Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Polymers (Basel) ; 16(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38794559

ABSTRACT

A plantain pseudostem was harvested and processed on the same day. The process began with manually separating the sheaths (80.85%) and the core (19.14%). The sheaths were subjected to a mechanical shredding process using paddles, extracting 2.20% of lignocellulosic fibers and 2.12% of sap, compared to the fresh weight of the sheaths. The fibers were washed, dried, combed, and spun in their native state and subjected to a steam explosion treatment, while the sap was subjected to filtration and evaporation. In the case of the core, it was subjected to manual cutting, drying, grinding, and sieving to separate 12.81% of the starch and 6.39% of the short lignocellulosic fibers, compared to the fresh weight of the core. The surface modification method using steam explosion succeeded in removing a low proportion of hemicellulose and lignin in the fibers coming from the shims, according to what was shown by Fourier Transform Infrared Spectroscopy (FT-IR), Thermogravimetric Analysis (TGA), and Differential Scanning Calorimetry (DSC), achieving increased σmax and ε from the tensile test and greater thermal stability compared to its native state. The sap presented hygroscopic behavior by FT-IR and the highest thermal stability from TGA, while the starch from the core presented the lowest hygroscopic character and thermal stability. Although the pseudostem supplied two types of fibers, lower lignin content was identified in those from the core. Finally, the yarns were elaborated by using the fibers of the sheaths in their native and steam-exploded states, identifying differences in the processing and their respective physical and mechanical properties.

2.
Polymers (Basel) ; 15(13)2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37447558

ABSTRACT

In the last decade, natural fibers have had a significant impact on the research and development of innovative composites made with natural rubber, improving their properties over those of their counterparts that incorporate polluting synthetic fibers. In recent years, this fact has stimulated the research into several modified natural rubber composites reinforced with vegetable fibers. This paper reviews the scientific literature published in the last decade about the properties and characteristics of natural vegetable fibers and natural rubber used in composites. Nowadays the use of alternative materials has become necessary, considering that synthetic materials have caused irreversible damage to the environment, being associated with global warming, for this reason research and development with materials that print a lower carbon footprint during the manufacturing process and subsequent product manufacturing. This review is an invitation to the use of vegetable fibers, as well as vegetable-type matrices, in this case natural rubber as a binder system, it is fantastic to know the different works carried out by other scientists and engineers, in this way to project new compounds linked to innovation in processes that reduce the carbon footprint and its negative impact on our planet.

3.
J Polym Environ ; : 1-15, 2023 Mar 16.
Article in English | MEDLINE | ID: mdl-37361350

ABSTRACT

Proteins are abundant biomolecules found in human cells, as well as pathogenic bacteria and viruses. Some of them become pollutants when released into water. Adsorption is an advantageous method for separating proteins in aqueous media since proteins are already immobilized on solid surfaces. Adsorbents with surfaces rich in tannins are efficient due to their affinity for strong interactions with the various amino acids that make up proteins. This work aimed to develop an adsorbent for protein adsorption in aqueous medium using lignocellulosic materials modified from eucalyptus bark and vegetable tannins. A more efficient resin was prepared containing 10% eucalyptus bark fibers and 90% tannin mimosa by condensation with formaldehyde, and it was characterized by UV-Vis, FTIR-ATR spectroscopy and determinations of degree of swelling, bulk and bulk density and specific mass. For UV-Vis spectroscopy the percentage of condensed and hydrolysable tannins in the extracts of fibers of the dry husks of Eucalyptus Citriodora was estimated and it was also determined your soluble solids. The study of bovine serum albumin (BSA) adsorption was carried out in batch with quantification by UV-Vis spectroscopy. The most efficient prepared resin obtained 71.6 ± 2.78% removal in a solution of 260 mg L-1 of BSA working in a better pH range of the aqueous solution of BSA in its isoelectric point, ~ 5, 32 ± 0.02, under these conditions, the synthesized resin can reach a maximum BSA adsorption capacity of ~ 26.7 ± 0.29 mg g-1 in 7 min. The new synthesized resin presents good prospects for adsorption of proteins or species that in their structure have higher percentages of amino functional groups or amino acids with aliphatic, acidic and/or basic hydrophilic characteristics.

4.
Polymers (Basel) ; 15(9)2023 May 03.
Article in English | MEDLINE | ID: mdl-37177324

ABSTRACT

There is a wide range of renewable materials with attractive prospects for the development of green technologies for the removal and recovery of metals from aqueous streams. A special category among them are natural fibers of biological origin, which combine remarkable biosorption properties with the adaptability of useful forms for cleanup and recycling purposes. To support the efficient exploitation of these advantages, this article reviews the current state of research on the potential and real applications of natural cellulosic and protein fibers as biosorbents for the sequestration of metals from aqueous solutions. The discussion on the scientific literature reports is made in sections that consider the classification and characterization of natural fibers and the analysis of performances of lignocellulosic biofibers and wool, silk, and human hair waste fibers to the metal uptake from diluted aqueous solutions. Finally, future research directions are recommended. Compared to other reviews, this work debates, systematizes, and correlates the available data on the metal biosorption on plant and protein biofibers, under non-competitive and competitive conditions, from synthetic, simulated, and real solutions, providing a deep insight into the biosorbents based on both types of eco-friendly fibers.

5.
J Environ Manage ; 340: 117850, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37105106

ABSTRACT

This study establishes the suitability of cellulosic fibers derived from Canna indica waste biomass for utilization as a reinforcement in natural fiber polymeric composites. The waste biomass was harvested from constructed wetlands engaged in the treatment of municipal wastewater from a gated community. The extracted Canna indica (CI) fibers were studied for their physicochemical, mechanical, structural, crystallographic, and thermal characteristics and proposed as a potential alternative to synthetic fiber. The CI fibers contained a relatively higher amount of cellulose (60 wt%) and a low wax fraction (0.5 wt%) - which is advantageous for its gainful utilization as a reinforcement. The CI fibers were thermally stable up to 237 °C and have an average fiber length, diameter, and density of 4.3 mm, 842 µm, and 0.75 g/cm3, respectively. The mean maximum tensile strength and Young's modulus were found to be 113 ± 6.82 MPa and 0.8 ± 7.91 GPa, respectively. The nano-indentation test displayed the nano hardness and modulus as 0.3 ± 0.6 GPa and 1.62 ± 0.2 GPa, respectively. The crystallographic properties of CI fibers consisted of an 87.45% crystallinity index and 3.2 nm crystallite size. The morphological attributes of CI fibers showed rough surfaces and shallow cavities on the surfaces of the fibers suggesting the suitability for its utilization as a reinforcement. It is argued that this technological approach can potentially achieve circular economy through valorization of Canna indica biomass harvested from natural wastewater treatment plants.


Subject(s)
Polymers , Wetlands , Biomass , Cellulose/chemistry , Tensile Strength
6.
Environ Sci Pollut Res Int ; 30(22): 62641-62652, 2023 May.
Article in English | MEDLINE | ID: mdl-36947382

ABSTRACT

Using mineral and agro-industrial wastes associated with the cement matrix can add value and guarantee suitable properties for reinforced composites. This research aimed to evaluate the effect of the incorporation of quartzite and coconut fibers on masonry blocks' physical, mechanical, and thermal properties. Quartzite was evaluated replacing 0%, 25%, 50%, 75%, and 100% of the sand, whereas the coconut fibers were added in a proportion of 2.5% of the volume of gravel. Quartzite residues were analyzed regarding their granulometry, chemical composition, and pozzolanicity. The block initial formulation (control) was: 8.2% cement, 45.9% sand, and 45.9% gravel. The cement was cured at room temperature for 28 days. Subsequently, the blocks were subjected to the characterization of physical, mechanical, and thermal properties. Coconut fibers presented a low percentage of extractives, with a low inhibition index (1.93%), reducing their effect on cement hardening. The increase in the content of quartzite incorporated provided a reduction in bulk density and an increase in porosity (from 11.7 to 16.0%) and water absorption after 24 h (from 7.0 to 8.5%). The compressive strength was reduced from 50% with the insertion of the quartzite. The quartzite and coconut fibers reduced the concrete's thermal conductivity, providing essential reflections for the performance of the blocks in terms of thermal comfort in built environments. Further, incorporating these materials provided the potential to obtain blocks with characteristics of resistance and offering possible thermal comfort, besides contributing as an option for a destination for these mineral and agro-industrial wastes.


Subject(s)
Cocos , Industrial Waste , Sand , Built Environment , Compressive Strength
7.
Prep Biochem Biotechnol ; 53(9): 1154-1163, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36794850

ABSTRACT

Lignocellulosic residues, such as cocoa bean shell (FI), are generated in large quantities during agro-industrial activities. Proper management of residual biomass through solid state fermentation (SSF) can be effective in obtaining value-added products. The hypothesis of the present work is that the bioprocess promoted by P. roqueforti can lead to structural changes in the fibers of the fermented cocoa bean shell (FF) that confer characteristics of industrial interest. To unveil such changes, the techniques of FTIR, SEM, XRD, TGA/TG were used. After SSF, an increase of 36.6% in the crystallinity index was observed, reflecting the reduction of amorphous components such as lignin in the FI residue. Furthermore, an increase in porosity was observed through the reduction of the 2θ angle, which gives the FF a potential candidate for applications of porous products. The FTIR results confirm the reduction in hemicellulose content after SSF. The thermal and thermogravimetric tests showed an increase in the hydrophilicity and thermal stability of FF (15% decomposition) in relation to the by-product FI (40% decomposition). These data provided important information regarding changes in the crystallinity of the residue, existing functional groups and changes in degradation temperatures.


This work presents a new approach for solid state fermentation based on the study of structural changes caused by Penicillium roquefort, which is important to understand the changes in the lignocellulosic matrix after the fungus growth. The results provided important information regarding changes in the crystallinity of the residue, existing functional groups and changes in degradation temperatures. Consequently, they can help in proposals for the total use of the residual solid after fermentation, as well as contribute to reducing the lack of this information in the literature.


Subject(s)
Penicillium , Penicillium/metabolism , Lignin/metabolism , Fermentation
8.
Polymers (Basel) ; 15(23)2023 Nov 23.
Article in English | MEDLINE | ID: mdl-38231949

ABSTRACT

Biocircularity could play a key role in the circular economy, particularly in applications where organic recycling (composting) has the potential to become a preferred waste management option, such as food packaging. The development of fully biobased and biodegradable composites could help reduce plastic waste and valorize agro-based residues. In this study, extruded films made of composites of polyhydroxybutyrate-co-valerate (PHBV) and lignocellulosic fibers, namely almond shell (AS) and Oryzite® (OR), a polymer hybrid composite precursor, have been investigated. Scanning electron microscopy (SEM) analysis revealed a weak fiber-matrix interfacial interaction, although OR composites present a better distribution of the fiber and a virtually lower presence of "pull-out". Thermogravimetric analysis showed that the presence of fibers reduced the onset and maximum degradation temperatures of PHBV, with a greater reduction observed with higher fiber content. The addition of fibers also affected the melting behavior and crystallinity of PHBV, particularly with OR addition, showing a decrease in crystallinity, melting, and crystallization temperatures as fiber content increased. The mechanical behavior of composites varied with fiber type and concentration. While the incorporation of AS results in a reduction in all mechanical parameters, the addition of OR leads to a slight improvement in elongation at break. The addition of fibers improved the thermoformability of PHBV. In the case of AS, the improvement in the processing window was achieved at lower fiber contents, while in the case of OR, the improvement was observed at a fiber content of 20%. Biodisintegration tests showed that the presence of fibers promoted the degradation of the composites, with higher fiber concentrations leading to faster degradation. Indeed, the time of complete biodisintegration was reduced by approximately 30% in the composites with 20% and 30% AS.

9.
Polymers (Basel) ; 15(23)2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38232049

ABSTRACT

The incorporation of natural lignocellulosic fibers as reinforcements in polymer composites has witnessed significant growth due to their biodegradability, cost-effectiveness, and mechanical properties. This study aims to evaluate castor-oil-based polyurethane (COPU), incorporating different contents of coconut coir fibers, 5, 10, and 15 wt%. The investigation includes analysis of the physical, mechanical, and microstructural properties of these composites. Additionally, this study evaluates the influence of hydrothermal treatment on the fibers, conducted at 120 °C and 98 kPa for 30 min, on the biocomposites' properties. Both coir fibers (CFs) and hydrothermal-treated coir fibers (HTCFs) were subjected to comprehensive characterization, including lignocellulosic composition analysis, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). The biocomposites were subjected to water absorption analysis, bending tests, XRD, SEM, FTIR, and TGA. The results indicate that the 30 min hydrothermal treatment reduces the extractive content, enhancing the interfacial adhesion between the fiber and the matrix, as evidenced by SEM. Notably, the composite containing 5 wt% CF exhibits a reduced water absorption, approaching the level observed in pure COPU. The inclusion of 15 wt% HTCF results in a remarkable improvement in the composite's flexural strength (100%), elastic modulus (98%), and toughness (280%) compared to neat COPU. TGA highlights that incorporating CFs into the COPU matrix enhances the material's thermal stability, allowing it to withstand temperatures of up to 500 °C. These findings underscore the potential of CFs as a ductile, lightweight, and cost-effective reinforcement in COPU matrix biocomposites, particularly for engineering applications.

10.
Environ Res ; 215(Pt 1): 114183, 2022 12.
Article in English | MEDLINE | ID: mdl-36063910

ABSTRACT

BACKGROUND: Textile industries produce fabricated colored products using toxic dyes and other harsh chemicals. It is the responsibility of the textile industries to treat and eliminate these hazardous pollutants. However, due to the growing population demand, the treatment of these hazardous effluents is ineffective and imposes the treatment cost over the end users. The release of partially treated effluents in the environment may cause a severe threat to the ecology and its biota. The critical objective is to treat textile effluents efficiently using agricultural natural fiber waste. Generation of agricultural lignocellulosic fibrous waste increases every year due to growing population demand. Its use in the modern world is limited due to synthetic products. An alternative has enumerated to avoid wastage of fibrous resources and its clean disposal. OBJECTIVE: The main objective of this review paper discussed the feasibility of lignocellulosic fibers and other lignocellulosic materials as natural low-cost adsorbent. METHODS: The literature study was performed using Web of Science and Scopus indexed journals. The main factors considered to increase the adsorption ability, including the types of lignocellulosic surface modification techniques were searched with utmost importance for quality results. Intending to summarize the literature survey and provide persuasive content, systematic review process was considered for this novel article. RESULTS: Out of 230 valuable publications, 159 published articles were considered for the present study until March 2022. The articles surplus with factors affecting adsorption (pH, adsorption dosage, surface area, temperature, initial concentration, contact time, physical and chemical properties of pollutants) and surface modification techniques (physical, chemical, and biological) were considered for this manuscript. CONCLUSION: Overall, the physical and chemical modification methods are widely used instead of biological methods due to various factors as discussed briefly. Furthermore, the finding of this article supports the fact that the fibrous by-product resources are wasted in various occasions due to the modern lifestyle. Even though there is evidential possibility to implement the low-cost adsorbents, the industries limit their application prospects due to existing technology and financial compromises.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Adsorption , Coloring Agents/chemistry , Industrial Waste/analysis , Lignin , Textile Industry , Textiles , Waste Disposal, Fluid/methods , Wastewater/chemistry , Water Pollutants, Chemical/analysis
11.
Carbohydr Polym ; 296: 119918, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36088021

ABSTRACT

Non-wood lignocellulosic fibers have emerged and are becoming increasingly important as an alternative source of cellulose for derivatives, functional materials, and biofuels. This work aimed, to obtain cellulose from Meghatyrsus maximus grass with adequate properties through an alkaline delignification and alkaline hydrogen peroxide bleaching. Meghatyrsus maximus was chemically characterized as lignocellulosic biomass, which consisted of 45.0 %, cellulose, 35.0 % hemicellulose, and 20.0 % lignin. The obtained cellulose was characterized by Fourier transform infrared spectroscopy, X-ray diffraction analysis, thermogravimetric analysis, and scanning electron microscopy. The alpha-cellulose content was 98.50 % with a crystallinity of 61.0 %. The morphological study by scanning electron microscopy images indicates a clean surface and removal of non-cellulosic components present in the initial raw fibers. These results showed that high-quality cellulose was obtained and is comparable to a commercial alpha-cellulose, highlighting Meghatyrsus maximus as an alternative source of lignocellulosic fibers.


Subject(s)
Cellulose , Lignin , Biomass , Cellulose/chemistry , Lignin/chemistry , Microscopy, Electron, Scanning , Spectroscopy, Fourier Transform Infrared
12.
Biomimetics (Basel) ; 7(2)2022 May 05.
Article in English | MEDLINE | ID: mdl-35645184

ABSTRACT

Biological materials that are created by growing mycelium-forming fungal microorganisms on natural fibers can form a solution to environmental pollution and scarcity of natural resources. Recent studies on the hybridization of mycelium materials with glass improved fire performance; however, the effect of inorganic particles on growth performance and mechanical properties was not previously investigated. Yet, due to the wide variety of reinforcement particles, mycelium nanocomposites can potentially be designed for specific functions and applications, such as fire resistance and mechanical improvement. The objectives of this paper are to first determine whether mycelium materials reinforced with montmorillonite nanoclay can be produced given its inorganic nature, and then to study the influence of these nanoparticles on material properties. Nanoclay-mycelium materials are evaluated in terms of morphological, chemical, and mechanical properties. The first steps are taken in unravelling challenges that exist in combining myco-fabrication with nanomaterials. Results indicate that nanoclay causes a decreased growth rate, although the clay particles are able to penetrate into the fibers' cell-wall structure. The FTIR study demonstrates that T. versicolor has more difficulty accessing and decaying the hemicellulose and lignin when the amount of nanoclay increases. Moreover, the addition of nanoclay results in low mechanical properties. While nanoclay enhances the properties of polymer composites, the hybridization with mycelium composites was not successful.

13.
Polymers (Basel) ; 14(10)2022 May 17.
Article in English | MEDLINE | ID: mdl-35631925

ABSTRACT

The use of natural lignocellulosic fibers has become popular all over the world, as they are abundant, low-cost materials that favor a series of technological properties when used in cementitious composites. Due to its climate and geographic characteristics, Brazil has an abundant variety of natural fibers that have great potential for use in civil construction. The objective of this work is to present the main concepts about lignocellulosic fibers in cementitious composites, highlighting the innovation and advances in this topic in relation to countries such as Brazil, which has a worldwide prominence in the production of natural fibers. For this, some common characteristics of lignocellulosic fibers will be observed, such as their source, their proportion of natural polymers (biological structure of the fiber), their density and other mechanical characteristics. This information is compared with the mechanical characteristics of synthetic fibers to analyze the performance of composites reinforced with both types of fibers. Despite being inferior in tensile and flexural strength, composites made from vegetable fibers have an advantage in relation to their low density. The interface between the fiber and the composite matrix is what will define the final characteristics of the composite material. Due to this, different fibers (reinforcement materials) were analyzed in the literature in order to observe their characteristics in cementitious composites. Finally, the different surface treatments through which the fibers undergo will determine the fiber-matrix interface and the final characteristics of the cementitious composite.

14.
Polymers (Basel) ; 13(19)2021 Sep 24.
Article in English | MEDLINE | ID: mdl-34641056

ABSTRACT

Natural rubber is of significant economic importance owing to its excellent resilience, elasticity, abrasion and impact resistance. Despite that, natural rubber has been identified with some drawbacks such as low modulus and strength and therefore opens up the opportunity for adding a reinforcing agent. Apart from the conventional fillers such as silica, carbon black and lignocellulosic fibers, nanocellulose is also one of the ideal candidates. Nanocellulose is a promising filler with many excellent properties such as renewability, biocompatibility, non-toxicity, reactive surface, low density, high specific surface area, high tensile and elastic modulus. However, it has some limitations in hydrophobicity, solubility and compatibility and therefore it is very difficult to achieve good dispersion and interfacial properties with the natural rubber matrix. Surface modification is often carried out to enhance the interfacial compatibilities between nanocellulose and natural rubber and to alleviate difficulties in dispersing them in polar solvents or polymers. This paper aims to highlight the different surface modification methods employed by several researchers in modifying nanocellulose and its reinforcement effects in the natural rubber matrix. The mechanism of the different surface medication methods has been discussed. The review also lists out the conventional filler that had been used as reinforcing agent for natural rubber. The challenges and future prospective has also been concluded in the last part of this review.

15.
Polymers (Basel) ; 13(15)2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34372086

ABSTRACT

The accumulation of plastic wastes in different environments has become a topic of major concern over the past decades; therefore, technologies and strategies aimed at mitigating the environmental impacts of petroleum products have gained worldwide relevance. In this scenario, the production of bioplastics mainly from polysaccharides such as starch is a growing strategy and a field of intense research. The use of plasticizers, the preparation of blends, and the reinforcement of bioplastics with lignocellulosic components have shown promising and environmentally safe alternatives for overcoming the limitations of bioplastics, mainly due to the availability, biodegradability, and biocompatibility of such resources. This review addresses the production of bioplastics composed of polysaccharides from plant biomass and its advantages and disadvantages.

16.
Molecules ; 26(16)2021 Aug 04.
Article in English | MEDLINE | ID: mdl-34443315

ABSTRACT

Nanocellulose was extracted from short bast fibers, from hemp (Cannabis sativa L.) plants harvested at seed maturity, non-retted, and mechanically decorticated in a defibering apparatus, giving non-aligned fibers. A chemical pretreatment with NaOH and HCl allowed the removal of most of the non-cellulosic components of the fibers. No bleaching was performed. The chemically pretreated fibers were then refined in a beater and treated with a cellulase enzyme, followed by mechanical defibrillation in an ultrafine friction grinder. The fibers were characterized by microscopy, infrared spectroscopy, thermogravimetric analysis and X-ray diffraction after each step of the process to understand the evolution of their morphology and composition. The obtained nanocellulose suspension was composed of short nanofibrils with widths of 5-12 nm, stacks of nanofibrils with widths of 20-200 nm, and some larger fibers. The crystallinity index was found to increase from 74% for the raw fibers to 80% for the nanocellulose. The nanocellulose retained a yellowish color, indicating the presence of some residual lignin. The properties of the nanopaper prepared with the hemp nanocellulose were similar to those of nanopapers prepared with wood pulp-derived rod-like nanofibrils.


Subject(s)
Cannabis/chemistry , Cellulose/chemistry , Crops, Agricultural/chemistry , Nanoparticles/chemistry , Cellulose/ultrastructure , Nanoparticles/ultrastructure , Particle Size , Solvents/chemistry , Spectroscopy, Fourier Transform Infrared , Temperature , Thermogravimetry , X-Ray Diffraction
17.
Microsc Res Tech ; 84(1): 12-27, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32905658

ABSTRACT

The cuajilote (Parmentiera edulis D.C.) tree produces fibrous fruits with a high content of lignocellulosic compounds. However, this fruit and their fibers have been scarcely studied. For this reason, an integral study of their cellular architecture, physicochemical, micromechanical, and structural properties in two maturity stages were carried out. Physicochemical tests, light, confocal and electron microscopy, microindentation, and X-ray diffraction were used for the characterization of fruit and their fibers. Chemical analysis showed that the unripe fruits have the highest cellulose content (42.17%), but in ripe fruit the cellulose content decreases (32.76%) while lignin content increases from 35.26 to 40.79%, caused by the lignification of the sclerenchyma fibers. Microstructural and micromechanical studies in the different regions of the fruit provided relevant information about its cellular architecture, distribution of lignocellulosic compounds and its role in the micromechanical properties of their fibers. The thickening cell wall of sclerenchyma fibers was caused by the cellular lignification of the ripe fruits. According to the physicochemical and structural studies, cuajilote fibers are comparable to other fibers obtained from crops rich in lignocellulosic compounds. The current study provided new knowledge about the cellular architecture of fruit and criteria for selecting the ripening stage adequate for the extraction of cellulose or lignin. Furthermore, information regarding the micromechanical properties of their fibers and which structural arrangement could be more convenient for mechanical reinforcement of biodegradable materials was obtained.


Subject(s)
Fruit , Microscopy , Cell Wall , Cellulose , Lignin
18.
Materials (Basel) ; 13(5)2020 Feb 28.
Article in English | MEDLINE | ID: mdl-32121197

ABSTRACT

Natural fiber-reinforced thermoplastic composites can be an alternative to mineral fiber-based composites, especially when economic and environment concerns are included under the material selection criteria. In recent years, the literature has shown how lignocellulosic fiber-reinforced composites can be used for a variety of applications. Nonetheless, the impact strength and the water uptake behavior of such materials have been seen as drawbacks. In this work, the impact strength and the water uptake of composites made of polypropylene reinforced with fibers from recycled newspaper have been researched. The results show how the impact strength decreases with the percentage of reinforcement in a similar manner to that of glass fiber-reinforced polypropylene composites as a result of adding a fragile phase to the material. It was found that the water uptake increased with the increasing percentages of lignocellulosic fibers due to the hydrophilic nature of such reinforcements. The diffusion behavior was found to be Fickian. A maleic anhydride was added as a coupling agent in order to increase the strength of the interface between the matrix and the reinforcements. It was found that the presence of such a coupling agent increased the impact strength of the composites and decreased the water uptake. Impact strengths of 21.3 kJ/m3 were obtained for a coupled composite with 30 wt % reinforcement contents, which is a value higher than that obtained for glass fiber-based materials. The obtained composites reinforced with recycled fibers showed competitive impact strength and water uptake behaviors in comparison with materials reinforced with raw lignocellulosic fibers. The article increases the knowledge on newspaper fiber-reinforced polyolefin composite properties, showing the competitiveness of waste-based materials.

19.
Polymers (Basel) ; 12(1)2019 Dec 22.
Article in English | MEDLINE | ID: mdl-31877858

ABSTRACT

Plants are the most abundant bioresources, providing valuable materials that can be used as additives in polymeric materials, such as lignocellulosic fibers, nano-cellulose, or lignin, as well as plant extracts containing bioactive phenolic and flavonoid compounds used in the healthcare, pharmaceutical, cosmetic, and nutraceutical industries. The incorporation of additives into polymeric materials improves their properties to make them suitable for multiple applications. Efforts are made to incorporate into the raw polymers various natural biobased and biodegradable additives with a low environmental fingerprint, such as by-products, biomass, plant extracts, etc. In this review we will illustrate in the first part recent examples of lignocellulosic materials, lignin, and nano-cellulose as reinforcements or fillers in various polymer matrices and in the second part various applications of plant extracts as active ingredients in food packaging materials based on polysaccharide matrices (chitosan/starch/alginate).

20.
Polymers (Basel) ; 11(5)2019 Apr 28.
Article in English | MEDLINE | ID: mdl-31035331

ABSTRACT

Lignocellulosic fibers and lignin are two of the most important natural bioresources in the world. They show tremendous potential to decrease energy utilization/pollution and improve biodegradability by replacing synthetic fibers in bioplastics. The compatibility between the fiber-matrix plays an important part in the properties of the bioplastics. The improvement of lignocellulosic fiber properties by most surface treatments generally removes lignin. Due to the environmental pollution and high cost of cellulose modification, focus has been directed toward the use of lignocellulosic fibers in bioplastics. In addition, lignin-reinforced bioplastics are fabricated with varying success. These applications confirm there is no need to remove lignin from lignocellulosic fibers when preparing the bioplastics from a technical point of view. In this review, characterizations of lignocellulosic fibers and lignin related to their applications in bioplastics are covered. Then, we generalize the developments and problems of lignin-reinforced bioplastics and modification of lignin to improve the interaction of lignin-matrix. As for lignocellulosic fiber-reinforced bioplastics, we place importance on the low compatibility of the lignocellulosic fiber-matrix. The applications of lignin-containing cellulose and lignocellulosic fibers without delignification in the bioplastics are reviewed. A comparison between lignocellulosic fibers and lignin in the bioplastics is given.

SELECTION OF CITATIONS
SEARCH DETAIL
...