Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 251
Filter
1.
Food Sci Biotechnol ; 33(14): 3313-3322, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39328221

ABSTRACT

Amaranthus, Sesamum indicum, and Linum usitatissimum are the most popular oilseed grains worldwide. Protein-rich Amaranthus contains bioactive peptides, is nutritious, and exhibits anti-allergic properties. Sesamum indicum is a primary trigger of anaphylaxis. Linum usitatissimum also displays allergenic properties. A DNA marker assessable using quantitative real-time PCR was developed to detect S. indicum and L. usitatissimum as allergenic contaminants of anti-allergenic Amaranthus. The efficiency of each primer set ranged from 90-98%, and high linear correlation (R2 > 0.99) was obtained between crossover values and the log DNA concentration. We established a Ct value of 0.1% of the binary as a cutoff. The practical application of the designed marker was confirmed by analyzing 20 commercial products. The qPCR system developed for detecting flaxseed and sesame can be applied for regulatory monitoring of allergenic substances in commercial amaranth-containing foods, thus contributing to protecting public health and safety. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-024-01584-2.

2.
Int J Mol Sci ; 25(17)2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39273563

ABSTRACT

Flax (Linum usitatissimum L.) is an important crop plant with pharmaceutical significance. It is described in pharmacopoeias (the United States Pharmacopeia and the European Pharmacopoeia), which confirms that it (especially the seeds) is a valuable medicinal product. Similar to flax seeds, which accumulate bioactive compounds, flax in vitro cultures are also a rich source of flavonoids, phenolics, lignans and neolignans. In the present study, flax suspension cultures after treatment of the non-pathogenic Fusarium oxysporum strain Fo47 were established and analyzed. The study examined the suitability of Fo47 as an elicitor in flax suspension cultures and provided interesting data on the impact of these endophytic fungi on plant metabolism and physiology. Two flax cultivars (Bukoz and Nike) and two compositions of media for flax callus liquid cultures were tested. Biochemical analysis revealed enhanced levels of secondary metabolites (total flavonoid and total phenolic content) and photosynthetically active pigments in the flax callus cultures after treatment with the non-pathogenic fungal strain F. oxysporum Fo47 when compared to control, untreated cultures. In cultures with the selected, optimized conditions, FTIR analysis was performed and revealed changes in the structural properties of cell wall polymers after elicitation of cultures with F. oxysporum Fo47. The plant cell wall polymers were more strongly bound, and the crystallinity index (Icr) of cellulose was higher than in control, untreated samples. However, lignin and pectin levels were lower in the flax callus liquid cultures treated with the non-pathogenic strain of Fusarium when compared to the untreated control. The potential application of the non-pathogenic strain of F. oxysporum for enhancing the synthesis of desired secondary metabolites in plant tissue cultures is discussed.


Subject(s)
Flax , Fusarium , Fusarium/metabolism , Flax/microbiology , Flax/metabolism , Flavonoids/metabolism , Phenols/metabolism , Cell Wall/metabolism , Cell Wall/chemistry , Seeds/microbiology , Seeds/metabolism
3.
3 Biotech ; 14(9): 201, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39149558

ABSTRACT

The growing prevalence of phytoplasma associated symptoms on linseed or flax (Linum usitatissimum L.) germplasm at Indian Council of Agricultural Research- National Bureau of Plant Genetic Resources (ICAR-NBPGR) fields was noticed during the 2019-22 growing seasons. The characteristic phytoplasma symptoms of phyllody, stem fasciation, stunting, along with floral and capsule malformations were observed in 41 linseed accessions grown at experimental fields of ICAR-NBPGR, Delhi. During 3 years, the presence of phytoplasma in symptomatic linseed accessions was confirmed by nested-PCR assays utilizing 16S rRNA and secA gene-specific primers. The 16S rRNA and secA gene sequences of linseed phytoplasma strains from the representative symptomatic 41 linseed accessions exhibited 100% sequence identity among themselves and 99.93% and 99.82% sequence homology with reference strain, 'Candidatus Phytoplasma australasiaticum' (GenBank Accession: Y10097). Phylogenetic analysis of 16S rRNA and secA gene sequences clustered the linseed isolates with the peanut witches' broom group belonging to 'Ca. P. australasiaticum' strains. The virtual RFLP analysis of 16S rRNA F2nR2 fragment (~1.2 kb) of linseed phytoplasma strains further classified it into 16Sr group II, subgroup D. Our results suggested confirmation of the association of 'Ca. P. australasiaticum' strain (16SrII-D) in the linseed germplasm accessions from North India, which is the first report from India. The phytoplasma infection also reduced the growth and yield parameters of two linseed accessions (IC0498748 and EC0718851).

4.
Sci Rep ; 14(1): 17907, 2024 08 02.
Article in English | MEDLINE | ID: mdl-39095443

ABSTRACT

Linseed, also known as flax is an important oilseed crop with many potential uses in paint, textile, food and pharmaceutical industries. Susceptibility to bud fly (Dasyneura lini Barnes) infestation is a serious biotic concern leading to severe yield penalty in linseed. Protease inhibitors (PIs) are potential candidates that activate during the insect-pest attack and modulate the resistance. In the present study, we explored the PI candidates in the linseed genome and a total of 100 LuPI genes were identified and grouped into five distinct subgroups. The analysis of cis-acting elements revealed that almost all LuPI promoters contain several regulatory elementary related to growth and development, hormonal regulation and stress responses. Across the subfamilies of PIs, the specific domains are consistently found conserved in all protein sequences. The tissue-specific in-silico expression pattern via RNA-seq revealed that all the genes were regulated during different stress. The expression through qRT-PCR of 15 genes revealed the significant up-regulation of LuPI-24, LuPI-40, LuPI-49, LuPI-53, and LuPI-63 upon bud fly infestation in resistant genotype EC0099001 and resistant check variety Neela. This study establishes a foundation resource for comprehending the structural, functional, and evolutionary dimensions of protease inhibitors in linseed.


Subject(s)
Diptera , Flax , Gene Expression Regulation, Plant , Protease Inhibitors , Flax/genetics , Flax/metabolism , Animals , Diptera/genetics , Protease Inhibitors/pharmacology , Protease Inhibitors/metabolism , Protein Interaction Maps , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Diseases/parasitology , Plant Diseases/genetics , Promoter Regions, Genetic , Regulatory Sequences, Nucleic Acid , Multigene Family , Phylogeny
5.
Nat Prod Res ; : 1-10, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38962970

ABSTRACT

The polyphenolic compounds of the n-butanol fraction of Linum tenue Desf. (BFLTe) were characterised by RP-UHPLC-ESI-QTOF-MS analyses with the main presence of 6,8-di-C-glucosyl naringenin (11.7%), vicenin 2-isomer 2 (8.18%), luteolin-7,3'-di-O-ß-D-glucoside (7.18%), isovitexin (5.98%), luteolin-7-O-ß-D-glucoside (5.713%), myricitrin (4.41%), luteolin-4'-O-ß-D-glucoside (4.04%), chlorogenic acid (28.68%), 3-(2,6-dihydroxyphenyl)-4-hydroxy-6-methyl-3H-2-benzofuran-1-one (8.17%) and p-coumaric acid (4.0%.). The antioxidant capacity was evaluated using three complementary methods (DPPH, ABTS and Reducing power). Additionally, the antimicrobial activity was tested against eight bacterial strains and the fungi Candida albicans whereas the antidiabetic activity was performed against α-amylase. The anti-Alzheimer activity was tested by inhibiting the butyrylcholinesterase (BChE). The BFLTe showed, for the first-time, a good antioxidant potential in DPPH (IC50:68.83 ± 2.74 µg/mL), ABTS (IC50:48.73 ± 1.07 µg/mL) and Reducing power assays (A0.50:99.98 ± 1.18 µg/mL) and a moderate antimicrobial activity with 250 and 500 µg/mL MICs values. Moreover, the fraction exhibited an excellent inhibition of the BChE (IC50:33.00 ± 0.85 µg/mL) and α-amylase (IC50:1093.13 ± 12.93 µg/mL).

6.
AoB Plants ; 16(4): plae027, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39005727

ABSTRACT

Linum suffruticosum s.l. is a taxonomic complex widespread in the Western Mediterranean basin. The complex is characterized by a high phenotypic and cytogenetic diversity, and by a unique three-dimensional heterostyly system that makes it an obligate outcrosser. We studied the patterns of genetic diversity and structure of populations throughout the entire distribution of L. suffruticosum s.l. with microsatellite markers. We analysed their relationships with various biological and ecological variables, including the morph ratio and sex organ reciprocity of populations measured with a novel multi-dimensional method. Populations consistently showed an approximate 1:1 morph ratio with high sex organ reciprocity and high genetic diversity. We found high genetic differentiation of populations, showing a pattern of isolation by distance. The Rif mountains in NW Africa were the most important genetic barrier. The taxonomic treatment within the group was not related to the genetic differentiation of populations, but to their environmental differentiation. Genetic diversity was unrelated to latitude, elevation, population size, niche suitability or breeding system. However, there was a clear influence of ploidy level on the genetic diversity of populations, and a seeming centre-periphery pattern in its distribution. Our results suggest that polyploidization events, high outcrossing rates, isolation by distance and important geographical barriers to gene flow have played major roles in the microevolutionary history of this species complex.

7.
Complement Ther Med ; 84: 103066, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38992480

ABSTRACT

OBJECTIVE: Flaxseed (Linum usitatissimum) supplementation has shown promise as an anti-obesity agent in various clinical trials, although results have been inconsistent. To provide a more accurate assessment of the impact of flaxseed supplementation on anthropometric indices, a systematic review and meta-analysis was performed. METHODS: We searched several international databases until August 2023, including Scopus, PubMed, Web of Science, Embase, and Cochrane Library. Weighted mean differences (WMDs) were analyzed using a random-effects model. RESULTS: Sixty-four trials comprising 72 treatment arms were included. All studies reported the intervention types (Lignans, Whole flaxseed, and Flaxseed oil) and dosage. However, three studies did testing for purity, and 40 studies reported potency. Also, the risk of contamination with heavy metals was not mentioned in studies. Another limitation was the lack of blind evaluation in the studies. According to three trials included in the systematic review, flaxseed did not affect anthropometric indices. Our meta-analysis revealed significant reductions in body weight (WMD = -0.63 kg; 95 % CI: -1.00, -0.27, P < 0.001; I2 = 76.7 %, P < 0.001), body mass index (BMI) (WMD: -0.24 kg/m2, 95 % CI: -0.36, -0.11, P < 0.001; I2 = 78.5 %, P < 0.001) and waist circumference (WC) (WMD: -1.43 cm, 95 % CI: -2.06, -0.80, P < 0.001; I2 = 81.1 %, P < 0.001) following flaxseed supplementation. Subgroup analyses indicated that interventions lasting 10-20 weeks, and studies involving subjects with higher BMI (>30 kg/m2) showed more significant anti-obesity effects. Based on the GRADE evaluation, body weight, BMI, and WC results were considered as moderate-certainty evidence. CONCLUSION: Our systematic review and meta-analysis suggests that supplementation with flaxseed (Linum usitatissimum) leads to meaningful improvements in body weight, BMI, and WC. Therefore, flaxseed can be considered as an adjunctive therapeutic approach in improving obesity.


Subject(s)
Dietary Supplements , Flax , Randomized Controlled Trials as Topic , Humans , Obesity/drug therapy , Anthropometry , Body Mass Index , Anti-Obesity Agents/therapeutic use , Anti-Obesity Agents/pharmacology
8.
Plants (Basel) ; 13(11)2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38891350

ABSTRACT

The aim of this study was to assess the phytoremediation potential of fiber flax (Linum usitatissimatum L., var. Calista) cultivated in a soil contaminated with multiple metals, under real field conditions. A two-year (2022 and 2023) field experiment was conducted in a site contaminated with elevated concentrations of Cd, Ni, Cu, Pb, and Zn due to mining and metallurgical activities. Three different nitrogen fertilization levels were tested (N0: 0 kg N ha-1, N1: 30 kg N ha-1, N2: 60 kg N ha-1), and both spring and winter sowings were conducted. At full maturity, growth parameters and yields were measured. The phytoremediation potential of flax was assessed in terms of the metal concentrations in the above-ground biomass and of the metal uptake (i.e., the potential removal of the soil metals in g ha-1 and per year). Flax demonstrated a shorter growth cycle, with shorter and thicker plants and higher yields when sown in spring compared to winter sowing. Plant growth and productivity were not evidently influenced by additional nitrogen fertilization during plant growth. The cadmium bioaccumulation factor was 1.06, indicating that flax accumulates this metal. For Ni, Cu, Pb, and Zn, the corresponding values were 0.0, 0.04, 0.004, and 0.02, suggesting that this crop excludes these metals. The order of the higher uptake in plant tissues was as follows: Zn > Pb > Cd > Cu > Ni. In conclusion, flax demonstrated tolerance to heavy metals in the soil, effectively supporting soil restoration through cultivation. Additionally, flax showed potential as a cadmium accumulator while excluding nickel, copper, lead, and zinc.

9.
Mar Drugs ; 22(5)2024 May 17.
Article in English | MEDLINE | ID: mdl-38786617

ABSTRACT

Utilizing plant-based resources, particularly their by-products, aligns with sustainability principles and circular bioeconomy, contributing to environmental preservation. The therapeutic potential of plant extracts is garnering increasing interest, and this study aimed to demonstrate promising outcomes from an extract obtained from an underutilized plant waste. Chaetomorpha linum, an invasive macroalga found in the Orbetello Lagoon, thrives in eutrophic conditions, forming persistent mats covering approximately 400 hectares since 2005. The biomass of C. linum undergoes mechanical harvesting and is treated as waste, requiring significant human efforts and economic resources-A critical concern for municipalities. Despite posing challenges to local ecosystems, the study identified C. linum as a natural source of bioactive metabolites. Phytochemical characterization revealed lipids, amino acids, and other compounds with potential anti-inflammatory activity in C. linum extract. In vitro assays with LPS-stimulated RAW 264.7 and TNF-α/IFN-γ-stimulated HaCaT cells showed the extract inhibited reactive oxygen species (ROS), nitric oxide (NO), and prostaglandin E2 (PGE2) productions, and reduced inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expressions via NF-κB nuclear translocation, in RAW 264.7 cells. It also reduced chemokines (TARC/CCL17, RANTES/CCL5, MCP-1/CCL2, and IL-8) and the cytokine IL-1ß production in HaCaT cells, suggesting potential as a therapeutic candidate for chronic diseases like atopic dermatitis. Finally, in silico studies indicated palmitic acid as a significant contributor to the observed effect. This research not only uncovered the untapped potential of C. linum but also laid the foundation for its integration into the circular bioeconomy, promoting sustainable practices, and innovative applications across various industries.


Subject(s)
Anti-Inflammatory Agents , Phytochemicals , Plant Extracts , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Mice , RAW 264.7 Cells , Humans , Phytochemicals/pharmacology , Phytochemicals/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , HaCaT Cells , Nitric Oxide/metabolism , Reactive Oxygen Species/metabolism , Cyclooxygenase 2/metabolism , Nitric Oxide Synthase Type II/metabolism , NF-kappa B/metabolism , Dinoprostone/metabolism , Chlorophyta , Seaweed
10.
AoB Plants ; 16(3): plae022, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38716380

ABSTRACT

Abstract. The expansive range of Lewis flax (Linum lewisii), an herbaceous perennial, exposes the species to a diversity of climatic conditions. As interest in the domestication and adoption of perennial crop alternatives grows and interest in this species for natural area restoration continues, the assurance of a commercial plant variety's ability to endure the full range of possible climatic extremes is paramount. This study examines the freezing tolerance of a geographically representative sampling of 44 Lewis flax accessions at winter temperature extremes experienced in the northern Great Plains of the USA. Survival analysis models were adapted to include temperature exposure, in replacement of ordinal time typically used in such models, to produce statistics evaluating reactions to extreme temperatures that Lewis flax would encounter in our field environments. Our results revealed Lewis flax is more freezing tolerant than previously reported, and revealed four accessions with significantly superior genetic freezing tolerance than the released 'Maple Grove' cultivar. Furthermore, regrowth analyses indicate variation among accessions not associated with survival, which could lead to improving regrowth rate and survival simultaneously. These findings and their methodology expand the understanding of Lewis flax adaptation for winter hardiness and offer an efficient, new model that can be used to evaluate freezing tolerance at ordinal temperatures without requiring extensive prior physiological knowledge for a species.

11.
Plant Physiol Biochem ; 211: 108652, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38723488

ABSTRACT

Three Cd2+ resistant bacterium's minimal inhibition concentrations were assessed and their percentages of Cd2+ accumulation were determined by measurements using an atomic absorption spectrophotometer (AAS). The results revealed that two isolates Bacillus paramycoides (PM51) and Bacillus tequilensis (PM52), identified by 16S rDNA gene sequencing, showed a higher percentage of Cd2+ accumulation i.e., 83.78% and 81.79%, respectively. Moreover, both novel strains can tolerate Cd2+ levels up to 2000 mg/L isolated from district Chakwal. Amplification of the czcD, nifH, and acdS genes was also performed. Batch bio-sorption studies revealed that at pH 7.0, 1 g/L of biomass, and an initial 150 mg/L Cd2+ concentration were the ideal bio-sorption conditions for Bacillus paramycoides (PM51) and Bacillus tequilensis (PM52). The experimental data were fit to Langmuir isotherm measurements and Freundlich isotherm model R2 values of 0.999 for each of these strains. Bio sorption processes showed pseudo-second-order kinetics. The intra-diffusion model showed Xi values for Bacillus paramycoides (PM51) and Bacillus tequilensis (PM52) of 2.26 and 2.23, respectively. Different surface ligands, was investigated through Fourier-transformation infrared spectroscopy (FTIR). The scanning electron microscope SEM images revealed that after Cd2+ adsorption, the cells of both strains became thick, adherent, and deformed. Additionally, both enhanced Linum usitatissimum plant seed germination under varied concentrations of Cd2+ (0 mg/L, 250 mg/L,350 mg/L, and 500 mg/L). Current findings suggest that the selected strains can be used as a sustainable part of bioremediation techniques.


Subject(s)
Bacillus , Cadmium , Bacillus/metabolism , Bacillus/genetics , Cadmium/metabolism , Seedlings/metabolism , Seedlings/drug effects , Seedlings/microbiology , Biodegradation, Environmental , Adsorption
12.
Phytopathology ; 114(8): 1904-1916, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38748518

ABSTRACT

Flax (Linum usitatissimum) grown under controlled conditions displayed genotype-dependent resistance to powdery mildew (Oidium lini) following COS-OGA (comprising chitosan- and pectin-derived oligomers) elicitor application. The present study reveals a two-step immune response in plants preventively challenged with the elicitor: an initial, rapid response characterized by the transcription of defense genes whose protein products act in contact with or within the cell wall, where biotrophic pathogens initially thrive, followed by a prolonged activation of cell wall peroxidases and accumulation of secondary metabolites. Thus, dozens of genes encoding membrane receptors, pathogenesis-related proteins, and wall peroxidases were initially overexpressed. Repeated COS-OGA treatments had a transient effect on the transcriptome response while cumulatively remodeling the metabolome over time, with a minimum of two applications required for maximal metabolomic shifts. Secondary metabolites, in particular terpenoids and phenylpropanoids, emerged as major components of this secondary defense response alongside pathogenesis-related proteins and wall peroxidases. The sustained accumulation of secondary metabolites, even after cessation of elicitation, contrasted with the short-lived transcriptomic response. Wall peroxidase enzyme activity also exhibited cumulative effects, increasing strongly for weeks after a third elicitor treatment. This underscores the plasticity of the plant immune response in the face of a potential infection, and the need for repeated preventive applications to achieve the full protective potential of the elicitor.


Subject(s)
Ascomycota , Chitosan , Flax , Gene Expression Regulation, Plant , Plant Diseases , Transcriptome , Flax/microbiology , Flax/genetics , Flax/immunology , Plant Diseases/microbiology , Plant Diseases/immunology , Ascomycota/physiology , Metabolomics , Cell Wall/metabolism , Plant Immunity , Plant Proteins/genetics , Plant Proteins/metabolism , Pectins/metabolism , Metabolome , Gene Expression Profiling , Disease Resistance/genetics , Kinetics , Terpenes/metabolism , Peroxidases/metabolism , Peroxidases/genetics
13.
Genes (Basel) ; 15(4)2024 04 18.
Article in English | MEDLINE | ID: mdl-38674445

ABSTRACT

The loss of anthocyanin pigments is one of the most common evolutionary transitions in petal color, yet the genetic basis for these changes in flax remains largely unknown. In this study, we used crossing studies, a bulk segregant analysis, genome-wide association studies, a phylogenetic analysis, and transgenic testing to identify genes responsible for the transition from blue to white petals in flax. This study found no correspondence between the petal color and seed color, refuting the conclusion that a locus controlling the seed coat color is associated with the petal color, as reported in previous studies. The locus controlling the petal color was mapped using a BSA-seq analysis based on the F2 population. However, no significantly associated genomic regions were detected. Our genome-wide association study identified a highly significant QTL (BP4.1) on chromosome 4 associated with flax petal color in the natural population. The combination of a local Manhattan plot and an LD heat map identified LuMYB314, an R2R3-MYB transcription factor, as a potential gene responsible for the natural variations in petal color in flax. The overexpression of LuMYB314 in both Arabidopsis thaliana and Nicotiana tabacum resulted in anthocyanin deposition, indicating that LuMYB314 is a credible candidate gene for controlling the petal color in flax. Additionally, our study highlights the limitations of the BSA-seq method in low-linkage genomic regions, while also demonstrating the powerful detection capabilities of GWAS based on high-density genomic variation mapping. This study enhances our genetic insight into petal color variations and has potential breeding value for engineering LuMYB314 to develop colored petals, bast fibers, and seeds for multifunctional use in flax.


Subject(s)
Flax , Flowers , Pigmentation , Transcription Factors , Anthocyanins/genetics , Anthocyanins/metabolism , Chromosome Mapping , Flax/genetics , Flax/metabolism , Flowers/genetics , Flowers/metabolism , Gene Expression Regulation, Plant , Genome-Wide Association Study , Phylogeny , Pigmentation/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Quantitative Trait Loci , Transcription Factors/genetics , Transcription Factors/metabolism
14.
Vet World ; 17(2): 470-479, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38595672

ABSTRACT

Background and Aim: Over the last decades, the poultry industry has experienced steady growth. Although the industry is gradually expanding in Indonesia, poultry feed production has always been expensive. There is a need to study alternative ingredients to obtain affordable feed from natural resources. Chaetomorpha linum (CL) is an abundant macroalgae available throughout the year in Indonesia. This study aimed to determine the effect of CL on the histological structure of the small intestine, pectoralis muscle, growth performance, and meat quality of broilers. Materials and Methods: This study used 300-day-old chick (DOC) male broilers that were reared until they were 21 days old. This study used a completely randomized design with four treatment groups and five replications, and each replication group contained 15 DOC individuals. The treatment groups consisted of Control (CON), CON basal feed (BF), CL1 (0.75%/kg BF), CL2 (1.5%/kg BF), and CL3 (3%/kg BF) groups. The histological structure of the small intestine, pectoralis muscle, growth performance, and meat quality of the broiler was examined. Results: Small intestine and pectoral muscle histomorphology, growth performance, and meat quality were significantly improved in the CL2 (1.5%) and CL3 (3%) groups compared with the CL1 (0.75%) and CON groups. Conclusion: Dietary CL supplementation ameliorates small intestine and pectoral muscle histomorphology, growth performance, and meat quality of broilers.

15.
Plants (Basel) ; 13(7)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38611485

ABSTRACT

Flax seed is one of the richest plant sources of linolenic acid (LIN) and also contains unsaturated linoleic acid (LIO) and oleic acid (OLE). Stearoyl-ACP desaturases (SADs) and fatty acid desaturases (FADs) play key roles in the synthesis of flax fatty acids (FAs). However, there is no holistic view of which genes from the SAD and FAD families and at which developmental stages have the highest expression levels in flax seeds, as well as the influence of genotype and growth conditions on the expression profiles of these genes. We sequenced flax seed transcriptomes at 3, 7, 14, 21, and 28 days after flowering (DAF) for ten flax varieties with different oil FA compositions grown under three temperature/watering conditions. The expression levels of 25 genes of the SAD, FAD2, and FAD3 families were evaluated. FAD3b, FAD3a, FAD2b-2, SAD3-1, SAD2-1, SAD2-2, SAD3-2, FAD2a-1, and FAD2a-2 had the highest expression levels, which changed significantly during seed development. These genes probably play a key role in FA synthesis in flax seeds. High temperature and insufficient watering shifted the maximum expression levels of FAD and SAD genes to earlier developmental stages, while the opposite trend was observed for low temperature and excessive watering. Differences in the FAD and SAD expression profiles under different growth conditions may affect the FA composition of linseed oil. Stop codons in the FAD3a gene, resulting in a reduced LIN content, decreased the level of FAD3a transcript. The obtained results provide new insights into the synthesis of linseed oil.

16.
Vavilovskii Zhurnal Genet Selektsii ; 28(1): 33-43, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38465245

ABSTRACT

Gravitropism is an adaptive reaction of plants associated with the ability of various plant organs to be located and to grow in a certain direction relative to the gravity vector, while usually the asymmetric distribution of the phytohormone auxin is a necessary condition for the gravitropical bending of plant organs. Earlier, we described significant morphological changes in phloem fibers with a thickened cell wall located on different sides of the stem in the area of the gravitropic curvature. The present study is the first work devoted to the identification of genes encoding auxin transporters in cells at different stages of development and during gravity response. In this study, the flax genes encoding the AUX1/LAX, PIN-FORMED, PIN-LIKES, and ABCB auxin transporters were identified. A comparative analysis of the expression of these genes in flax phloem fibers at different stages of development revealed increased expression of some of these genes at the stage of intrusive growth (LusLAX2 (A, B), LuxPIN1-D, LusPILS7 (C, D)), at the early stage of tertiary cell wall formation (LusAUX1 (A, D), LusABCB1 (A, B), LusABCB15-A, LusPIN1 (A, B), LusPIN4-A, and LusPIN5-A), and at the late stage of tertiary cell wall development (LusLAX3 (A, B)). It was shown that in the course of gravitropism, the expression of many genes, including those responsible for the influx of auxin in cells (LusAUX1-D), in the studied families increased. Differential expression of auxin transporter genes was revealed during gravity response in fibers located on different sides of the stem (upper (PUL) and lower (OPP)). The difference was observed due to the expression of genes, the products of which are responsible for auxin intracellular transport (LusPILS3, LusPILS7-A) and its efflux (LusABCB15-B, LusABCB19-B). It was noted that the increased expression of PIN genes and ABCB genes was more typical of fibers on the opposite side. The results obtained allow us to make an assumption about the presence of differential auxin content in the fibers of different sides of gravistimulated flax plants, which may be determined by an uneven outflow of auxin. This study gives an idea of auxin carriers in flax and lays the foundation for further studies of their functions in the development of phloem fiber and in gravity response.

17.
Plant Foods Hum Nutr ; 79(1): 159-165, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38236453

ABSTRACT

Linseed represents a rich source of nutritional, functional and health-beneficial compounds. Nevertheless, the chemical composition and content of bioactive compounds may be quite variable and potentially affected by various factors, including genotype and the environment. In this study, the proximate chemical composition, lignans content and antioxidant potential of six experimentally grown linseed cultivars were assessed and compared. A diagonal cultivation trial in the University of South Bohemia Experimental Station in Ceské Budejovice, Czech Republic, was established in three subsequent growing seasons (2018, 2019 and 2020). The results showed that the cultivar and growing conditions influenced most studied parameters. The lack of precipitation in May and June 2019 negatively affected the seed yield and the level of secoisolariciresinol diglucoside but did not decrease the crude protein content, which was negatively related to the oil content. The newly developed method for lignans analysis allowed the identification and quantification of secoisolariciresinol diglucoside and matairesinol. Their content correlated positively with the total polyphenol content and antioxidant assays (DPPH and ABTS radical scavenging activity), indicating the significant contribution to the biofunctional properties of linseed. On the other hand, we did not detect minor linseed lignans, pinoresinol and lariciresinol. The results of this study showed the importance of cultivar and growing conditions factors on the linseed chemical composition and the lignans content, determining its nutritional and medicinal properties.


Subject(s)
Flax , Glucosides , Lignans , Antioxidants/analysis , Butylene Glycols/analysis , Butylene Glycols/chemistry , Butylene Glycols/metabolism , Flax/chemistry , Lignans/analysis , Lignans/chemistry , Lignans/metabolism
18.
Nat Prod Res ; 38(10): 1780-1785, 2024 May.
Article in English | MEDLINE | ID: mdl-37233980

ABSTRACT

In this study, the total phenolic and flavonoid contents (TPC and TFC), secondary metabolite composition (LC-HRMS/MS analyses) and antioxidant potential (DPPH, ABTS, GOR, CUPRAC, and phenanthroline assays) of Linum trigynum L. (LT) extracts were determined. Our results showed for the first time that the extracts (PE, CHCl3, AcOEt, and n-BuOH) of LT exert antioxidant activity. The AcOEt and n-BuOH extracts were the most antioxidant compared to the standards, and had a higher amount of TPC (323.51 ± 0.62; 229.98 ± 6.80 µg GAE/mL) and TFC (183.75 ± 1.17 and 157.50 ± 1.77 µg QE/mL), resectively. The high antioxidant properties of these extracts may be due to their major compounds (phenolic compounds) detected by LC-HRMS/MS analyses including flavonoids (40 compounds) and phenolic acids and derivatives (18 and 19 compounds, respectively). AcOEt and n-BuOH extracts of LT can be used as an excellent source of antioxidant phytochemicals to prevent or treat various diseases.


Subject(s)
Antioxidants , Flax , Antioxidants/chemistry , Plant Extracts/chemistry , Flavonoids/chemistry , Phenols/analysis , Phytochemicals/analysis
19.
Nat Prod Res ; 38(4): 555-562, 2024.
Article in English | MEDLINE | ID: mdl-36803099

ABSTRACT

In this article, chemical structure and conformation in an aqueous solution of a new sulfated polysaccharide, PCL, extracted from green seaweed Chaetomorpha linum were elucidated by SEC-MALL, IR, NMR and SAXS. The results indicated that the obtained polysaccharide is a sulfated arabinogalactan with a molecular weight of 223 kDa, and is mainly composed of →3,6)-α-D-Galp4S→ and →2)-α-L-Araf→ connecting together through 1→3 glycoside linkages. It has a broken rod-like conformation in solution with Rgc estimated as 0.43 nm from SAXS measurements. The polysaccharide exhibited a notable anticoagulant activity measured by the assays of activated partial thromboplastintime, thrombintime and prothrombine time as well as a significant cytotoxic activity against hepatocellular, human breast cancer, and cervical cancer cell lines.


Subject(s)
Antineoplastic Agents , Chlorophyta , Flax , Seaweed , Humans , Anticoagulants/pharmacology , Anticoagulants/chemistry , Sulfates , Scattering, Small Angle , X-Ray Diffraction , Seaweed/chemistry , Polysaccharides/pharmacology , Polysaccharides/chemistry
20.
Data Brief ; 52: 109827, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38059001

ABSTRACT

Flax (Linum usitatissimum L.), one of the important and versatile crops, is used for the production of oil and fiber. To obtain high and stable yields of flax products, L. usitatissimum varieties should be cultivated under optimal conditions, including the composition of the soil microbiome. We evaluated the diversity of microorganisms in soils under conditions unfavorable for flax cultivation (suboptimal acidity or herbicide treatment) or infected with causative agents of harmful flax diseases (Septoria linicola, Colletotrichum lini, Melampsora lini, or Fusarium oxysporum f. sp. lini). For this purpose, twenty-two sod-podzolic soil samples were collected from flax fields and their metagenomes were analyzed using the regions of 16S ribosomal RNA gene (16S rDNA) and internal transcribed spacers (ITS) of the ribosomal RNA genes, which are used in phylogenetic studies of bacteria and fungi. Amplicons were sequenced on the Illumina MiSeq platform (reads of 300 + 300 bp). On average, we obtained 8,400 reads for ITS and 43,300 reads for 16S rDNA per sample. For identification of microorganisms in the soil samples, the Illumina reads were processed using DADA2. The raw data are deposited in the Sequence Read Archive under the BioProject accession number PRJNA956957. Tables listing the microorganisms identified in the soil samples are available in this article. The obtained dataset can be used to analyze the fungal and bacterial composition of flax field soils and their relationship to environmental conditions, including suboptimal soil acidity and infection with fungal pathogens. In addition, it can help to understand the influence of herbicide treatment on the microbial diversity of flax fields. Another useful application of our data is the ability to assess the suitability of the soil microbiome for flax cultivation.

SELECTION OF CITATIONS
SEARCH DETAIL