Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
FASEB J ; 38(2): e23425, 2024 01 31.
Article in English | MEDLINE | ID: mdl-38226852

ABSTRACT

Postprandial hyperglycemia is an early indicator of impaired glucose tolerance that leads to type 2 diabetes mellitus (T2DM). Alterations in the fatty acid composition of phospholipids have been implicated in diseases such as T2DM and nonalcoholic fatty liver disease. Lysophospholipid acyltransferase 10 (LPLAT10, also called LPCAT4 and LPEAT2) plays a role in remodeling fatty acyl chains of phospholipids; however, its relationship with metabolic diseases has not been fully elucidated. LPLAT10 expression is low in the liver, the main organ that regulates metabolism, under normal conditions. Here, we investigated whether overexpression of LPLAT10 in the liver leads to improved glucose metabolism. For overexpression, we generated an LPLAT10-expressing adenovirus (Ad) vector (Ad-LPLAT10) using an improved Ad vector. Postprandial hyperglycemia was suppressed by the induction of glucose-stimulated insulin secretion in Ad-LPLAT10-treated mice compared with that in control Ad vector-treated mice. Hepatic and serum levels of phosphatidylcholine 40:7, containing C18:1 and C22:6, were increased in Ad-LPLAT10-treated mice. Serum from Ad-LPLAT10-treated mice showed increased glucose-stimulated insulin secretion in mouse insulinoma MIN6 cells. These results indicate that changes in hepatic phosphatidylcholine species due to liver-specific LPLAT10 overexpression affect the pancreas and increase glucose-stimulated insulin secretion. Our findings highlight LPLAT10 as a potential novel therapeutic target for T2DM.


Subject(s)
1-Acylglycerophosphocholine O-Acyltransferase , Diabetes Mellitus, Type 2 , Glucose Intolerance , Animals , Mice , 1-Acylglycerophosphocholine O-Acyltransferase/genetics , Glucose/pharmacology , Insulin Secretion , Liver , Phosphatidylcholines , Phospholipids
2.
Int J Mol Sci ; 23(19)2022 Oct 06.
Article in English | MEDLINE | ID: mdl-36233185

ABSTRACT

Urothelium is a transitional, stratified epithelium that lines the lower urinary tract, providing a tight barrier to urine whilst retaining the capacity to stretch and rapidly resolve damage. The role of glycerophospholipids in urothelial barrier function is largely unknown, despite their importance in membrane structural integrity, protein complex assembly, and the master regulatory role of PPARγ in urothelial differentiation. We performed lipidomic and transcriptomic characterisation of urothelial differentiation, revealing a metabolic switch signature from fatty acid synthesis to lipid remodelling, including 5-fold upregulation of LPCAT4. LPCAT4 knockdown urothelial cultures exhibited an impaired proliferation rate but developed elevated trans-epithelial electrical resistances upon differentiation, associated with a reduced and delayed capacity to restitute barrier function after wounding. Specific reduction in 18:1 PC fatty acyl chains upon knockdown was consistent with LPCAT4 specificity, but was unlikely to elicit broad barrier function changes. However, transcriptomic analysis of LPCAT4 knockdown supported an LPC-induced reduction in DAG availability, predicted to limit PKC activity, and TSPO abundance, predicted to limit endogenous ATP. These phenotypes were confirmed by PKC and TSPO inhibition. Together, these data suggest an integral role for lipid mediators in urothelial barrier function and highlight the strength of combined lipidomic and transcriptomic analyses for characterising tissue homeostasis.


Subject(s)
1-Acylglycerophosphocholine O-Acyltransferase , PPAR gamma , Urothelium , 1-Acylglycerophosphocholine O-Acyltransferase/genetics , Adenosine Triphosphate/metabolism , Cell Differentiation/genetics , Energy Metabolism , Fatty Acids/metabolism , Glycerophospholipids/metabolism , Humans , Lipids , PPAR gamma/genetics , PPAR gamma/metabolism , Receptors, GABA/metabolism , Urothelium/metabolism
3.
J Lipid Res ; 63(10): 100271, 2022 10.
Article in English | MEDLINE | ID: mdl-36049524

ABSTRACT

The main fatty acids at the sn-1 position of phospholipids (PLs) are saturated or monounsaturated fatty acids such as palmitic acid (C16:0), stearic acid (C18:0), and oleic acid (C18:1) and are constantly replaced, like unsaturated fatty acids at the sn-2 position. However, little is known about the molecular mechanism underlying the replacement of fatty acids at the sn-1 position, i.e., the sn-1 remodeling. Previously, we established a method to evaluate the incorporation of fatty acids into the sn-1 position of lysophospholipids (lyso-PLs). Here, we used this method to identify the enzymes capable of incorporating fatty acids into the sn-1 position of lyso-PLs (sn-1 lysophospholipid acyltransferase [LPLAT]). Screenings using siRNA knockdown and recombinant proteins for 14 LPLATs identified LPLAT7/lysophosphatidylglycerol acyltransferase 1 (LPGAT1) as a candidate. In vitro, we found LPLAT7 mainly incorporated several fatty acids into the sn-1 position of lysophosphatidylcholine (LPC) and lysophosphatidylethanolamine (LPE), with weak activities toward other lyso-PLs. Interestingly, however, only C18:0-containing phosphatidylcholine (PC) and phosphatidylethanolamine (PE) were specifically reduced in the LPLAT7-mutant cells and tissues from knockout mice, with a concomitant increase in the level of C16:0- and C18:1-containing PC and PE. Consistent with this, the incorporation of deuterium-labeled C18:0 into PLs dramatically decreased in the mutant cells, while deuterium-labeled C16:0 and C18:1 showed the opposite dynamic. Identifying LPLAT7 as an sn-1 LPLAT facilitates understanding the biological significance of sn-1 fatty acid remodeling of PLs. We also propose to use the new nomenclature, LPLAT7, for LPGAT1 since the newly assigned enzymatic activities are quite different from the LPGAT1s previously reported.


Subject(s)
1-Acylglycerophosphocholine O-Acyltransferase , Phosphatidylethanolamines , Mice , Animals , 1-Acylglycerophosphocholine O-Acyltransferase/genetics , 1-Acylglycerophosphocholine O-Acyltransferase/metabolism , Lysophosphatidylcholines , RNA, Small Interfering , Deuterium , Lysophospholipids/metabolism , Fatty Acids/metabolism , Phosphatidylcholines/metabolism , Stearic Acids , Palmitic Acid/metabolism , Fatty Acids, Unsaturated , Recombinant Proteins , Oleic Acids , Fatty Acids, Monounsaturated
4.
J Biol Chem ; 298(1): 101470, 2022 01.
Article in English | MEDLINE | ID: mdl-34890643

ABSTRACT

The diversity of glycerophospholipid species in cellular membranes is immense and affects various biological functions. Glycerol-3-phosphate acyltransferases (GPATs) and lysophospholipid acyltransferases (LPLATs), in concert with phospholipase A1/2s enzymes, contribute to this diversity via selective esterification of fatty acyl chains at the sn-1 or sn-2 positions of membrane phospholipids. These enzymes are conserved across all kingdoms, and in mammals four GPATs of the 1-acylglycerol-3-phosphate O-acyltransferase (AGPAT) family and at least 14 LPLATs, either of the AGPAT or the membrane-bound O-acyltransferase (MBOAT) families, have been identified. Here we provide an overview of the biochemical and biological activities of these mammalian enzymes, including their predicted structures, involvements in human diseases, and essential physiological roles as revealed by gene-deficient mice. Recently, the nomenclature used to refer to these enzymes has generated some confusion due to the use of multiple names to refer to the same enzyme and instances of the same name being used to refer to completely different enzymes. Thus, this review proposes a more uniform LPLAT enzyme nomenclature, as well as providing an update of recent advances made in the study of LPLATs, continuing from our JBC mini review in 2009.


Subject(s)
1-Acylglycerophosphocholine O-Acyltransferase , Glycerophospholipids , Lysophospholipids , 1-Acylglycerophosphocholine O-Acyltransferase/classification , 1-Acylglycerophosphocholine O-Acyltransferase/metabolism , Animals , Glycerophospholipids/metabolism , Humans , Lysophospholipids/metabolism , Terminology as Topic
5.
Int J Mol Sci ; 22(15)2021 Jul 29.
Article in English | MEDLINE | ID: mdl-34360902

ABSTRACT

Acyl-CoA:lysophosphatidylethanolamine acyltransferases (LPEATs) are known as enzymes utilizing acyl-CoAs and lysophospholipids to produce phosphatidylethanolamine. Recently, it has been discovered that they are also involved in the growth regulation of Arabidopsis thaliana. In our study we investigated expression of each Camelina sativa LPEAT isoform and their behavior in response to temperature changes. In order to conduct a more extensive biochemical evaluation we focused both on LPEAT enzymes present in microsomal fractions from C. sativa plant tissues, and on cloned CsLPEAT isoforms expressed in yeast system. Phylogenetic analyses revealed that CsLPEAT1c and CsLPEAT2c originated from Camelina hispida, whereas other isoforms originated from Camelina neglecta. The expression ratio of all CsLPEAT1 isoforms to all CsLPEAT2 isoforms was higher in seeds than in other tissues. The isoforms also displayed divergent substrate specificities in utilization of LPE; CsLPEAT1 preferred 18:1-LPE, whereas CsLPEAT2 preferred 18:2-LPE. Unlike CsLPEAT1, CsLPEAT2 isoforms were specific towards very-long-chain fatty acids. Above all, we discovered that temperature strongly regulates LPEATs activity and substrate specificity towards different acyl donors, making LPEATs sort of a sensor of external thermal changes. We observed the presented findings not only for LPEAT activity in plant-derived microsomal fractions, but also for yeast-expressed individual CsLPEAT isoforms.


Subject(s)
Acyltransferases/metabolism , Camellia/enzymology , Camellia/genetics , Phosphatidylethanolamines/metabolism , Plant Proteins/metabolism , Seeds/enzymology , Temperature , Acyl Coenzyme A/metabolism , Acyltransferases/genetics , Camellia/classification , Camellia/growth & development , Cold-Shock Response , DNA, Plant/genetics , Enzyme Activation , Heat-Shock Response , Isoenzymes/genetics , Microsomes/enzymology , Phylogeny , Plant Proteins/genetics , Seeds/growth & development , Substrate Specificity
6.
J Biol Chem ; 292(51): 21205-21215, 2017 12 22.
Article in English | MEDLINE | ID: mdl-29101229

ABSTRACT

Cationic antimicrobial peptides (CAMPs), such as polymyxins, are used as a last-line defense in treatment of many bacterial infections. However, some bacteria have developed resistance mechanisms to survive these compounds. Current pandemic O1 Vibrio cholerae biotype El Tor is resistant to polymyxins, whereas a previous pandemic strain of the biotype Classical is polymyxin-sensitive. The almEFG operon found in El Tor V. cholerae confers >100-fold resistance to antimicrobial peptides through aminoacylation of lipopolysaccharide (LPS), expected to decrease the negatively charged surface of the V. cholerae outer membrane. This Gram-negative system bears striking resemblance to a related Gram-positive cell-wall remodeling strategy that also promotes CAMP resistance. Mutants defective in AlmEF-dependent LPS modification exhibit reduced fitness in vivo Here, we present investigation of AlmG, the hitherto uncharacterized member of the AlmEFG pathway. Evidence for AlmG glycyl to lipid substrate transferase activity is demonstrated in vivo by heterologous expression of V. cholerae pathway enzymes in a specially engineered Escherichia coli strain. Development of a minimal keto-deoxyoctulosonate (Kdo)-lipid A domain in E. coli was necessary to facilitate chemical structure analysis and to produce a mimetic Kdo-lipid A domain AlmG substrate to that synthesized by V. cholerae. Our biochemical studies support a uniquely nuanced pathway of Gram-negative CAMPs resistance and provide a more detailed description of an enzyme of the pharmacologically relevant lysophosphospholipid acyltransferase (LPLAT) superfamily.


Subject(s)
Aminoacyltransferases/metabolism , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/metabolism , Drug Resistance, Bacterial , Models, Molecular , Polymyxins/pharmacology , Vibrio cholerae/metabolism , Acyltransferases/chemistry , Acyltransferases/genetics , Acyltransferases/metabolism , Amino Acid Substitution , Aminoacyltransferases/chemistry , Aminoacyltransferases/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Cholera/epidemiology , Cholera/microbiology , Gene Deletion , Glycine/chemistry , Glycine/metabolism , Humans , Lipid A/analogs & derivatives , Lipid A/chemistry , Lipid A/metabolism , Lipopolysaccharides/chemistry , Lipopolysaccharides/metabolism , Molecular Structure , Mutation , Pandemics , Phylogeny , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Substrate Specificity , Vibrio cholerae/drug effects , Vibrio cholerae/growth & development , Vibrio cholerae/isolation & purification
7.
J Biochem ; 154(1): 21-8, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23698096

ABSTRACT

Glycerophospholipids are main components of cellular membranes and have numerous structural and functional roles to regulate cellular functions. Polyunsaturated fatty acids, such as arachidonic acid and eicosapentaenoic acid, are mainly located at the sn-2, but not the sn-1 position of glycerophospholipids in an asymmetrical manner and the fatty acid compositions at both the sn-1 and sn-2 positions differ in various cell types and tissues. Asymmetry and diversity of membrane glycerophospholipids are generated in the remodelling pathway (Lands' cycle), which are conducted by the concerted actions of phospholipases A2 (PLA2s) and lysophospholipid acyltransferases (LPLATs). The Lands' cycle was first reported in the 1950s. While PLA2s have been well characterized, little is known about the LPLATs. Recently, several laboratories, including ours, isolated LPLATs that function in the Lands' cycle from the 1-acylglycerol-3-phosphate O-acyltransferase family and the membrane bound O-acyltransferases family. In this review, we summarize recent studies on cloning and characterization of LPLATs that contribute to membrane asymmetry and diversity.


Subject(s)
1-Acylglycerophosphocholine O-Acyltransferase/metabolism , Membrane Lipids/metabolism , 1-Acylglycerophosphocholine O-Acyltransferase/chemistry , 1-Acylglycerophosphocholine O-Acyltransferase/genetics , Amino Acid Motifs , Animals , Cell Membrane/chemistry , Cell Membrane/metabolism , Humans , Membrane Fluidity , Membrane Lipids/chemistry , Metabolic Networks and Pathways , Mice , Models, Biological
SELECTION OF CITATIONS
SEARCH DETAIL