Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 208
Filter
1.
Bioorg Chem ; 151: 107631, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39018800

ABSTRACT

UPLC-Q-TOF-MS combined with mass defect filtering strategies were applied for the phytochemical investigation of Harrisonia perforata, leading to the isolation of thirteen undescribed limonoids named haperforatones A-M (1-13) and seventeen known compounds (14-30). Particularly, haperforatones D-E (4-5) have an unprecedented A, B, C, D-seco-6, 7-nor-C-24-limonoid skeleton, structurally stripped of the five-membered lactone ring B and formed a double bond at the C-5 and C-10 positions. Their 2D structures and relative configurations were identified using spectroscopic data. The absolute configurations of 1, 4, and 6 were established via X-ray diffraction crystallography. All 30 compounds were evaluated for anti-inflammatory potential in LPS-induced Raw 264.7 cell lines. Among those tested compounds, the most potent activity against LPS-induced NO generation was demonstrated by haperforatone F (6), with the IC50 value of inhibition NO production of 7.2 µM. Additionally, 6 could significantly inhibit IL-1ß and IL-6 release and markedly downregulate the protein expression level of iNOS in the LPS-stimulated RAW264.7 cells at 10 µM. The possible mechanism of NO inhibition of 6 was also investigated using molecular docking, which revealed the interaction of compound 6 with the iNOS protein.

2.
J Asian Nat Prod Res ; : 1-7, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38920362

ABSTRACT

Twelve compounds, comprising of four new ones, 6ß,7α-limondiol (1) and ethyl 19-hydroxyisoobacunoate diosphenol (2), N-benzoyl 3-prenyltyramine (9) and 9-O-methyl integrifoliodiol (12), were isolated from the twigs with leaves of Tetradium trichotomum. The structures were elucidated by analysis of MS, NMR, and single-crystal X-ray diffraction. Compounds 1, 6, 8, 9 and 12 exhibited immunosuppressive activities in vitro against the proliferation of ConA-induced T lymphocytes and LPS-induced B cells.

3.
Arch Pharm (Weinheim) ; 357(8): e2400160, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38678480

ABSTRACT

Different types of limonoids have been isolated from plants of the Chisocheton genus, notably from the species Chisocheton ceramicus Miq. which is largely distributed in the Indonesian archipelago and Malaysia region. A variety of natural products have been found in the bark of the tree and characterized as antimicrobial and/or antiproliferative agents. The isolated limonoids include chisomicines A-E, proceranolide, and a few other compounds. A focus is made on a large series of limonoids designated ceramicines A to Z including derivatives with antiparasitic activities, antioxidant, antimelanogenic, and antiproliferative effects and/or acting as regulators of lipogenesis. The lead compound in the series is ceramicine B functioning as a potent inhibitor of lipid droplet accumulation (LDA). Extracts from Chisocheton ceramicus and ceramicines have shown anti-LDA effects, with little or no cytotoxic effects. Ceramicine B is the most active compound functioning as a regulator of lipid storage in cells and tissues. Ceramicine B is a transcriptional repressor of peroxisome proliferator-activated receptor γ (PPARγ) and an inhibitor of phosphorylation of the transcription factor FoxO1, acting via an upstream molecular target. Targeting of glycogen synthase kinase-3ß is proposed, based on the analogy with structurally related limonoids known to target this enzyme, and supported by a molecular docking analysis. The target and pathway implicated in ceramicine B activity are discussed. The analysis shed light on ceramicine B as a natural product precursor for the design of novel compounds capable of reducing LDA in cells and of potential interest for the treatment of obesity, liver diseases, and other pathologies.


Subject(s)
Limonins , Limonins/pharmacology , Limonins/isolation & purification , Limonins/chemistry , Animals , Humans , Meliaceae/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Adipogenesis/drug effects , Molecular Structure
4.
Fitoterapia ; 175: 105938, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38565379

ABSTRACT

Five new B-seco-limonoids, namely toonanoronoids A-E (1-5), in conjunction with three previously reported compounds, were isolated from the EtOAc extract of the twigs and leaves of Toona ciliata var. yunnanensis. Their structures were elucidated through comprehensive spectroscopic and X-ray crystallographic analysis. The cytotoxic activities of new compounds against five human tumor cell lines (HL-60, SMMC-7721, A549, MCF-7, and SW480) were screened, Compounds 4 and 5 exerted inhibition toward two tumor cell lines (HL-60, SW-480) with IC50 values between 1.7 and 5.9 µM.


Subject(s)
Antineoplastic Agents, Phytogenic , Limonins , Phytochemicals , Plant Leaves , Toona , Humans , Molecular Structure , Cell Line, Tumor , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/isolation & purification , Plant Leaves/chemistry , Limonins/isolation & purification , Limonins/pharmacology , Limonins/chemistry , Phytochemicals/isolation & purification , Phytochemicals/pharmacology , China , Toona/chemistry , Plant Stems/chemistry
5.
Food Nutr Res ; 682024.
Article in English | MEDLINE | ID: mdl-38571915

ABSTRACT

Background: Nimbolide, a bioactive compound derived from the neem tree, has garnered attention as a potential breakthrough in the prevention and treatment of chronic diseases. Recent updates in research highlight its multifaceted pharmacological properties, demonstrating anti-inflammatory, antioxidant, and anticancer effects. With a rich history in traditional medicine, nimbolide efficacy in addressing the molecular complexities of conditions such as cardiovascular diseases, diabetes, and cancer positions it as a promising candidate for further exploration. As studies progress, the recent update underscores the growing optimism surrounding nimbolide as a valuable tool in the ongoing pursuit of innovative therapeutic strategies for chronic diseases. Methods: The comprehensive search of the literature was done until September 2020 on the MEDLINE, Embase, Scopus and Web of Knowledge databases. Results: Most studies have shown the Nimbolide is one of the most potent limonoids derived from the flowers and leaves of neem (Azadirachta indica), which is widely used to treat a variety of human diseases. In chronic diseases, nimbolide reported to modulate the key signaling pathways, such as Mitogen-activated protein kinases (MAPKs), Wingless-related integration site-ß (Wnt-ß)/catenin, NF-κB, PI3K/AKT, and signaling molecules, such as transforming growth factor (TGF-ß), Matrix metalloproteinases (MMPs), Vascular Endothelial Growth Factor (VEGF), inflammatory cytokines, and epithelial-mesenchymal transition (EMT) proteins. Nimbolide has anti-inflammatory, anti-microbial, and anti-cancer properties, which make it an intriguing compound for research. Nimbolide demonstrated therapeutic potential for osteoarthritis, rheumatoid arthritis, cardiovascular, inflammation and cancer. Conclusion: The current review mainly focused on understanding the molecular mechanisms underlying the therapecutic effects of nimbolide in chronic diseases.

6.
Int J Mol Sci ; 25(7)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38612409

ABSTRACT

Limonoids are extremely diversified in plants, with many categories of products bearing an intact, rearranged or fragmented oxygenated scaffold. A specific subgroup of fragmented or degraded limonoids derives from the tetranortriterpenoid prieurianin, initially isolated from the tree Trichilia prieuriana but also found in other plants of the Meliaceae family, including the more abundant species Aphanamixis polystachya. Prieurianin-type limonoids include about seventy compounds, among which are dregeanin and rohitukin. Prieurianin and analogs exhibit insecticidal, antimicrobial, antiadipogenic and/or antiparasitic properties but their mechanism of action remains ill-defined at present. Previous studies have shown that prieurianin, initially known as endosidin 1, stabilizes the actin cytoskeleton in plant and mammalian cells via the modulation of the architecture and dynamic of the actin network, most likely via interference with actin-binding proteins. A new mechanistic hypothesis is advanced here based on the recent discovery of the targeting of the chaperone protein Hsp47 by the fragmented limonoid fraxinellone. Molecular modeling suggested that prieurianin and, to a lesser extent dregeanin, can form very stable complexes with Hsp47 at the protein-collagen interface. Hsp-binding may account for the insecticidal action of the product. The present review draws up a new mechanistic portrait of prieurianin and provides an overview of the pharmacological properties of this atypical limonoid and its chemical family.


Subject(s)
Insecticides , Limonins , Meliaceae , Animals , Limonins/pharmacology , Actin Cytoskeleton , Actins , Antiparasitic Agents , Insecticides/pharmacology , Mammals
7.
Phytochemistry ; 222: 114092, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38604323

ABSTRACT

Phytochemical study of the fruits of Chisocheton erythrocarpus (Hiern) allowed the identification of eight undescribed limonoids, namely erythrocarpines O - V (1-6, 7a and 7b), along with seven known compounds. The structures of these compounds were elucidated based on spectroscopic and HRMS data, along with electronic circular dichroism to configure the absolute configuration. Erythrocarpines O and P are γ-hydroxybutenolide analogs of mexicanolide-type limonoids while erythrocarpine Q - V are phragmalin-type limonoids possessing a 1,29-oxymethylene bridge with either benzoyl or cinnamoyl moiety in their structures. Mosquito larvicidal activity revealed that crude DCM extract of C. erythrocarpus possessed a good larvicidal effect against Aedes aegypti larvae in 48 h (LC50 = 153.0 ppm). Subsequent larvicidal activity of isolated compounds indicated that erythrocarpine G (10) and 14-deoxyxyloccensin K (11) were responsible for the enhanced larvicidal effect of the extract, reporting LC50 values of 18.55 ppm and 41.16 ppm, respectively. Moreover, residual activity testing of the crude DCM extract revealed that the duration of its larvicidal effects is up to 14 days, where it maintained a 98 % larval mortality throughout the test period, under laboratory conditions.


Subject(s)
Aedes , Fruit , Insecticides , Larva , Limonins , Meliaceae , Animals , Larva/drug effects , Limonins/pharmacology , Limonins/isolation & purification , Limonins/chemistry , Insecticides/pharmacology , Insecticides/chemistry , Insecticides/isolation & purification , Fruit/chemistry , Aedes/drug effects , Meliaceae/chemistry , Molecular Structure , Structure-Activity Relationship , Dose-Response Relationship, Drug
8.
In Silico Pharmacol ; 12(1): 35, 2024.
Article in English | MEDLINE | ID: mdl-38680655

ABSTRACT

Dengue virus type 2 (DENV-2) is an arthropod-borne deadly RNA human pathogen transmitted through the mosquito Aedes. The DENV-2 roots viral infection by facilitating entry with its envelope glycoprotein to the receptor protein Dendritic-cell-specific ICAM3-grabbing non-integrin (DC-SIGN) through membrane fusion. Here, an organizational path is reported for inhibiting the transition due to fusion activation and by blocking the residues of the DC-SIGN-E-Glyco protein complex through citrus limonoids with its antiviral effect. Based on lower binding affinity obtained with E-glycoprotein, and based on ADMET and drug-likeness study, limonin was selected as having effective interaction with DC-SIGN-E-glycoprotein complex in comparison to other citrus limonoids. The FTIR spectra performed with the limonin-E-glycoprotein sample provide evidence of hydrogen bond formation that indicates the formation of a strong limonin-E-glycoprotein conjugate. Further, the strong physical interaction between DC-SIGN and small limonin molecules in comparison to that of E-glyco with DC-SIGN assures the development of immunity against DENV-2. Supplementary Information: The online version contains supplementary material available at 10.1007/s40203-024-00207-2.

9.
J Nat Med ; 78(3): 558-567, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38517622

ABSTRACT

A total of five new mexicanolides (1-5), namely alliaxylines A-E, together with two known limonoids 6 and 7, were isolated and identified from Dysoxylum alliaceum (Blume) Blume ex. A.Juss. (Meliaceae). The structures of these compounds were elucidated based on extensive spectroscopic analyses, including HR-ESI-MS, UV, IR, 1D, and 2D NMR, as well as theoretical stimulation of NMR shifts with the DP4 + algorithm. Consequently, this study aimed to examine cytotoxic activities of these compounds against MCF-7 and A549 cell lines. The results implied that compound 2 was the most potent against the two tested cells, with IC50 values of 34.95 ± 0.21 and 44.39 ± 1.03 µM.


Subject(s)
Limonins , Meliaceae , Plant Bark , Humans , Meliaceae/chemistry , Plant Bark/chemistry , Limonins/chemistry , Limonins/pharmacology , Limonins/isolation & purification , Molecular Structure , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , MCF-7 Cells , A549 Cells , Cell Line, Tumor , Magnetic Resonance Spectroscopy , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Stems/chemistry
10.
J Nat Med ; 78(1): 68-77, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37690111

ABSTRACT

Ceramicines are a series of limonoids which were isolated from the barks of Malaysian Chisocheton ceramicus (Meliaceae), and were known to show various biological activity. Six new limonoids, ceramicines U-Z (1-6), with a cyclopentanone[α]phenanthrene ring system with a ß-furyl ring at C-17 were isolated from the barks of C. ceramicus. Their structures were determined on the basis of the 1D and 2D NMR analyses, and their absolute configurations were investigated by CD spectroscopy. Ceramicine W (3) exhibited potent antimalarial activity against Plasmodium falciparum 3D7 strain with IC50 value of 1.2 µM. In addition, the structure-antimalarial activity relationship (SAR) of the ceramicines was investigated to identify substituent patterns that may enhance activity. It appears that ring B and the functional groups in the vicinity of rings B and C are critical for the antimalarial activity of the ceramicines. In particular, bulky ester substituents with equatorial orientation at C-7 and C-12 greatly increase the antimalarial activity.


Subject(s)
Antimalarials , Limonins , Meliaceae , Antimalarials/pharmacology , Limonins/chemistry , Structure-Activity Relationship , Magnetic Resonance Spectroscopy , Meliaceae/chemistry , Molecular Structure
11.
Fitoterapia ; 172: 105759, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38013059

ABSTRACT

A pair of new enantiomeric indolopyridoquinazoline-type alkaloids, (+)-1,7S,8R- and (-)-1,7R,8S-trihydroxyrutaecarpine (3a and 3b), and a new limonoid-tyrosamine hybrid, austrosinin (8), along with six known alkaloids and limonoids, were isolated from the stems with leaves of Tetradium austrosinense. Their structures were elucidated on the basis of analysis of MS, NMR, ECD and time-dependent density functional theory-based electronic circular dichroism (TDDFT-ECD) calculations, as well as proposed biosynthetic pathway. An anti-inflammatory bioassay in vitro showed 8 had significant immunosuppressive effect against the production of pro-inflammatory cytokine TNF-α in lipopolysaccharide (LPS)-stimulated RAW264.7 cells.


Subject(s)
Alkaloids , Limonins , Rutaceae , Limonins/pharmacology , Limonins/chemistry , Molecular Structure , Alkaloids/pharmacology , Alkaloids/chemistry , Rutaceae/chemistry , Circular Dichroism
12.
Fitoterapia ; 173: 105765, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38042506

ABSTRACT

A phytochemical study on the bark of Chisocheton erythrocarpus Hiern (Meliaceae) has led to the isolation of six new phragmalin-type limonoids named erythrocarpines I - N (1-6) along with one known limonoid, erythrocarpine F (7). Their structures were fully characterized by spectroscopic methods. The pre-treatment of NG108-15 cells with 1-5, 7 (2 h) demonstrated low to good protective effects against H2O2 exposure; 1 (83.77% ± 1.84 at 12.5 µM), 2 (69.07 ± 2.01 at 12.5 µM), 3 (80.38 ± 2.1 at 12.5 µM), 4 (62.33 ± 1.95 at 25 µM),5 (58.67 ± 1.85 at 50 µM) and 7 (66.07 ± 2.03 at 12.5 µM). Interestingly, 1 and 3 demonstrated comparable protective effects to positive control epigallocatechin gallate (EGCG) with similar cell viability capacity (≈ 80%), having achieved that at lower concentration (12.5 µM) than EGCG (50 µM). Collectively, the results suggested the promising use of 1 and 3 as potential neuroprotective agents against hydrogen peroxide-induced cytotoxicity in neuronal model.


Subject(s)
Limonins , Meliaceae , Neuroprotective Agents , Molecular Structure , Neuroprotective Agents/pharmacology , Hydrogen Peroxide , Limonins/pharmacology , Limonins/chemistry , Meliaceae/chemistry
13.
Chem Biodivers ; 21(2): e202301703, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38055204

ABSTRACT

Three undescribed limonoids (1-3), named aglaians G-I, and one new natural product azedaralide (4), together with nine known analogues (5-13) were isolated from the branches and leaves of Aglaia lawii by RP C18 column, silica gel column, Sephadex LH-20 column chromatography and preparative HPLC. The structures of the new compounds were elucidated by IR, HRESIMS, 1D, 2D NMR, electronic circular dichroism (ECD) calculations and X-ray crystallography diffraction analysis. The results of bioassay showed that the compound 12 exhibited potential inhibitory activity against six human tumor cell lines (MDA-MB-231, MCF-7, Ln-cap, A549, HeLa and HepG-2) with IC50 values as 8.0-18.6 µM.


Subject(s)
Aglaia , Antineoplastic Agents , Limonins , Humans , Aglaia/chemistry , Limonins/pharmacology , Limonins/chemistry , Molecular Structure , Cell Line, Tumor
14.
Nat Prod Res ; 38(5): 891-896, 2024.
Article in English | MEDLINE | ID: mdl-37074699

ABSTRACT

Limonoids serve as vital secondary metabolites. Citrus limonoids show a wide range of pharmacological potential. As a result of which limonoids from citrus are of considerable research interest. Identification of new therapeutic molecules from natural origins has been widely adopted as a successful strategy in drug discovery. This work mainly focused on the high-throughput computational exploration of the antiviral potential of three vital limonoids, i.e. Obacunone, Limonin and Nomilin against spike proteins of SARS CoV-2 (PDB:6LZG), Zika virus NS3 helicase (PDB:5JMT), Serotype 2 RNA dependent RNA polymerase of dengue virus (PDB:5K5M). Herein we report the molecular docking, MD simulation studies of nine docked complexes, and density functional theory (DFT) of selected limonoids. The results of this study indicated that all three limonoids have good molecular features but out of these three obacunone exerted satisfactory results for DFT, docking and MD simulation study.


Subject(s)
Benzoxepins , Limonins , Zika Virus Infection , Zika Virus , Humans , Limonins/pharmacology , Limonins/metabolism , Molecular Docking Simulation , Molecular Dynamics Simulation , Antiviral Agents/pharmacology
15.
Molecules ; 28(22)2023 Nov 15.
Article in English | MEDLINE | ID: mdl-38005325

ABSTRACT

Swietenia macrophylla King is a plant commonly known as Brazilian mahogany. The wood from its stem is highly prized for its exceptional quality, while its leaves are valued for their high content of phragmalin-type limonoids, a subclass of compounds known for their significant biological activities, including antimalarial, antitumor, antiviral, and anti-inflammatory properties. In this context, twelve isolated limonoids from S. macrophylla leaves were employed as standards in mass spectrometry-based molecular networking to unveil new potential mass spectrometry signatures for phragmalin-type limonoids. Consequently, ultra-performance liquid chromatography coupled with high-resolution mass spectrometry was utilized for data acquisition. Subsequently, the obtained data were analyzed using the Global Natural Products Social Molecular Networking platform based on spectral similarity. In summary, this study identified 24 new putative phragmalin-type limonoids for the first time in S. macrophylla. These compounds may prove valuable in guiding future drug development efforts, leveraging the already established biological activities associated with limonoids.


Subject(s)
Limonins , Meliaceae , Limonins/chemistry , Meliaceae/chemistry , Mass Spectrometry , Brazil , Molecular Structure
16.
Molecules ; 28(20)2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37894704

ABSTRACT

Plasmodium falciparum and Leishmania sp. resistance to antiparasitic drugs has become a major concern in malaria and leishmaniasis control. These diseases are public health problems with significant socioeconomic impacts, and mostly affect disadvantaged populations living in remote tropical areas. This challenge emphasizes the need to search for new chemical scaffolds that preferably possess novel modes of action to contribute to antimalarial and antileishmanial research programs. This study aimed to investigate the antimalarial and antileishmanial properties of a methanol extract (KS-MeOH) of the stem bark of the Cameroonian medicinal plant Khaya senegalensis and its isolated compounds. The purification of KS-MeOH led to the isolation of a new ordered limonoid derivative, 21ß-hydroxybourjotinolone A (1a), together with 15 known compounds (1bc-14) using a repeated column chromatography. Compound 1a was obtained in an epimeric mixture of 21α-melianodiol (1b) and 21ß-melianodiol (1c). Structural characterization of the isolated compounds was achieved with HRMS, and 1D- and 2D-NMR analyses. The extracts and compounds were screened using pre-established in vitro methods against synchronized ring stage cultures of the multidrug-resistant Dd2 and chloroquine-sensitive/sulfadoxine-resistant 3D7 strains of Plasmodium falciparum and the promastigote form of Leishmania donovani (1S(MHOM/SD/62/1S). In addition, the samples were tested for cytotoxicity against RAW 264.7 macrophages. Positive controls consisted of artemisinin and chloroquine for P. falciparum, amphotericin B for L. donovani, and podophyllotoxin for cytotoxicity against RAW 264.7 cells. The extract and fractions exhibited moderate to potent antileishmanial activity with 50% inhibitory concentrations (IC50) ranging from 5.99 ± 0.77 to 2.68 ± 0.42 µg/mL, while compounds displayed IC50 values ranging from 81.73 ± 0.12 to 6.43 ± 0.06 µg/mL. They were weakly active against the chloroquine-sensitive/sulfadoxine-resistant Pf3D7 strain but highly potent toward the multidrug-resistant PfDd2 (extracts, IC50 2.50 ± 0.12 to 4.78 ± 0.36 µg/mL; compounds IC50 2.93 ± 0.02 to 50.97 ± 0.37 µg/mL) with selectivity indices greater than 10 (SIDd2 > 10) for the extract and fractions and most of the derived compounds. Of note, the limonoid mixture [21ß-hydroxylbourjotinolone A (1a) + 21α-melianodiol (1b) + 21ß-melianodiol (1c)] exhibited moderate activity against P. falciparum and L. donovani. This novel antiplasmodial and antileishmanial chemical scaffold qualifies as a promising starting point for further medicinal chemistry-driven development of a dually active agent against two major infectious diseases affecting humans in Africa.


Subject(s)
Antimalarials , Antiprotozoal Agents , Limonins , Malaria, Falciparum , Meliaceae , Humans , Antimalarials/chemistry , Limonins/pharmacology , Limonins/analysis , Plant Extracts/chemistry , Sulfadoxine/analysis , Plant Bark/chemistry , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/analysis , Chloroquine , Meliaceae/chemistry , Plasmodium falciparum
17.
Phytochemistry ; 216: 113869, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37739201

ABSTRACT

Twelve undescribed limonoids, meliazedarines J-U (1-12), along with a known one, were isolated from the roots of Melia azedarach. Their structures were elucidated by extensive spectroscopic investigations, X-ray diffraction analyses, and ECD calculations. Compounds 1-8 were identified as ring intact limonoids, while compounds 9-12 were established as ring C-seco ones. The anti-inflammatory potential of compounds 1-4, 6, 8, 9, and 11-13 was evaluated on macrophages. Compounds 1, 3, 4, 6, and 9 significantly suppressed nitric oxide production in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages, among them compound 3 showed the best inhibitory effect with an IC50 value of 7.07 ± 0.48 µΜ. Furthermore, compound 3 effectively reduced interleukin-1ß secretion in LPS plus nigericin-induced THP-1 macrophages by inhibiting NLRP3 inflammasome activation. The results strongly suggested that limonoids from the roots of M. azedarach might be candidates for treating inflammation-related diseases.


Subject(s)
Limonins , Melia azedarach , Melia azedarach/chemistry , Limonins/pharmacology , Limonins/chemistry , Lipopolysaccharides/pharmacology , Macrophages , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry
18.
Nat Prod Res ; : 1-13, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37712398

ABSTRACT

Three new steroids, turranin M, N and O (1-3), together with four known limonoids, nymania 1 (4), rubralin B (5), aphapolynin C (6) and Trichillia substance Tr B (7), were isolated from the leaves of Turraea obtusifolia. Their chemical structures were elucidated using NMR and MS. Rubralin B (5) displayed good activity against the asexual parasites from the drug sensitive Plasmodium falciparum NF54 strain with an IC50 value of 3.47 µg/mL (4.57 µM), nymania 1 (4) showed a weak activity (IC50 13.36 µg/mL (19.40 µM)) and the rest of compounds had IC50 > 20 µg/mL.

19.
Food Nutr Res ; 672023.
Article in English | MEDLINE | ID: mdl-37533446

ABSTRACT

Background: Chukrasia tabularisis, a well-known tropical tree native to southeastern China, has anti-inflammatory and antioxidant activities, and contains large amounts of limonoids and triterpenoids. Objective: The aim of this study was to investigate the potential anti-inflammatory activity of limonoids from C. tabularis on lipopolysaccharide (LPS)-mediated RAW264.7 cells. Methods and results: Using a bioassay-guided approach, the chemical fraction with high anti-inflammatory activity was found and its chemical constituents were investigated. Phytochemical studies on active extracts resulted in the separation of three novel phragmalin limonoids (1-3), together with two known limonoids (4-5) and 11 tirucallane triterpenes (6-16). The activity of these isolated compounds in the production of nitric oxide (NO) on LPS-reated macrophages was evaluated. Limonoid 2 indicated significant anti-inflammatory activities with IC50 value of 4.58 µM. Limonoid 2 notably inhibited the production of NO, interleukin- 6 and tumor necrosis factor-α on macrophage. Signal transduction and activation of STAT and NF-κB activators were effectively blocked by limonoid 2. Conclusions: These results indicate that limonoid 2 has an anti-inflammatory effect by the inhibiting JAK2/STAT3, iNOS/eNOS, and NF-κB signaling pathways and regulating inflammatory mediators.

20.
Fitoterapia ; 169: 105606, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37442484

ABSTRACT

Fraxinifolines A-F (1-6), six new B-seco limonoids, together with four known A,D-di-seco ones, were isolated from the twigs with leaves of Tetradium fraxinifolium. Their structures with absolute configurations were elucidated on the basis of analysis of MS, NMR, single-crystal X-ray diffraction and biogenetic pathway. An anti-inflammatory bioassay in vitro showed limonoids 1-3 had significant immunosuppressive effect against the production of pro-inflammatory cytokines (IL-1ß and/or TNF-α) in lipopolysaccharide (LPS)-stimulated RAW264.7 cells.


Subject(s)
Limonins , Molecular Structure , Limonins/pharmacology , Limonins/chemistry , Anti-Inflammatory Agents/pharmacology , Cytokines , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL