACT

Long intergenic noncoding RNA 00511 (LINC00511) predicts poor prognosis in various malignancies and functions as an oncogene in distinct malignant tumors. The role of LINC00511 in melanoma progression was assessed. In our research, expression of LINC00511 in melanoma cells was detected by quantitative reverse transcription PCR. Colony formation and CCK8 assays were used to detect cell proliferation. Cell metastasis was evaluated by transwell and wound healing assays. Downstream target of LINC00511 was investigated by luciferase activity assay. As a results, LINC00511 was elevated in melanoma cells and tissues. Loss of LINC00511 decreased cell viability, reduced proliferation, invasion, and migration of melanoma. miR-610 was target of LINC00511, and miR-610 binds to 3'UTR of nucleobindin-2 (NUCB2). Inhibition of miR-610 attenuated LINC00511 deficiency-induced decrease of NUCB2 in melanoma cells. Loss of miR-610 weakened LINC00511 deficiency-induced decrease of cell viability, proliferation, invasion, and migration of melanoma. In conclusion, silence of LINC00511 reduced cell proliferation and metastasis of melanoma through down-regulation of miR-610-mediated NUCB2.

8.
Cancer Biol Ther ; 24(1): 2165896, 2023 12 31.
Article in English | MEDLINE | ID: mdl-36861928

ABSTRACT

As the most common histological subtype of primary lung cancer, lung adenocarcinoma (LUAD) causes enormous cancer deaths worldwide. Radiotherapy has been frequently used in LUAD cases, and radiosensitivity is vital for LUAD therapy. This research sought to explore the genetic factors affecting radiosensitivity in LUAD and inner mechanisms. LINC00511, miR-497-5p, and SMAD3 expression in LUAD cells were detected via qRT-PCR and western blot. CCK-8 assays, colony formation, and flow cytometry assays were employed to explore the cell viability, apoptosis, and radiosensitivity in PC-9 and A549 cells. The targeting relationship between LINC00511, miR-497-5p, and SMAD3 was verified by dual luciferase reporter assay. Furthermore, xenograft experiments were performed for the in vivo verification. In conclusion, LINC00511 was overexpressed in LUAD cells, which downregulated downstream miR-497-5p expression and mediately led to SMAD3 activation. LINC00511 downregulation suppressed cell viability while enhanced apoptosis rate in LUAD cells. Also, LINC00511 and SMAD3 were overexpressed, while miR-497-5p was downregulated in LUAD cells exposed to 4Gy irradiation treatment. Moreover, LINC00511 inhibition could block SMAD3 expression and promoted the radiosensitivity both in vitro and in vivo. These findings uncover LINC00511 knockdown promoted miR-497-5p expression and subsequently led to lower SMAD3 level, which enhanced radiosensitivity in LUAD cells. LINC00511/miR-497-5p/SMAD3 axis could be of considerable potential to enhance radiosensitivity in LUAD.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , MicroRNAs , Humans , Radiation Tolerance/genetics , Cell Survival/genetics , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/radiotherapy , Lung Neoplasms/genetics , Lung Neoplasms/radiotherapy , MicroRNAs/genetics , Smad3 Protein/genetics
9.
Am J Rhinol Allergy ; 37(3): 313-323, 2023 May.
Article in English | MEDLINE | ID: mdl-36594176

ABSTRACT

BACKGROUND: Airway remodeling in patients with asthma was correlated with induced epithelial-mesenchymal transition (EMT) of bronchial epithelial cells. OBJECTIVE: This study examined the mechanism of Linc00511 on induced EMT of bronchial epithelial cells after transforming growth factor-ß1 (TGF-ß1) induction. METHODS: The human bronchial epithelial cell 16HBE was treated with 10 ng/mL TGF-ß1 for 12 h, 24 h, or 48 h to induce EMT. Cell proliferation and migration rate were detected using CCK8 and wound healing assays, respectively. The expression of key markers of EMT (E-cadherin, N-cadherin, Small mothers against decapentaplegic family member 3 [Smad3], and slug) was tested by Western blot. RESULTS: We found that Linc00511 was time dependently increased in TGF-ß-treated 16HBE cells. Silencing Linc00511 reduced 16HBE cell proliferation, migration, and EMT progress. In addition, the dual-luciferase reporter assay showed Linc00511 was a molecular sponge for miR-16-5p. MiR-16-5p decreased the expression of Smad3 by targeting its 3'-untranslated region (3'UTR). After TGF-ß1 exposure, miR-16-5p silencing counteracted the decreases of 16HBE cell proliferation, migration, and EMT induced by Linc00511 knockdown. And Smad3 overexpression also reversed the inhibitory effect of Linc00511 knockdown on proliferation, migration, and EMT progression in TGF-ß1-induced human bronchial epithelial cells. CONCLUSION: Linc00511 may be a valuable biomarker for asthma therapy.


Subject(s)
Asthma , MicroRNAs , Female , Humans , Transforming Growth Factor beta1/metabolism , Mothers , Epithelial-Mesenchymal Transition/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Epithelial Cells/metabolism , Asthma/genetics , Smad3 Protein/genetics , Smad3 Protein/metabolism
10.
Immunopharmacol Immunotoxicol ; 45(3): 355-369, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36476048

ABSTRACT

OBJECTIVE: The involvement of tumor-derived extracellular vesicles (EVs) in macrophage polarization has been reported. In our present study, we tried to discuss the regulatory role of LINC00511 encapsulated in pancreatic cancer (PCa) cell-derived EVs in the development and progression of PCa. METHODS: EVs from PCa cell line BxPC-3 culture medium were collected and subsequently identified by electron microscopy and nanoparticle tracking analysis. The expression pattern of LINC00511 in PCa cell-derived EVs was determined. The interaction among LINC00511, microRNA-193a-3p, and plasminogen activator urokinase (PLAU) was explored. After co-culture of PCa cell-derived EVs with macrophages, the regulatory roles of LINC00511 in macrophage polarization, PCa cell functions, glucose consumption, lactate production, glycolysis, and mitochondrial oxidative phosphorylation were investigated. RESULTS: PCa cell line BxPC-3 had highly expressed LINC00511 and LINC00511 could be internalized by macrophages. LINC00511 affected macrophage polarization through miR-193a-3p-dependent regulation of PLAU expression. Besides, EV-derived LINC00511 accelerated glycolysis and promoted mitochondrial oxidative phosphorylation of PCa cells through macrophage polarization, thus inducing invasion and migration of PCa cells. CONCLUSION: LINC00511 encapsulated in PCa cell-derived EVs facilitates glycolysis of PCa cells through regulation of macrophage polarization in the tumor microenvironment.


Subject(s)
Extracellular Vesicles , MicroRNAs , Pancreatic Neoplasms , RNA, Long Noncoding , Humans , Cell Line, Tumor , Extracellular Vesicles/genetics , Extracellular Vesicles/metabolism , Glycolysis , Macrophages/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Oxidative Phosphorylation , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Plasminogen Activators/metabolism , Tumor Microenvironment , Urokinase-Type Plasminogen Activator/genetics , Urokinase-Type Plasminogen Activator/metabolism , RNA, Long Noncoding/genetics , Pancreatic Neoplasms
11.
J Clin Lab Anal ; 36(12): e24760, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36371775

ABSTRACT

BACKGROUND: Long non-coding RNA LINC00511 is known to exacerbate lung adenocarcinoma (LUAD) progression. However, the specific mechanism by which LINC00511 affects LUAD progression has not been investigated as yet, and we aimed to elucidate the same in the present study. METHODS: The expression levels of LINC00511, microRNA miR-4739, and pyrroline-5-carboxylate reductase 1 (PYCR1) were determined by quantitative reverse transcription PCR and Western blotting. The Cell Counting Kit-8 and bromodeoxyuridine assays were used to evaluate cell proliferation. Apoptosis was evaluated by flow cytometry, and Bax and Bcl-2 protein levels were determined by western blotting. Cell migration was assessed using transwell assay. The interaction between LINC00511, miR-4739, and PYCR1 was analyzed using luciferase, RNA immunoprecipitation, and RNA pull-down assays. RESULTS: The expression levels of LINC00511 and PYCR1 in LUAD were downregulated, whereas that of miR-4739 was upregulated. Functional studies showed that knockdown of LINC00511 or PYCR1 suppressed the proliferation and migration of LUAD cells, and promoted apoptosis. On the contrary, knockdown of miR-4739 had tumor-promoting effects. Mechanistically, LINC00511 prevented the miR-4739 led inhibition of PYCR1, resulting in PYCR1 overexpression. CONCLUSION: This study demonstrates for the first time that LINC00511 aggravates the malignancy of LUAD by sponging miR-4739 to upregulate PYCR1 expression.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , MicroRNAs , RNA, Long Noncoding , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Cell Line, Tumor , Adenocarcinoma of Lung/pathology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Cell Proliferation/genetics , Lung Neoplasms/pathology , Oxidoreductases/genetics , Gene Expression Regulation, Neoplastic
12.
Apoptosis ; 27(11-12): 800-811, 2022 12.
Article in English | MEDLINE | ID: mdl-36103025

ABSTRACT

BACKGROUND: Long non-coding RNA (lncRNA) exhibits a crucial role in multiple human malignancies. The expression of lncRNA LINC00511, reportedly, is aberrantly up-regulated in several types of tumors. Our research was aimed at deciphering the role and mechanism of LINC00511 in the progression of cervical cancer (CC). METHOD: Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to quantify the expression levels of LINC00511, miR-497-5p and MAPK1 mRNA in CC tissues and cell lines. Cell counting kit-8 (CCK-8), 5-bromo-2'-deoxyuridine (BrdU) and Transwell assays were conducted for detecting the proliferation, migration and invasion of CC cells. Dual-luciferase reporter gene experiments were performed to verify the targeting relationships amongst LINC00511, miR-497-5p and MAPK1. Besides, MAPK1 expression in CC cells was detected via Western blot after LINC00511 and miR-497-5p were selectively regulated. RESULTS: Up-regulation of LINC00511 expression in CC tissues and cell lines was observed, which was in association with tumor size, clinical stage and lymph node metastasis of the patients. LINC00511 overexpression facilitated the proliferation, migration and invasion of CC cells, while opposite effects were observed after knockdown of LINC00511. Mechanistically, LINC00511 was capable of targeting miR-497-5p and up-regulating MAPK1 expression. CONCLUSION: LINC00511/miR-497-5p/MAPK1 axis regulates CC progression.


Subject(s)
MicroRNAs , RNA, Long Noncoding , Uterine Cervical Neoplasms , Female , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Uterine Cervical Neoplasms/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , Cell Proliferation/genetics , Cell Line, Tumor , Apoptosis/genetics , Mitogen-Activated Protein Kinase 1/genetics
13.
BMC Pulm Med ; 22(1): 272, 2022 Jul 16.
Article in English | MEDLINE | ID: mdl-35842617

ABSTRACT

BACKGROUND: Lung adenocarcinoma (LUAD) is currently the leading cause of cancer-related death worldwide. Long noncoding RNAs (lncRNAs) play key roles in tumor occurrence and development as crucial cancer regulators. The present study aimed to explore the molecular mechanism and regulatory network of Linc00511 in LUAD and to identify new potential therapeutic targets for LUAD. METHODS: Real-time quantitative polymerase chain reaction (RT-qPCR) was performed to determine the relative Linc00511 levels in LUAD tissues and cells. The proliferation, apoptosis, migration, and invasion abilities of LUAD cells were assessed by a Cell Counting Kit-8 (CCK-8) assay, a colony formation assay, flow cytometry, and a Transwell assay. Changes in hsa_miR-126-5p, hsa_miR-218-5p, and COL1A1 expression were analyzed using western blotting and RT-qPCR. Targeted binding between miR-126-5p/miR-218-5p and Linc00511 or COL1A1 was verified with a luciferase reporter system and confirmed by an RNA pulldown assay. The participation of the PI3K/AKT signaling pathway was confirmed via western blotting. Xenograft animal experiments were performed to detect the impact of Linc00511 on LUAD tumor growth in vivo. RESULTS: In the present work, we observed that Linc00511 was upregulated in LUAD tissues and cells. Loss/gain-of-function experiments indicated that knockdown of Linc00511 significantly inhibited LUAD cell proliferation, migration and invasion and promoted LUAD cell apoptosis, whereas overexpression of Linc00511 showed the opposite effects. In addition, we determined that Linc00511 promoted COL1A1-mediated cell proliferation and cell motility by sponging miR-126-5p and miR-218-5p. Moreover, Linc00511 activated the PI3K/AKT signaling pathway through upregulation of COL1A1. Finally, silencing of Linc00511 inhibited LUAD tumor growth in vivo. CONCLUSIONS: Linc00511 acts as a competing endogenous RNA to regulate COL1A1 by targeting miR-126-5p and miR-218-5p, thereby promoting the proliferation and invasion of LUAD cells.


Subject(s)
Adenocarcinoma , Collagen Type I, alpha 1 Chain/metabolism , Lung Neoplasms , MicroRNAs , RNA, Long Noncoding , Adenocarcinoma/genetics , Animals , Cell Line, Tumor , Cell Movement , Cell Proliferation , Disease Progression , Gene Expression Regulation, Neoplastic , Humans , Lung/pathology , Lung Neoplasms/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
14.
Biol Proced Online ; 24(1): 8, 2022 Jul 05.
Article in English | MEDLINE | ID: mdl-35790898

ABSTRACT

BACKGROUND: The growing detection of long noncoding RNAs (lncRNAs) required the application of functional approaches in order to provide absolutely precise, conducive, and reliable processed information along with effective consequences. We utilized genetic knockout (KO) techniques to ablate the Long Intergenic Noncoding RNA 00,511 gene in several humans who suffered from breast cancer cells and at the end we analyzed and examined the results. RESULTS: The predictive relevance of LINC00511 expression pattern was measured by using a pooled hazard ratio (HR) with a 95% confidence interval (CI). The link among LINC00511 expression profiles and cancer metastasis was measured by using a pooled odds ratio (OR) with a 95% confidence interval. This meta- analysis was composed of fifteen studies which contained a total of 1040 tumor patients. We used three distinct CRISPR/Cas9-mediated knockdown techniques to prevent the LINC00511 lncRNA from being transcribed. RT-PCR was used to measure lncRNA and RNA expression. We used CCK-8, colony formation tests, and the invasion transwell test to measure cell proliferation and invasion. The stemness was measured by using a sphere-formation test. To validate molecular attachment, luciferase reporter assays were performed. The functional impacts of LINC00511 gene deletion in knockdown breast cancer cell lines were confirmed by using RT-qPCR, MTT, and a colony formation test. This meta-analysis was composed of 15 trials which contained a total of 1040 malignant tumors. Greater LINC00511 expression was ascribed to a lower overall survival (HR = 1.93, 95% CI 1.49-2.49, < P 0.001) and to an increased proportion of lymph node metastasis (OR = 3.07, 95% CI 2.23-4.23, P < 0.001) in the meta-analysis. It was found that the role of LINC00511 was overexpressed in breast cancer samples, and this overexpression was ascribed to a poor prognosis. The gain and loss-of-function tests demonstrated findings such as LINC00511 increased breast cancer cell proliferation, sphere-forming ability, and tumor growth. Additionally, the transcription factor E2F1 binds to the Nanog gene's promoter site to induce transcription. P57, P21, Prkca, MDM4, Map2k6, and FADD gene expression in the treatment group (LINC00511 deletion) was significantly higher than in the control group (P < 0.01). In addition, knockout cells had lower expression of BCL2 and surviving genes than control cells P < 0.001). In each of the two target alleles, the du-HITI approach introduced a reporter and a transcription termination signal. This strategy's donor vector preparation was significantly easier than "CRISPR HDR," and cell selection was likewise much easier than "CRISPR excision." Furthermore, when this approach was used in the initial transfection attempt, single-cell knockouts for both alleles were generated. CONCLUSIONS: The methods employed and described in this work could be extended to the production of LINC00511 knockout cell lines and, in theory, to the deletion of other lncRNAs to study their function.

15.
Front Oncol ; 12: 853026, 2022.
Article in English | MEDLINE | ID: mdl-35574298

ABSTRACT

Liver hepatocellular carcinoma (LIHC) seriously endangers the health and quality of life of individuals worldwide. Increasing evidence has underscored that the copper metabolism MURR1 domain (COMMD) family plays important roles in tumorigenesis. However, the specific role, biological function, mechanism and prognostic value of COMMD2 and its correlation with immune cell infiltration in LIHC remain unknown. In this study, we first determined the expression and prognostic potential of COMMD2 in human tumors using The Cancer Genome Atlas (TCGA) data and identified COMMD2 as a potential oncogene in LIHC. High COMMD2 expression was associated with pathological tumor stage and metastasis. Subsequently, noncoding RNAs (ncRNAs) upregulating COMMD2 expression were identified by performing expression, correlation, and survival analyses in combination. The CRNDE/LINC00511/SNHG17/HCG18-miR-29c-3p axis was identified as the most likely ncRNA-associated pathway upstream of COMMD2 in LIHC. Next, the expression profiles of COMMD2 and ncRNAs were validated in LIHC tissues and adjacent normal tissues. Furthermore, COMMD2 was significantly positively correlated with tumor immune cell infiltration, immune cell biomarkers, and immune checkpoint molecule expression. Importantly, COMMD2 potentially influenced prognosis by regulating immune cell infiltration in LIHC. Finally, COMMD2 was knocked down in LIHC cell lines using siRNAs for functional assays in vitro, resulting in suppressed cell proliferation and migration. In summary, our findings showed that the ncRNA-mediated upregulation of COMMD2 was associated with an unfavorable prognosis correlated with immune cell infiltration in LIHC.

16.
BMC Cancer ; 22(1): 389, 2022 Apr 10.
Article in English | MEDLINE | ID: mdl-35399076

ABSTRACT

BACKGROUND: Accumulating evidence suggests that LINC00511 acts as an oncogenic long non-coding RNA (lncRNA) in various cancers, including lung adenocarcinoma (LUAD). Hence, we attempted to elucidate the potential role of LINC00511 in LUAD. METHODS: LINC00511, miR-195-5p, and GCNT3 expression in LUAD was detected by qRT-PCR. Changes in the proliferation, migration, and invasion of LUAD cells after abnormal regulation of LINC00511, miR-195-5p, or GCNT3 were detected by CCK-8, BrdU, wound healing, and transwell assays. Bax and Bcl-2 protein expression was measured by western blotting. Additionally, we identified the targeting effects of LINC00511, miR-195-5p, and GCNT3 using luciferase and RNA immunoprecipitation (RIP) assays. RESULTS: LINC00511 and GCNT3 were found to be upregulated in LUAD, while miR-195-5p was downregulated. Silencing LINC00511 or GCNT3 decreased the proliferation, migration, invasion, and Bcl-2 protein content in LUAD cells and increased the expression of Bax. Interference with miR-195-5p promoted malignant proliferation of cancer cells. miR-195-5p expression was affected by LINC00511and targeted GCNT3. CONCLUSION: Silencing LINC00511 promotes GCNT3 expression by inhibiting miR-195-5p and ultimately stimulates the malignant progression of LUAD.


Subject(s)
Adenocarcinoma , Lung Neoplasms , MicroRNAs , N-Acetylglucosaminyltransferases , RNA, Long Noncoding , Adenocarcinoma/genetics , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Humans , Lung Neoplasms/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , N-Acetylglucosaminyltransferases/genetics , N-Acetylglucosaminyltransferases/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism
17.
BMC Psychiatry ; 22(1): 178, 2022 03 12.
Article in English | MEDLINE | ID: mdl-35279108

ABSTRACT

BACKGROUND: Bipolar disorder (BD) is a multifactorial condition. Several signaling pathways affect development of this disorder. With the purpose of exploring the role of vitamin D receptor (VDR) signaling in this disorder, we measured expression of selected mRNA coding genes and long non-coding RNAs (lncRNAs) in this pathway in patients versus normal subjects. METHODS: We measured expression of VDR-associated lncRNAs and mRNAs (SNHG6, MALAT1, Linc00511, Linc00346, VDR and CYP27B1) in the peripheral blood of BD patients vs. healthy individuals. RESULTS: Expression of SNHG6 was significantly higher in cases vs. controls (Posterior beta = 1.29, P value < 0.0001. Subgroup analysis by sex revealed significant results in both subgroups (P value < 0.0001 and P value = 0.023 for males and females, respectively). Expression of CYP27B1 was up-regulated in cases vs. controls (Posterior beta = 0.415, P < 0.0001). Such pattern was also detected among males (P < 0.0001), but not females (P = 0.419). Similarly, MALAT1 and Linc00346 were up-regulated in total cases vs. controls (Posterior beta = 0.694, P < 0.0001 and Posterior beta = 0.4, P = 0.012, respectively) and in male cases compared with male controls (Posterior beta = 0.712, P < 0.0001 and Posterior beta = 0.41, P value = 0.038, respectively). Expression of VDR was up-regulated in total cases compared with controls (Posterior beta = 0.683, P value = 0.001). Finally, expression of Linc00511 was not different between groups. MALAT1, SNHG6, CYP27B1, VDR and Linc00346 had AUC values of 0.95, 0.94, 0.91, 0.85 and 0.83 in differentiation of male patients from controls, respectively. CONCLUSION: The current study suggests VDR-associated genes as possible markers for BD.


Subject(s)
Bipolar Disorder , RNA, Long Noncoding , 25-Hydroxyvitamin D3 1-alpha-Hydroxylase/genetics , 25-Hydroxyvitamin D3 1-alpha-Hydroxylase/metabolism , Bipolar Disorder/genetics , Female , Humans , Male , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Receptors, Calcitriol/genetics , Receptors, Calcitriol/metabolism , Signal Transduction , Vitamin D
18.
Mol Biotechnol ; 64(3): 252-262, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34595724

ABSTRACT

We studied the role of long intergenic non-protein coding RNA 00,511 (LINC00511) in lung adenocarcinoma (LUAD), with a specific focus on acquired chemoresistance. LINC00511 expression was higher in responders to cisplatin (DDP, another name for cisplantin) than non-responders, in A549/DDP cells than in parental A549 cells and normal human bronchial epithelial cells (16HBE). LINC00511 knockdown decreased the half maximal inhibitory concentration (IC50) value, suppressed A549/DDP cell viability, but induced apoptosis. LINC00511 bound with miR-182 and increased the expression of baculoviral inhibitor of apoptosis protein (IAP) repeat containing 5 (BIRC5). BIRC5 knockdown mimicked the effects of LINC00511 knockdown on the IC50 value, A549/DDP cell viability, and apoptosis. BIRC5 overexpression negated the effects of LINC00511 knockdown on A549/DDP cells. In vivo, LINC00511 knockdown attenuated the tumorigenesis of A549/DDP cells after DDP injection. These results provide a novel LINC00511/miR-182/BIRC5 paradigm to explain the mechanism of acquired DDP resistance.


Subject(s)
Adenocarcinoma of Lung/drug therapy , Cisplatin/administration & dosage , Drug Resistance, Neoplasm , MicroRNAs/genetics , RNA, Long Noncoding/genetics , RNA, Small Interfering/administration & dosage , Survivin/genetics , A549 Cells , Adenocarcinoma of Lung/genetics , Animals , Cell Line, Tumor , Cisplatin/pharmacology , Down-Regulation , Drug Resistance, Neoplasm/drug effects , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Male , Mice , RNA, Long Noncoding/antagonists & inhibitors , RNA, Small Interfering/pharmacology , Up-Regulation/drug effects , Xenograft Model Antitumor Assays
19.
J Mol Neurosci ; 72(2): 239-245, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34499334

ABSTRACT

Vitamin D receptor (VDR) signaling has been found to contribute to the pathology of numerous neuropsychiatric diseases including schizophrenia. Notably, VDR signaling has a functional relationship with many long non-coding RNAs (lncRNAs) such as SNHG6, LINC00346 and LINC00511. We calculated expression of these lncRNAs in the venous blood of patients with schizophrenia versus healthy individuals. Expression of SNHG6 was significantly higher in cases versus controls (posterior beta = 0.552, adjusted P value < 0.0001). This pattern of expression was detected in both men (posterior beta = 0.556, adjusted P value < 0.0001) and women (posterior beta = 0.31, adjusted P value = 0.005). Expression of LINC00346 was also higher in cases versus controls (posterior beta = 0.497, adjusted P value < 0.0001) and in distinct sex-based comparisons (posterior beta = 0.451, adjusted P value = 0.009 among men and posterior beta = 0.214, P value = 0.004 among women). Expression of LINC00511 was higher in cases versus controls (posterior beta = 0.318, adjusted P value = 0.01). While sex-based comparisons revealed significant difference in expression of LINC00511 among female subgroups (posterior beta = 0.424, adjusted P value = 0.016), such comparison showed no difference among male cases and male controls (adjusted P value = 0.295). The expression levels of SNHG6 distinguished patients with schizophrenia from controls, with AUC = 0.932. LINC00346 and LINC00511 distinguished between the two groups with AUC values of 0.795 and 0.706, respectively. Therefore, these lncRNAs might be used as markers for schizophrenia.


Subject(s)
RNA, Long Noncoding , Schizophrenia , Female , Humans , Male , RNA, Long Noncoding/metabolism , Receptors, Calcitriol/genetics , Receptors, Calcitriol/metabolism , Schizophrenia/genetics , Signal Transduction , Transcriptional Activation , Up-Regulation
20.
Front Oncol ; 11: 749753, 2021.
Article in English | MEDLINE | ID: mdl-34745973

ABSTRACT

Breast cancer (BC) is the leading cause of female cancer-related mortalities. Evidence has illustrated the role of long non-coding RNAs (lncRNA) and microRNAs (miRNA) as promising pool of protein non-coding regulators, for tuning the aggressiveness of several malignancies. This research aims to unravel the expression pattern and the emphases of the diagnostic value of the long intergenic ncRNA00511 (LINC00511) and its downstream microRNA (miR-185-3p) and the pathogenic significance of the onco-miR-301a-3p in naïve BC patients. LINC00511 was chosen and validated, and its molecular binding was confirmed using bioinformatics. LINC00511 was measured in 25 controls and 70 patients using qPCR. The association between the investigated ncRNA's expression and the BC patients' clinicopathological features was assessed. Receiver operating characteristic (ROC) curve was blotted to weigh out their diagnostic efficacy over the classical tumor markers (TMs). Bioinformatics and Spearman correlation were used to predict the interaction between LINC00511, miR-185-3p, and miR-301a-3p altogether to patients' features. LINC00511 and miR-301a-3p, in BC patients' blood, were overexpressed, and their median levels increased significantly, while miR-185-3p was, in contrast, downregulated, being decreased fourfold. LINC00511 was elevated in BC early stages, when compared to late stages (p < 0.0003). LINC00511, miR-185-3p, and miR-301a-3p showed AUC superior to classical TMs, allowing us to conclude that the investigated ncRNAs, in BC patients' liquid biopsy, are novel diagnostic molecular biomarker signatures. Lymph node metastasis (LNM) and advanced tumor grade were directly correlated with LINC00511 significantly. Additionally, both LINC00511 and miR-301a-3p were positively correlated with the aggressiveness of BC, as manifested in patients with larger tumors (>2 cm) at (p < 0.001). Therefore, these findings aid our understanding of BC pathogenesis, in the clinical setting, being related in part to the LINC00511/miR axis, which could be a future potential therapeutic target.

SELECTION OF CITATIONS
SEARCH DETAIL