Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Cancer Lett ; 566: 216226, 2023 07 10.
Article in English | MEDLINE | ID: mdl-37230222

ABSTRACT

Autotaxin (ATX), also known as ENPP2, is the key enzyme in lysophosphatidic acid (LPA) production. LPA acts on its receptors on the cell membrane to promote cell proliferation and migration, and thus, the ATX-LPA axis plays a critical role in tumorigenesis. Clinical data analysis indicated that in colon cancer, there is a strong negative correlation between the expression of ATX and EZH2, the enzymatic catalytic subunit of polycomb repressive complex 2 (PRC2). Here, we demonstrated that ATX expression was epigenetically silenced by PRC2, which was recruited by MTF2 and catalyzed H3K27me3 modification in the ATX promoter region. EZH2 inhibition is a promising strategy for cancer treatment, and ATX expression is induced in colon cancer cells by EZH2 inhibitors. With both EZH2 and ATX as targets, their combined inhibition exerted synergistic antitumor effects on colon cancer cells. In addition, LPA receptor 2 (LPA2) deficiency significantly enhanced the sensitivity to EZH2 inhibitors in colon cancer cells. In summary, our study identified ATX as a novel PRC2 target gene and found that cotargeting EZH2 and the ATX-LPA-LPA2 axis may be a potential combination therapy strategy for colon cancer.


Subject(s)
Colonic Neoplasms , Lysophospholipids , Humans , Lysophospholipids/metabolism , Cell Line, Tumor , Colonic Neoplasms/drug therapy , Colonic Neoplasms/genetics , Receptors, Lysophosphatidic Acid/genetics , Receptors, Lysophosphatidic Acid/metabolism , Enhancer of Zeste Homolog 2 Protein/genetics
2.
Mol Ther Oncolytics ; 26: 372-386, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36090480

ABSTRACT

Chemoprevention of hepatocellular carcinoma (HCC) is highly desirable in clinic. Berberine (BBR) is reported to play potential roles in cancer treatment and prevention. We studied the chemopreventive effect of BBR on hepatocellular carcinogenesis in an inflammation-driven mouse model, as it was enriched in liver after oral administration. Oral BBR significantly decreased the number and volume of visible nodular tumors, and prolonged the median overall survival by 9 and 8 weeks in the diethylnitrosamine (DEN)-injected male and female mice respectively. The nodular tumors were induced through activation of the lysophosphatidic acid (LPA) pathway in liver. LPA stimulated the abnormal leptin transcription through interacting with LPA receptor-2 (LPAR2) followed by p38 activation, and BBR inhibited carcinogenesis by suppressing the bioactivity of LPA. Specifically, BBR significantly reduced the expression of the LPA synthetase autotaxin (ATX) and LPAR2 in the nodular tumors of DEN-injected mice. Subsequently, BBR repressed the abnormal transcription of leptin stimulated by LPA-induced phosphorylation of p38 in hepatoma cells. In fact, BBR reduced the abnormal expression of leptin in livers of DEN-injected male mice throughout the course of an 8-month experiment. BBR might be a preventive agent for HCC, working at least partially through antagonizing the ATX-LPA-LPAR2-p38-leptin axis in liver.

3.
Cell Signal ; 69: 109551, 2020 05.
Article in English | MEDLINE | ID: mdl-32006610

ABSTRACT

Lysophosphatidic acid (LPA) mediates a variety of biological functions via the binding of G protein-coupled LPA receptors (LPA receptor-1 (LPA1) to LPA6). This study aimed to investigate the roles of LPA2 and LPA3 in the modulation of chemoresistance to anticancer drug in lung cancer A549 cells. In cell survival assay, cells were treated with cisplatin (CDDP) every 24 h for 2 days. The cell survival rate to CDDP of A549 cells was significantly elevated by an LPA2 agonist, GRI-977143. To evaluate the roles of LPA2-mediated signaling in cell survival during tumor progression, highly migratory (A549-R10) cells were generated from A549 cells. In the presence of GRI-977143, the cell survival rate to CDDP of A549-R10 cells were markedly higher than that of A549 cells, correlating with LPAR2 expression level. Moreover, to assess the effects of long-term anticancer drug treatment on cell survival, the long-term CDDP treated (A549-CDDP) cells were established from A549 cells. The cell survival rate to CDDP of A549-CDDP cells was elevated by GRI-977143. Since LPAR3 expression level was significantly higher in A549-CDDP cells than in A549 cells, we investigated the roles of LPA3 in the cell survival to CDDP of A549 cells, using an LPA3 agonist, 1-oleoyl-2-methyl-sn-glycero-3-phosphothionate ((2S)-OMPT). The cell survival rate to CDDP of A549 cells was significantly reduced by (2S)-OMPT treatment. In the presence of (2S)-OMPT, the cell survival rate to CDDP of A549 cells was elevated by LPA3 knockdown. These results suggest that LPA signaling via LPA2 and LPA3 is involved in the regulation of chemoresistance in A549 cells treated with CDDP.


Subject(s)
Antineoplastic Agents/therapeutic use , Cisplatin/therapeutic use , Drug Resistance, Neoplasm , Lung Neoplasms/drug therapy , Receptors, Lysophosphatidic Acid/physiology , A549 Cells , Cell Survival , Gene Expression Regulation, Neoplastic , Humans
SELECTION OF CITATIONS
SEARCH DETAIL