Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters











Main subject
Publication year range
1.
Angew Chem Int Ed Engl ; : e202406054, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980317

ABSTRACT

Electrochemical impedance spectroscopy (EIS), characterized by its non-destructive and in-situ nature, plays a crucial role in comprehending the thermodynamic and kinetic processes occurring with Li-ion batteries. However, there is a lack of consistent and coherent physical interpretations for the EIS of porous electrodes. Therefore, it is imperative to conduct thorough investigations into the underlying physical mechanisms of EIS. Herein, by employing reference electrode in batteries, we revisit the associated physical interpretation of EIS at different frequency. Combining different battery configurations, temperature-dependent experiments, and elaborated distribution of relaxation time analysis, we find that the ion transport in porous electrode channels and pseudo-capacitance behavior dominate the high-frequency and mid-frequency impedance arcs, respectively. This work offers a perspective for the physical interpretation of EIS and also sheds light on the understanding of EIS characteristics in other advanced energy storage systems.

2.
Chemistry ; : e202402004, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958607

ABSTRACT

Novel fluorinated, pyrrolidinium-based dicationic ionic liquids (FDILs) as high-performance electrolytes in energy storage devices have been prepared, displaying unprecedented electrochemical stabilities (up to 7 V); thermal stability (up to 370 °C) and ion transport (up to 1.45 mS cm-1). FDILs were designed with a fluorinated ether linker and paired with TFSI/FSI counterions. To comprehensively assess the impact of the fluorinated spacer on their electrochemical, thermal, and physico-chemical properties, a comparison with their non-fluorinated counterparts was conducted. With a specific focus on their application as electrolytes in next-generation high-voltage lithium-ion batteries, the impact of the Li-salt on the characteristics of dicationic ILs was systematically evaluated. The incorporation of a fluorinated linker demonstrates significantly superior properties compared to their non-fluorinated counterparts, presenting a promising alternative towards next-generation high-voltage energy storage systems.

3.
Angew Chem Int Ed Engl ; 63(33): e202407315, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-38818545

ABSTRACT

Li metal is regarded as the "Holy Grail" in the next generation of anode materials due to its high theoretical capacity and low redox potential. However, sluggish Li ions interfacial transport kinetics and uncontrollable Li dendrites growth limit practical application of the energy storage system in high-power device. Herein, separators are modified by the addition of a coating, which spontaneously grafts onto the Li anode interface for in situ lithiation. The resultant alloy possessing of strong electron-donating property promotes the decomposition of lithium bistrifluoromethane sulfonimide in the electrolyte to form a LiF-rich alloy-doped solid electrolyte interface (SEI) layer. High ionic alloy solid solution diffusivity and electric field dispersion modulation accelerate Li ions transport and uniform stripping/plating, resulting in a high-power dendrite-free Li metal anode interface. Surprisingly, the formulated SEI layer achieves an ultra-long cycle life of over 8000 h (20,000 cycles) for symmetric cells at a current density of 10 mA cm-2. It also ensures that the NCM(811)//PP@Au//Li full cell at ultra-high currents (40 C) completes the charging/discharging process in only 68 s to provide high capacity of 151 mAh g-1. The results confirm that this scalable strategy has great development potential in realizing high power dendrite-free Li metal anode.

4.
ACS Appl Mater Interfaces ; 16(21): 27280-27290, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38743801

ABSTRACT

The application of composite solid electrolytes (CSEs) in solid-state lithium-metal batteries is limited by the unsatisfactory ionic conductivity underpinned by the low concentration of free lithium ions. Herein, we propose an interface design strategy where an amine silane linker is employed as a coupling agent to graft the Li7La3Zr2O12 (LLZO) ceramic nanofibers to the poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) polymer matrix to enhance their interaction. The hydrogen bonding between amino-functionalized LLZO (NH2@LLZO) and PVDF-HFP not only effectively induces a uniform incorporation of high-content nanofibers (50 wt %) into the polymer matrix but also furnishes sufficient continuous surfaces to weaken the complexation between PVDF-HFP and Li-ion carriers. Additionally, introduction of the hydrogen bond and Lewis acid-base interplay strengthens the interfacial interactions between NH2@LLZO and lithium salts that release more free lithium ions for efficient interfacial transport. The impact of the linker's structure on the dissociation capacity of lithium salts is systematically studied from the steric effect perspective, which affords insights into interface design. Conclusively, the composite solid electrolyte achieves a high ionic conductivity (5.8 × 10-4 S cm-1) by synergy of multiple transport channels at ceramic, polymer, and their interface, which effectively regulates the lithium deposition behavior in symmetric cells. The excellent compatibility of the electrolyte with both LiFePO4 and LiNi0.8Co0.1Mn0.1O2 cathodes also results in a long lifetime and a high rate capability for full cells.

5.
Nanotechnology ; 35(36)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38810610

ABSTRACT

The low ionic conductivity of quasi-solid-state electrolytes (QSSEs) at ambient temperature is a barrier to the development of solid-state batteries (SSBs). Conversely, metal-organic frameworks (MOFs) with porous structure and metal sites show great potential for the fabrication of QSSEs. Numerous studies have proven that the structure and functional groups of MOFs could significantly impact the ionic conductivity of QSSEs based on MOFs (MOFs-QSSEs). This review introduces the transport mechanism of lithium ions in various MOFs-QSSEs, and then analyses how to construct an effective and consistent lithium ions pathway from the perspective of MOFs modification. It is shown that the ion conductivity could be enhanced by modifying the morphology and functional groups, as well as applying amorphous MOFs. Lastly, some issues and future perspectives for MOFs-QSSEs are examined. The primary objective of this review is to enhance the comprehension of the mechanisms and performance optimization methods of MOFs-QSSEs. Consequently, this would guide the design and synthesis of QSSEs with high ionic conductivity, and ultimately enhance the performance of commercial SSBs.

6.
ACS Appl Mater Interfaces ; 16(13): 16351-16362, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38515323

ABSTRACT

Poly(ethylene oxide) (PEO)-based electrolytes have been extensively studied for all-solid-state lithium-metal batteries due to their excellent film-forming capabilities and low cost. However, the limited ionic conductivity and poor mechanical strength of the PEO-based electrolytes cannot prevent the growth of undesirable lithium dendrites, leading to the failure of batteries. Metal-organic frameworks (MOFs) are functional materials with a periodic porous structure that can improve the electrochemical performance of PEO-based electrolytes. However, the enhancement effect of MOFs with different metal centers and the interaction mechanism with PEO remain unclear. Herein, MOF-74s with Cu or Ni centers are prepared and used as fillers of PEO-based electrolytes. Adding 15 wt % of Cu-MOF-74 to the PEO-based electrolyte (15%Cu-MOF/P-Li) effectively improves the ionic conductivity, lithium transference number, and mechanical strength of the PEO-based electrolyte simultaneously. Furthermore, the ordered pore channels of Cu-MOF-74 provide uniform Li-ion transport pathways, facilitating homogeneous Li+ deposition. As a result, the lithium symmetric cell with 15%Cu-MOF/P-Li shows stable cycles for 1080 h at 0.1 mA cm-2 and 0.1 mAh cm-2, and the Li | 15% Cu-MOF/P-Li | LFP full cell exhibits a long cycle life up to 200 cycles at 60 °C and 0.5 C, with a capacity retention rate of 89.7%.

7.
Adv Mater ; 36(23): e2401711, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38381000

ABSTRACT

Constructing an artificial solid electrolyte interphase (ASEI) on Li metal anodes (LMAs) is a potential strategy for addressing the dendrite issues. However, the mechanical fatigue of the ASEI caused by stress accumulation under the repeated deformation from the Li plating/stripping is not taken seriously. Herein, this work introduces a mechanically interlocked [an]daisy chain network (DCMIN) into the ASEI to stabilize the Li metal/ASEI interface by combining the functions of energy dissipation and fast Li-ion transport. The DCMIN featured by large-range molecular motions is cross-linked via efficient thiol-ene click chemistry; thus, the DCMIN has flexibility and excellent mechanical properties. As an ASEI, the crown ether units in DCMIN not only interact with the dialkylammonium of a flexible chain, forming the energy dissipation behavior but also coordinate with Li ion to support the fast Li-ion transport in DCMIN. Therefore, a stable 2800 h-symmetrical cycling (1 mA cm-2) and an excellent 5 C-rate (full cell with LiFePO4) performance are achieved by DCMIN-based ASEI. Furthermore, the 1-Ah pouch cell (LiNi0.88Co0.09Mn0.03O2 cathode) with DCMIN-coated LMA exhibits improved capacity retention (88%) relative to the Control. The molecular design of DCMIN provides new insights into the optimization of an ASEI for high-energy LMAs.

8.
Nanomaterials (Basel) ; 13(20)2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37887958

ABSTRACT

Manganese dioxide (MnO2) exists in a variety of polymorphs and crystallographic structures. The electrochemical performance of Li storage can vary depending on the polymorph and the morphology. In this study, we present a new approach to fabricate polymorph- and aspect-ratio-controlled α-MnO2 nanorods. First, δ-MnO2 nanoparticles were synthesized using a solution plasma process assisted by three types of sugars (sucrose, glucose, and fructose) as reducing promoters; this revealed different morphologies depending on the nucleation rate and reaction time from the molecular structure of the sugars. Based on the morphology of δ-MnO2, the polymorphic-transformed three types of α-MnO2 nanorods showed different aspect ratios (c/a), which highly affected the transport of Li ions. Among them, a relatively small aspect ratio (c/a = 5.1) and wide width of α-MnO2-S nanorods (sucrose-assisted) induced facile Li-ion transport in the interior of the particles through an increased Li-ion pathway. Consequently, α-MnO2-S exhibited superior battery performance with a high-rate capability of 673 mAh g-1 at 2 A g-1, and it delivered a high reversible capacity of 1169 mAh g-1 at 0.5 A g-1 after 200 cycles. Our findings demonstrated that polymorphs and crystallographic properties are crucial factors in the electrode design of high-performance Li-ion batteries.

9.
ACS Appl Mater Interfaces ; 15(37): 44268-44279, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37672757

ABSTRACT

Manufacturers aim to commercialize efficient and safe batteries by finding new strategies. Solid-state electrolytes can be seen as an opportunity to develop batteries with a high energy density. They allow the use of lithium foil as the anode, increasing the energy density. Also, they are composed of nonflammable materials making them safer than liquid electrolytes. However, to enhance the electrochemical performances of forthcoming solid-state lithium metal batteries, phenomena governing ionic conductivity have yet to be mastered in such devices. Lithium isotopic tracing was successfully used in previous works to further understand lithium ion transport mechanisms in batteries. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) and 6/7Li high-resolution solid-state nuclear magnetic resonance (ssNMR) spectroscopy are two complementary techniques probing local and global scale, respectively. Both techniques can distinguish lithium isotopes. Here, four polymer membranes were elaborated with the same lithium concentration, but with various isotopic enrichments from 7.6 to 95.4% of 6Li. The selected material was a poly(ethylene oxide) (PEO) membrane containing lithium bis(trifluoromethylsulfonyl)imide (LiTFSI) as lithium salt. They are widely studied in the lithium battery field. First, reliable ToF-SIMS and ssNMR methodologies were validated in light of the converging results. They led to accurate determination of lithium isotopic abundance of polymer membranes with a 1 or a 2% uncertainty, respectively. Then, the developed methodologies were applied to characterize lithium self-diffusion in a polymer membrane. Furthermore, numerical simulations based on a two-dimensional diffusion model compared with ToF-SIMS analyses allowed us to extract a lithium self-diffusion coefficient of 1.6 × 10-12 m2·s-1 at 60 °C, which complements other published values. The robust methodologies described in this work can be extended to various applications and materials. They stand as powerful strategies to better understand lithium ionic transport, especially in multiphase materials, for example, in hybrid solid-state electrolytes.

10.
Small ; 19(40): e2302863, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37263986

ABSTRACT

Li-ion transport and phase transition of solid electrolytes are critical and fundamental issues governing the rate and cycling performances of solid-state batteries. In this work, in-operando high-pressure nuclear magnetic resonance (NMR) spectroscopy for the solid-state battery is developed and applied, in combination with 6 Li-tracer NMR and high-resolution NMR spectroscopy, to investigate the Li10 GeP2 S12 electrolyte under true-to-life operation conditions. The results reveal that the Li10 GeP2 S12 phase may become more disordered and a large amount of conductive metastable ß-Li3 PS4 as the glassy matrix in the electrolyte transforms into less conductive phases, mainly γ-Li3 PS4 , when high current densities (e.g., ≥0.5 mA cm-2 ) are applied to the electrolyte. The overall Li-transport also varies and shows a tendency of boundary phases and Li10 GeP2 S12 synergistic dominant conduction at high currents. Accordingly, a mechanism of structural change induced by stress variation due to the drastic morphological change during Li-In alloying at high currents, and the local Li+ diffusion coefficient discrepancy is proposed. These new findings of Li-ion transport and boundary phase transition in Li10 GeP2 S12 solid electrolyte under high-pressure and high current density are first reported and will help provide previously lacking insights into the relationship of structure and performance of Li10 GeP2 S12 .

11.
Small ; 18(40): e2204163, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36047653

ABSTRACT

Metal-organic frameworks (MOFs) fillers are emerging for composite polymer electrolytes (CPEs). Enhancing Lewis acid-base interaction (LABI) among MOFs, polymer and Li-salt is expected to promote Li+ -transport. However, it is unclear how to customize a strong LABI interface. The large surface-area of classical MOFs also interferes with clarifying the LABI influence on Li+ -transport. Herein, Bi3+ as metal centers to design colloidal-dispersed nonporous MOFs (Bi/HMT-MOFs) nanowire with a surface-area of only 17.13 m2 g-1 to prepare polyethylene oxide (PEO)-based CPEs (BMCPE) is chosen. The nonporous feature can exclude the surface-area effect on Li+ -transport. More interestingly, Bi3+ is a typical borderline acid, which can interact with both hard-basic PEO and soft-basic Li-salt anion. Accordingly, Bi/HMT-MOFs are uniformly dispersed in the BMCPE to form a strong LABI interface with PEO and Li-salt, promoting Li-salt dissociation and providing rapid Li+ -transport channels. Despite the ultralow surface-area of Bi/HMT-MOFs, BMCPE exhibits significantly enhanced ion-conductivity and Li+ transference number, which completely rival traditional MOFs-filled CPEs. BMCPE also enables symmetric and full cells with excellent high-rate performance and long-term cycling stability. In contrast, when Bi3+ sites are obscured, electrochemical performances are obviously decreased. Therefore, employing borderline metal centers will be an effective strategy to construct a LABI interface for high-performance MOFs-filled CPEs.

12.
Angew Chem Int Ed Engl ; 61(40): e202209626, 2022 Oct 04.
Article in English | MEDLINE | ID: mdl-35929378

ABSTRACT

Li-rich layered oxide (LLO) cathode materials with high specific capacities could significantly enhance the energy density of all-solid-state lithium batteries (ASSLBs). However, the specific practical capacities of LLO materials in ASSLBs are extremely low due to poor initial activation. Here, scanning transmission electron microscopy with in situ differential phase contrast imaging was first used to study the initial activation mechanism of Li1.2 Ni0.13 Co0.13 Mn0.54 O2 . Li-ion transport heterogeneity was observed in LLO grains and across the LLO/Li6 PS5 Cl interface, due to the coexistence of the nanoscale Li2 MnO3 and LiNi1/3 Co1/3 Mn1/3 O2 phases. Consequently, the severely constrained activation of Li2 MnO3 during the first charging could be attributed to a nanoscale phase separation in LLO, hindering Li-ion transport through its particles, and causing high impedance in the Li2 MnO3 domain/Li6 PS5 Cl interface. This study could facilitate interface design of high-performance LLO-based ASSLBs.

13.
Nano Lett ; 22(13): 5473-5480, 2022 07 13.
Article in English | MEDLINE | ID: mdl-35621512

ABSTRACT

The free transport of anions in a Li metal battery can cause multiple issues, including a high anion transference number, space charge, and concentration polarization, eventually leading to uncontrolled dendrite formation and decreased performance. Herein, we report an anion-anchoring nano-CaCO3 (NC) coating derived from eggshell biowaste for stabilizing Li metal anodes. As the adsorption of local TFSI- anions onto the NC adsorbent can undermine the anion concentration gradient and promote rapid Li-ion diffusion, it can effectively inhibit the proliferation of Li dendrites assisted by the NC coating. Consequently, Li/Cu cells with NC@Cu electrode can achieve a high Coulombic efficiency of ∼98.4% for more than 420 cycles and can even reach ∼99.1% at an ultrahigh areal capacity of 20 mAh cm-2. In particular, full cells with NC/Li@Cu electrodes show a stable lifespan of over 240 cycles with an average efficiency of ∼99.8% at a low N/P ratio of ∼3.3.


Subject(s)
Biomass , Anions , Ion Transport
14.
ACS Appl Mater Interfaces ; 13(44): 52688-52696, 2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34723473

ABSTRACT

Lithium (Li) metal has emerged as a promising electrode material for high-energy-density batteries. However, serious Li dendrite issues during cycling have plagued the safety and cyclability of the batteries, thus limiting the practical application of Li metal batteries. Herein, we prepare a novel metal-organic-framework-based (MOF-based) succinonitrile electrolyte, which enables homogeneous and fast Li-ion (Li+) transport for dendrite-free Li deposition. Given the appropriate aperture size of the MOF skeleton, the targeted electrolyte can allow only small-size Li+ to pass through its pores, which effectively guides uniform Li+ transport. Specially, Li ions are coordinated by the C═N of the MOF framework and the C≡N of succinonitrile, which could accelerate Li+ migration jointly. These characteristics afford an excellent quasi-solid-state electrolyte with a high ionic conductivity of 7.04 × 10-4 S cm-1 at room temperature and a superior Li+ transference number of 0.68. The Li/LiFePO4 battery with the MOF-based succinonitrile electrolyte exhibits dendrite-free Li deposition during the charge process, accompanied by a high capacity retention of 98.9% after 100 cycles at 0.1C.

15.
ACS Appl Mater Interfaces ; 10(4): 4113-4120, 2018 Jan 31.
Article in English | MEDLINE | ID: mdl-29303244

ABSTRACT

Composite electrolytes are widely studied for their potential in realizing improved ionic conductivity and electrochemical stability. Understanding the complex mechanisms of ion transport within composites is critical for effectively designing high-performance solid electrolytes. This study examines the compositional dependence of the three determining factors for ionic conductivity, including ion mobility, ion transport pathways, and active ion concentration. The results show that with increase in the fraction of ceramic Li7La3Zr2O12 (LLZO) phase in the LLZO-poly(ethylene oxide) composites, ion mobility decreases, ion transport pathways transit from polymer to ceramic routes, and the active ion concentration increases. These changes in ion mobility, transport pathways, and concentration collectively explain the observed trend of ionic conductivity in composite electrolytes. Liquid additives alter ion transport pathways and increase ion mobility, thus enhancing ionic conductivity significantly. It is also found that a higher content of LLZO leads to improved electrochemical stability of composite electrolytes. This study provides insight into the recurring observations of compositional dependence of ionic conductivity in current composite electrolytes and pinpoints the intrinsic limitations of composite electrolytes in achieving fast ion conduction.

SELECTION OF CITATIONS
SEARCH DETAIL