Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Curr Microbiol ; 81(3): 92, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38315241

ABSTRACT

Duckweed-associated actinobacteria are co-existing microbes that affect duckweed growth and adaptation. In this study, we aimed to report a novel actinobacterium species and explore its ability to enhance duckweed growth. Strain DW7H6T was isolated from duckweed, Lemna aequinoctialis. Phylogenetic analysis based on its 16S rRNA gene sequence revealed that the strain was most closely related to Actinomycetospora straminea IY07-55T (99.0%), Actinomycetospora chibensis TT04-21T (98.9%), Actinomycetospora lutea TT00-04T (98.8%) and Actinomycetospora callitridis CAP 335T (98.4%). Chemotaxonomic and morphological characteristics of strain DW7H6T were consistent with members of the genus Actinomycetospora, while average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) between the draft genomes of this strain and its closely related type strains were below the proposed threshold values used for species discrimination. Based on chemotaxonomic, phylogenetic, phenotypic, and genomic evidence obtained, we describe a novel Actinomycetospora species, for which the name Actinomycetospora lemnae sp. nov. is proposed. The type strain is DW7H6T (TBRC 15165T, NBRC 115294T). Additionally, the duckweed-associated actinobacterium strain DW7H6T was able to enhance duckweed growth when compared to the control, in which the number of fronds and biomass dry weight were increased by up to 1.4 and 1.3 fold, respectively. Moreover, several plant-associated gene features in the genome of strain DW7H6T potentially involved in plant-microbe interactions were identified.


Subject(s)
Actinobacteria , Actinomycetales , Araceae , Fatty Acids/analysis , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , DNA, Bacterial/genetics , Actinobacteria/genetics , Araceae/genetics , Araceae/microbiology , Bacterial Typing Techniques
2.
BMC Plant Biol ; 22(1): 545, 2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36434529

ABSTRACT

BACKGROUND: Lemna species are cosmopolitan floating plants that have great application potential in the food/feed, pharmaceutical, phytoremediation, biofuel, and bioplastic industries. In this study, the effects of exogenous melatonin (0.1, 1, and 10 µM) on the growth and production of various bioactive metabolites and intact lipid species were investigated in Lemna aequinoctialis culture. RESULTS: Melatonin treatment significantly enhanced the growth (total dry weight) of the Lemna aequinoctialis culture. Melatonin treatment also increased cellular production of metabolites including ß-alanine, ascorbic acid, aspartic acid, citric acid, chlorophyll, glutamic acid, phytosterols, serotonin, and sucrose, and intact lipid species; digalactosyldiacylglycerols, monogalactosyldiacylglycerols, phosphatidylinositols, and sulfoquinovosyldiacylglycerols. Among those metabolites, the productivity of campesterol (1.79 mg/L) and stigmasterol (10.94 mg/L) were the highest at day 28, when 10 µM melatonin was treated at day 7. CONCLUSION: These results suggest that melatonin treatment could be employed for enhanced production of biomass or various bioactive metabolites and intact lipid species in large-scale L. aequinoctialis cultivation as a resource for food, feed, and pharmaceutical industries.


Subject(s)
Araceae , Melatonin , Melatonin/pharmacology , Melatonin/metabolism , Lipidomics , Biodegradation, Environmental , Lipids
3.
J Hazard Mater ; 432: 128646, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35325863

ABSTRACT

Global anthropogenic changes are altering the temperature and nutrients of the ecosystem, which might also affect the extent of cadmium (Cd) toxicity in organisms. This study aimed to investigate the combined effects of temperature and nutrient availability (here, nitrogen [N] and phosphorus [P]) on Cd toxicity in duckweed (Lemna aequinoctialis). The growth parameters, nutrient uptake, and Cd tolerance of plantlets reached their highest values for duckweed grown in medium with 28 mg/L N and 2.4 mg/L P (N:P = 11.67) at 25 °C under 1 mg/L CdCl2 exposure. Raising the temperature (from 18 °C to 25 °C) and levels of N and P (from 0.01 N/P to 2 N/P) enhanced photosynthetic capacity and nutrient uptake, thus promoting plant growth and diluting the toxic effects of Cd. Although Cd uptake increased with increasing temperature, duckweed with relatively high biomass exhibited a lower accumulation of the toxic metal because their growth rate exceeded Cd uptake rate. Increasing N and P supply also enhanced the tolerance of duckweed to Cd by limiting Cd bioavailability. Our study therefore suggests the importance of combined effects from temperature and nutrients for Cd toxicity and provides novel insights for a comprehensive analysis of Cd toxicity associated with the environmental factors of a particular ecosystem.


Subject(s)
Araceae , Cadmium , Cadmium/toxicity , Ecosystem , Nutrients , Temperature
4.
Front Plant Sci ; 12: 697206, 2021.
Article in English | MEDLINE | ID: mdl-34707626

ABSTRACT

Duckweeds (Araceae: Lemnoideae) are aquatic monocotyledonous plants that are characterized by their small size, rapid growth, and wide distribution. Developmental processes regulating the formation of their small leaf-like structures, called fronds, and tiny flowers are not well characterized. In many plant species, flowering is promoted by the florigen activation complex, whose major components are florigen FLOWERING LOCUS T (FT) protein and transcription factor FD protein. How this complex is regulated at the molecular level during duckweed flowering is also not well understood. In this study, we characterized the course of developmental changes during frond development and flower formation in Lemna aequinoctialis Nd, a short-day plant. Detailed observations of frond and flower development revealed that cell proliferation in the early stages of frond development is active as can be seen in the separate regions corresponding to two budding pouches in the proximal region of the mother frond. L. aequinoctialis produces two stamens of different lengths with the longer stamen growing more rapidly. Using high-throughput RNA sequencing (RNA-seq) and de novo assembly of transcripts from plants induced to flower, we identified the L. aequinoctialis FT and FD genes, whose products in other angiosperms form a transcriptional complex to promote flowering. We characterized the protein-protein interaction of duckweed FT and FD in yeast and examined the functions of the two gene products by overexpression in Arabidopsis. We found that L. aequinoctialis FTL1 promotes flowering, whereas FTL2 suppresses flowering.

5.
Bioresour Technol ; 249: 457-463, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29065328

ABSTRACT

The effect of Zn2+ on ammonium and phosphorous removal and duckweed growth was evaluated for treatment of anaerobically digested swine wastewater (ADSW) at various initial Zn2+ concentrations ranging from 1.0 to 15mg/L. Lemna aequinoctialis taken from a local pond was selected for the treatment, and its fresh weight and contents of proteins, photosynthetic pigments, and vitamin E were examined. Results showed that the optimal Zn2+ concentration was 5.0mg/L for NH3-N and TP removal, the duckweed growth, and the accumulation of proteins in the duckweed. A maximum content of photosynthetic pigments increased with the increase of initial Zn2+ concentration, and it arrived earlier for a higher concentration of Zn2+. Vitamin E content in the duckweed reached 4.5mg/kg at 15mg/L Zn2+ in 12-day cultivation, which showed the potential for producing and harvesting a high value-added product of vitamin E by culturing duckweed in ADSW.


Subject(s)
Araceae , Zinc , Animals , Ions , Phosphorus , Swine , Wastewater
6.
Plant Biol (Stuttg) ; 20(2): 357-364, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29222918

ABSTRACT

Duckweed is considered a promising feedstock for bioethanol production due to its high biomass and starch production. Selection of duckweed strains with high starch accumulation is essential for application of duckweeds to bioethanol production. Geographic differentiation had a large influence on genetic diversity of duckweeds. Biomass production, starch content and starch amount in geographically isolated strains of 20 Lemna aequinoctialis and Spirodela polyrhiza were calculated to evaluate their potential for bioethanol production. The influence of different collection time, culture medium and NaCl concentration on starch accumulation of the best strains were analysed. The results showed that biomass production, starch content and starch production of duckweeds demonstrated clonal dependency. The best strain was L. aequinoctialis 6000, with biomass production of 15.38 ± 1.47 g m-2 , starch content of 28.68 ± 1.10% and starch production of 4.39 ± 0.25 g m-2 . Furthermore, starch content of L. aequinoctialis 6000 was highest after 8 h of light, tap water was the best medium for starch induction, and NaCl did not induce starch accumulation. This study suggests duckweed biomass production and starch production demonstrate clonal dependency, indicating that extensive clonal comparisons will be required to identify the most suitable isolates for duckweed selective breeding for bioethanol.


Subject(s)
Araceae/metabolism , Starch/biosynthesis , Araceae/chemistry , Araceae/genetics , Araceae/growth & development , Biofuels , Biomass , Cloning, Organism , Phylogeny , Starch/analysis
7.
Bioresour Technol ; 187: 84-90, 2015.
Article in English | MEDLINE | ID: mdl-25841186

ABSTRACT

Duckweed has been considered as a valuable feedstock for bioethanol production due to its high biomass and starch production. To investigate the effects of light conditions on duckweed biomass and starch production, Lemna aequinoctialis 6000 was cultivated at different photoperiods (12:12, 16:8 and 24:0h) and light intensities (20, 50, 80, 110, 200 and 400µmolm(-2)s(-1)). The results showed that the duckweed biomass and starch production was increased with increasing light intensity and photoperiod except at 200 and 400µmolm(-2)s(-1). Considering the light cost, 110µmolm(-2)s(-1) was optimum light condition for starch accumulation with the highest maximum growth rate, biomass and starch production of 8.90gm(-2)day(-1), 233.25gm(-2) and 98.70gm(-2), respectively. Moreover, the results suggested that high light induction was a promising method for duckweed starch accumulation. This study provides optimized light conditions for future industrial large-scale duckweed cultivation.


Subject(s)
Araceae/microbiology , Araceae/physiology , Biofuels/microbiology , Ethanol/metabolism , Photoperiod , Starch/metabolism , Araceae/radiation effects , Biofuels/radiation effects , Biomass , Dose-Response Relationship, Radiation , Ethanol/isolation & purification , Light , Photosynthesis/physiology , Photosynthesis/radiation effects , Radiation Dosage
SELECTION OF CITATIONS
SEARCH DETAIL